首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The Drosophila eggshell is a specialised extracellular matrix (ECM) that surrounds and protects the oocyte and the embryo until its eclosion. In addition, the vitelline membrane, the innermost layer of the eggshell, holds the local determinant required to activate the Torso RTK pathway, which establishes the embryonic terminal regions. Here we report the identification and characterisation of closca, a gene encoding a new member of a group of proteins that act non-redundantly in vitelline membrane biogenesis and in Torso signalling. We also show that the Nasrat protein, another member of this group, is incorporated into the vitelline membrane, thereby indicating that the eggshell is a shared ECM that receives contributions from both follicle cells and the germline. This observation also provides a new scenario that accounts for the long known contribution of germline products to vitelline membrane biogenesis and to the follicle cell-dependent activation of the Torso receptor.  相似文献   

3.
4.
《Fly》2013,7(4):220-228
Drosophila embryonic dorsal-ventral polarity is defined by a maternally encoded signal transduction pathway. Gastrulation Defective, Snake, and Easter comprise a serine protease cascade that operates in the perivitelline space to generate active ligand for the Toll receptor, which resides in the embryonic membrane. Toll is activated only on the ventral side of the embryo. Spatial regulation of this pathway is initiated by the ventrally restricted expression of the sulfotransferase Pipe in the follicular epithelium that surrounds the developing oocyte. Pipe is thought to modify a target molecule that is secreted and localized within the ventral region of the egg and future embryo, where it influences the activity of the pathway such that active Toll ligand is produced only ventrally. A potential substrate for Pipe is encoded by nudel, which is expressed throughout the follicle cell layer and encodes a large, multi-functional secreted protein that contains a serine protease domain as well as other structural features characteristic of extracellular matrix proteins. A previous mosaic analysis suggested that the protease domain of Nudel is not a target for Pipe activity as its expression is not required in pipe-expressing cells, but failed to rule out such a role for other functional domains of the protein. To investigate this possibility, we carried out a mosaic analysis of additional nudel alleles, including some that affect the entire protein. Our analysis demonstrated that proteolytically processed segments of Nudel are secreted into the perivitelline space and stably localized, as would be expected for the target of Pipe, However, we found no requirement for nudel to be expressed in ventral, pipe-expressing follicle cells, thereby eliminating Nudel as an essential substrate of Pipe sulfotransferase activity.  相似文献   

5.
Drosophila embryo dorsoventral (DV) polarity is defined by serine protease activity in the perivitelline space (PVS) between the embryonic membrane and the inner layer of the eggshell. Gastrulation Defective (GD) cleaves and activates Snake (Snk). Activated Snk cleaves and activates Easter (Ea), exclusively on the ventral side of the embryo. Activated Ea then processes Sp?tzle (Spz) into the activating ligand for Toll, a transmembrane receptor that is distributed throughout the embryonic plasma membrane. Ventral activation of Toll depends upon the activity of the Pipe sulfotransferase in the ventral region of the follicular epithelium that surrounds the developing oocyte. Pipe transfers sulfate residues to several protein components of the inner vitelline membrane layer of the eggshell. Here we show that GD protein becomes localized in the ventral PVS in a Pipe-dependent process. Moreover, ventrally concentrated GD acts to promote the cleavage of Ea by Snk through an extracatalytic mechanism that is distinct from GD's proteolytic activation of Snk. Together, these observations illuminate the mechanism through which spatially restricted sulfotransferase activity in the developing egg chamber leads to localization of serine protease activity and ultimately to spatially specific activation of the Toll receptor in the Drosophila embryo.  相似文献   

6.
Stein D  Cho YS  Zhang Z  Stevens LM 《Fly》2008,2(4):220-228
Drosophila embryonic dorsal-ventral polarity is defined by a maternally encoded signal transduction pathway. Gastrulation Defective, Snake, and Easter comprise a serine protease cascade that operates in the perivitelline space to generate active ligand for the Toll receptor, which resides in the embryonic membrane. Toll is activated only on the ventral side of the embryo. Spatial regulation of this pathway is initiated by the ventrally restricted expression of the sulfotransferase Pipe in the follicular epithelium that surrounds the developing oocyte. Pipe is thought to modify a target molecule that is secreted and localized within the ventral region of the egg and future embryo, where it influences the activity of the pathway such that active Toll ligand is produced only ventrally. A potential substrate for Pipe is encoded by nudel, which is expressed throughout the follicle cell layer and encodes a large, multi-functional secreted protein that contains a serine protease domain as well as other structural features characteristic of extracellular matrix proteins. A previous mosaic analysis suggested that the protease domain of Nudel is not a target for Pipe activity as its expression is not required in pipe-expressing cells, but failed to rule out such a role for other functional domains of the protein. To investigate this possibility, we carried out a mosaic analysis of additional nudel alleles, including some that affect the entire protein. Our analysis demonstrated that proteolytically processed segments of Nudel are secreted into the perivitelline space and stably localized, as would be expected for the target of Pipe, However, we found no requirement for nudel to be expressed in ventral, pipe-expressing follicle cells, thereby eliminating Nudel as an essential substrate of Pipe sulfotransferase activity.  相似文献   

7.
8.
9.
Drosophila embryo dorsoventral polarity is established by a maternally encoded signal transduction pathway in which three sequentially acting serine proteases, Gastrulation Defective, Snake and Easter, generate the ligand that activates the Toll receptor on the ventral side of the embryo. The spatial regulation of this pathway depends upon ventrally restricted expression of the Pipe sulfotransferase in the ovarian follicle during egg formation. Several recent observations have advanced our understanding of the mechanism regulating the spatially restricted activation of Toll. First, several protein components of the vitelline membrane layer of the eggshell have been determined to be targets of Pipe-mediated sulfation. Second, the processing of Easter by Snake has been identified as the first Pipe-dependent, ventrally-restricted processing event in the pathway. Finally, Gastrulation Defective has been shown to undergo Pipe-dependent, ventral localization within the perivitelline space and to facilitate Snake-mediated processing of Easter. Together, these observations suggest that Gastrulation Defective, localized on the interior ventral surface of the eggshell in association with Pipe-sulfated eggshell proteins, recruits and mediates an interaction between Snake and Easter. This event leads to ventrally-restricted processing and activation of Easter and consequently, localized formation of the Toll ligand, and Toll activation.  相似文献   

10.
Identification of vitelline membrane proteins in Drosophila melanogaster   总被引:1,自引:0,他引:1  
In Drosophila melanogaster, proteins involved in vitelline membrane production are secreted by ovarian follicle cells during stages 9 and 10 of oogenesis. We have used SDS-PAGE and two-dimensional electrophoresis to identify six major size classes of radiolabeled components in purified vitelline membrane preparations. Analyses of in vivo labeled proteins from egg chambers of different developmental stages and stage 10 follicle cells show that components of five of these size classes are synthesized by follicle cells during the period of vitelline membrane deposition. Immunological analysis of eggshell antigens utilizing complex antisera raised to purified eggshell fragments has confirmed the identity of components of three size classes.  相似文献   

11.
Although sexual selection has been predominantly used to explain the rapid evolution of sexual traits, eggs of oviparous organisms directly face both the challenges of sexual selection as well as natural selection (environmental challenges, survival in niches, etc.). Being the outermost membrane in most insect eggs, the chorion layer is the interface between the embryo and the environment, thereby serving to protect the egg. Adaptive ecological radiations such as divergence in ovipositional substrate usage and host-plant specializations can therefore influence the evolution of eggshell proteins. We can hypothesize that proteins localized on the outer eggshell may be affected to a greater degree by ecological challenges compared with inner eggshell proteins, and therefore, proteins localized in the outer eggshell (chorion membrane) may evolve differently (faster) than proteins localized in the inner egg membrane (vitelline membrane). We compared the evolutionary divergence of vitelline with chorion membrane proteins in species of the melanogaster subgroup and found that chorion proteins as a group are indeed evolving faster than vitelline membrane proteins. At least one vitelline membrane protein (Vm32E), specifically localized on the outer eggshell, is also evolving faster than other vitelline membrane proteins suggesting that all proteins localized on the outer eggshell may be evolving rapidly. We also found evidence that specific codons in chorion proteins cp15 and cp16 are evolving under positive selection. Polymorphism surveys of cp16 revealed inflated levels of divergence relative to polymorphism in specific regions of the gene, indicating that these regions are under strong selection. At the morphological level, we found notable difference in eggshell surface morphologies between specialist (Drosophila sechellia and Drosophila erecta) and generalist species of Drosophila. We do not know if any of the chorion proteins actually interact with spermatozoids, therefore leaving the possibility of rapid evolution through gametic interaction wide open. At this point, however, our results support previous suggestions that divergences in ecology, particularly, ovipositional substrate divergences may be a strong force driving the evolution of eggshell proteins.  相似文献   

12.
The Drosophila vitelline membrane protein gene VM32E is expressed according to a precise temporal and spatial program in the follicle cells. Results from germ line transformation experiments using different fragments of the ?465/?39 VM32E region fused to the hsp/lacZ reporter gene revealed that the region ?348/?39 is sufficient to confer the wild-type expression pattern. Within this segment, distinct cis-regulatory elements control VM32E expression in ventral and dorsal follicle cells. The region between ?135/?113 is essential for expression of the VM32E gene in the ventral columnar follicle cells. Expression in the dorsal domain requires the two regions ?348/?254 and ?118/?39. Furthermore, the region ?253/?119 appears to contain a negative element that represses gene activity in anterior centripetal cells. We suggest that the expression of the VM32E gene throughout the follicular epithelium is controlled by specific cis-regulatory elements acting in distinct spatial domains and following a precise developmental program.  相似文献   

13.
The uterus of the viviparous skink Chalcides ocellatus tiligugu was studied by SEM and LM during the annual cycle. Three functional phases were identified: preovulatory (spring), gestatory (summer), and quiescent (autumn-winter), characterized by changes in the uterine wall (mainly the endometrial layer). In the preovulatory phase, the uterine wall increases in thickness; its luminal epithelium has ciliated cells and two types of unciliated secretory cells. The first type secretes sulfated glycosaminoglycans (GAGs), which form the amorphous inner layer of the eggshell membrane; the second type secretes acidic glycoproteins that form the intrafibrillar matrix of the outer layer of the eggshell membrane. The lamina propria contains simple alveolar glands that secrete the collagen fibers of the eggshell membrane. During the gestatory phase, the glycoproteins produced by secretory cells of the second type have histotrophic activity for the developing embryo. The uterus widens to form incubation chambers with two hemispheres, one embryonic and the other abembryonic. Both a chorioallantoic placenta and an omphaloplacenta with histotrophic activity are present in late gestation. The chorioallantoic placenta, with aspects of a Weekes (1935) Type III placenta, develops in the embryonic hemisphere. The omphaloplacenta forms at the vegetative pole of the egg and shows cellular hypertrophy of the bilaminar omphalopleure and uterus. During the quiescent phase, the uterus gradually decreases in thickness and activity; its luminal epithelium does not show secretory activity. The annual variations in the myometrial layer involved the inner circular and the outer longitudinal muscle layers.  相似文献   

14.
15.
The establishment of dorsal-ventral (DV) polarity in the Drosophila embryo depends upon a localized signal that is generated in the perivitelline space of the egg through the action of a serine proteolytic cascade. Spatial regulation of this pathway is determined by the expression of the pipe gene in a subpopulation of ventral follicle cells in the developing egg chamber. The Pipe protein exhibits homology to vertebrate glycosaminoglycan sulfotransferases. In a previous study, we demonstrated that embryonic DV polarity depends upon the sulfotransferase activity of Pipe. Surprisingly, however, our results also indicated that formation of the embryonic DV axis does not require the synthesis of the high-energy sulfate donor, 3'-phosphoadenosine 5'-phosphosulfate (PAPS) in the follicle cells in which Pipe is presumed to function. Here, we resolve this apparent paradox by demonstrating that dorsalized embryos are only produced by egg chambers in which both germline and follicle cells lack PAPS synthetase activity. Thus, PAPS produced either in the germline or in the follicular epithelium can support the requirement for Pipe sulfotransferase activity in embryonic DV patterning. This finding indicates the existence of a conduit for the movement of PAPS between the germline and the follicle cells, which highlights a previously unappreciated mechanism of soma/germline cooperation affecting pattern formation.  相似文献   

16.
17.
The Drosophila vitelline membrane protein gene VM32E is expressed according to a precise temporal and spatial program in the follicle cells. Results from germ line transformation experiments using different fragments of the −465/−39 VM32E region fused to the hsp/lacZ reporter gene revealed that the region −348/−39 is sufficient to confer the wild-type expression pattern. Within this segment, distinct cis-regulatory elements control VM32E expression in ventral and dorsal follicle cells. The region between −135/−113 is essential for expression of the VM32E gene in the ventral columnar follicle cells. Expression in the dorsal domain requires the two regions −348/−254 and −118/−39. Furthermore, the region −253/−119 appears to contain a negative element that represses gene activity in anterior centripetal cells. We suggest that the expression of the VM32E gene throughout the follicular epithelium is controlled by specific cis-regulatory elements acting in distinct spatial domains and following a precise developmental program. Received: 22 October 1996 / Accepted: 14 November 1996  相似文献   

18.
The developing chick embryo acquires calcium from two sources. Until about Day 10 of incubation, the yolk is the only source; thereafter, calcium is also mobilized from the eggshell. We have previously shown that during normal chick embryonic development, vitamin D is involved in regulating yolk calcium mobilization, whereas vitamin K is required for eggshell calcium translocation by the chorioallantoic membrane. We have studied here the biochemical action of 1,25-dihydroxy vitamin D3 in the yolk sac by examining the expression and regulation of the cytosolic vitamin D-dependent calcium-binding protein, calbindin-D28K. Two types of embryos are used for this study, normal embryos developing in ovo and embryos maintained in long-term shell-less culture ex ovo, the latter being dependent solely on the yolk as their calcium source. Our findings are (1) calbindin-D28K is expressed in the embryonic yolk sac, detectable at incubation Days 9 and 14; (2) the embryonic yolk sac calbindin-D28K resembles that of the adult duodenum in both molecular weight (Mr 28,000) and isoelectric point, as well as the presence of E-F hand Ca2(+)-binding structural domains; (3) systemic calcium deficiency caused by shell-less culture of chick embryos results in enhanced expression of calbindin-D28K in the yolk sac during late development; (4) yolk sac calbindin-D28K expression is inducible by 1,25-dihydroxy vitamin D3 treatment in vivo and in vitro; and (5) immunohistochemistry revealed that yolk sac calbindin-D28K is localized exclusively to the cytoplasm of the yolk sac endoderm. These findings indicate that the chick embryonic yolk sac is a genuine target tissue of 1,25-dihydroxy vitamin D3.  相似文献   

19.
In Drosophila oogenesis, follicle cells derived from somatic tissue surround the oocyte and play key roles in generating properly polarized oocytes. During the later steps of oogenesis, follicle cells are involved in secretion of proteins that make the eggshell, an essential protective layer for the oocyte. Although studies on the signaling processes to make polarized oocytes have been progressed very far, studies on the mechanisms for eggshell formation is not clear yet. To elucidate the underlying mechanism in eggshell formation, we used a differential display screen to isolate genes that are specifically expressed during the later stages of oogenesis, and isolated a novel gene, Femcoat. Femcoat encodes a putative chorion membrane protein that contains many highly charged residues and has a putative signal peptide. Femcoat is expressed specifically in the follicle cells with a punctate staining pattern typical of secreted proteins, and becomes cross-linked heavily at the final steps of oogenesis. To identify the developmental role of Femcoat in eggshell formation, we performed an inducible double stranded RNA mediated interference (dsRNAi) method to specifically reduce Femcoat expression during oogenesis in adult flies. Electron microscopy analysis of egg chambers from these flies showed defects in chorion formation. These pieces of evidence demonstrated that Femcoat is necessary for eggshell formation, especially during chorion synthesis. Our results demonstrate that inducible dsRNAi analysis can be effective in determining the developmental function of novel genes.  相似文献   

20.
Summary The embryo of the nematode Caenorhabditis elegans is surrounded by an inconspicuous inner vitelline membrane and a prominent outer chitinous eggshell proper. We demonstrate that the complete removal of the chitinous eggshell does not interfere with successful development to yield a normal worm. The same result can be obtained when the vitelline membrane is penetrated with laser microbeam irradiation of only the eggshell proper, gently enough to permit its resealing after a while. However, when large holes are made into the eggshell the concomitantly penetrated vitelline membrane does not reseal. While early development is quite normal under these conditions, gastrulation is defective in that gut precursor cells do not migrate in properly, eventually leading to embryonic arrest. This suggests a crucial role for pattern formation of the micro-environment around the embryo preserved by the intact vitelline membrane. Removing both eggshell and vitelline membrane results in a string-like arrangement of founder cells and subsequent grossly abnormal cell patterns. Our experiments support the idea that the prominent eggshell proper just functions as a mechanical protection while the thin vitelline membrane directly or indirectly serves as a necessary control element affecting the positions of cells which to begin with are determined by the orientation of the cleavage spindle. Correspondence to: E. Schierenberg  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号