首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells expressing the NG2 proteoglycan can attach, spread, and migrate on surfaces coated with NG2 mAbs, demonstrating that engagement of NG2 can trigger the cytoskeletal rearrangements necessary for changes in cell morphology and motility. Engagement of different epitopes of the proteoglycan results in distinct forms of actin reorganization. On mAb D120, the cells contain radial actin spikes characteristic of filopodial extension, whereas on mAb N143, the cells contain cortical actin bundles characteristic of lamellipodia. Cells that express NG2 variants lacking the transmembrane and cytoplasmic domains are unable to spread or migrate on NG2 mAb-coated surfaces, indicating that these portions of the molecule are essential for NG2-mediated signal transduction. Cells expressing an NG2 variant lacking the C-terminal half of the cytoplasmic domain can still spread normally on mAbs D120 and N143, suggesting that the membrane-proximal cytoplasmic segment is responsible for this process. In contrast, this variant migrates poorly on mAb D120 and exhibits abnormal arrays of radial actin filaments decorated with fascin during spreading on this mAb. The C-terminal portion of the NG2 cytoplasmic domain, therefore, may be involved in regulating molecular events that are crucial for cell motility.  相似文献   

2.
Studies were carried out using vinculin-deficient F9 embryonic carcinoma (gamma229) cells to analyze the relationship between structure and function within the focal adhesion protein vinculin, in the context of control of cell shape, cell mechanics, and movement. Atomic force microscopy studies revealed that transfection of the head (aa 1-821) or tail (aa 811-1066) domain of vinculin, alone or together, was unable to fully reverse the decrease in cell stiffness, spreading, and lamellipodia formation caused by vinculin deficiency. In contrast, replacement with intact vinculin completely restored normal cell mechanics and spreading regardless of whether its tyrosine phosphorylation site was deleted. Constitutively active rac also only induced extension of lamellipodia when microinjected into cells that expressed intact vinculin protein. These data indicate that vinculin's ability to physically couple integrins to the cytoskeleton, to mechanically stabilize cell shape, and to support rac-dependent lamellipodia formation all appear to depend on its intact three-dimensional structure.  相似文献   

3.
Collagens V and VI have been previously identified as specific extracellular matrix (ECM) ligands for the NG2 proteoglycan. In order to study the functional consequences of NG2/collagen interactions, we have utilized the GD25 cell line, which does not express the major collagen-binding beta(1) integrin heterodimers. Use of these cells has allowed us to study beta(1) integrin-independent phenomena that are mediated by binding of NG2 to collagens V and VI. Heterologous expression of NG2 in the GD25 line endows these cells with the capability of attaching to surfaces coated with collagens V and VI. The specificity of this effect is emphasized by the failure of NG2-positive GD25 cells to attach to other collagens or to laminin-1. More importantly, NG2-positive GD25 cells spread extensively on collagen VI. beta(1) integrin-independent extension of ruffling lamellipodia demonstrates that engagement of NG2 by the collagen VI substratum triggers signaling events that lead to rearrangement of the actin cytoskeleton. In contrast, even though collagens V and VI each bind to the central segment of the NG2 ectodomain, collagen V engagement of NG2 does not trigger cell spreading. The distinct morphological consequences of NG2/collagen VI and NG2/collagen V interaction indicate that closely-related ECM ligands for NG2 differ in their ability to initiate transmembrane signaling via engagement of the proteoglycan.  相似文献   

4.
Time-lapse video-microscopy unambiguously shows that fibroblast filopodia are the scaffold of lamellipodia nucleation that allows anisotropic cell spreading. This process was dissected into elementary stages by monitoring cell adhesion on micropatterned extracellular matrix arrays of various pitches. Adhesion structures are stabilized by contact with the adhesive plots and subsequently converted into lamellipodia-like extensions starting at the filopodia tips. This mechanism progressively leads to full cell spreading. Stable expression of the dominant-negative Rac1 N17 impairs this change in membrane extension mode and stops cell spreading on matrix arrays. Similar expression of the dominant-negative Cdc42 N17 impairs cell spreading on homogenous and structured substrate, suggesting that filopodia extension is a prerequisite for cell spreading in this model. The differential polarity of the nucleation of lamellipodial structures by filopodia on homogenous and structured surfaces starting from the cell body and of filopodia tip, respectively, suggested that this process is triggered by areas that are in contact with extracellular matrix proteins for longer times. Consistent with this view, wild-type cells cannot spread on microarrays made of function blocking or neutral anti-beta 1 integrin antibodies. However, stable expression of a constitutively active Rac1 mutant rescues the cell ability to spread on these integrin microarrays. Thereby, lamellipodia nucleation by filopodia requires integrin occupancy by matrix substrate and downstream Rac1 signaling.  相似文献   

5.
Transfection of Rat1 fibroblasts with an activated form of rac1 (V12rac1) stimulated cell migration in vitro compared to transfection of Rat1 fibroblasts with vector only or with dominant negative rac1 (N17rac1). To investigate the involvement of proteases in this migration, we used a novel confocal assay to evaluate the ability of the Rat1 transfectants to degrade a quenched fluorescent protein substrate (DQ-green bovine serum albumin) embedded in a three-dimensional gelatin matrix. Cleavage of the substrate results in fluorescence, thus enabling one to image extracellular and intracellular proteolysis by living cells. The Rat1 transfectants accumulated degraded substrate intracellularly. V12rac1 increased accumulation of the fluorescent product in vesicles that also labeled with the lysosomal marker LysoTracker. Treatment of the V12rac1-transfected cells with membrane-permeable inhibitors of lysosomal cysteine proteases and a membrane-permeable selective inhibitor of the cysteine protease cathepsin B significantly reduced intracellular accumulation of degraded substrate, indicating that degradation occurred intracellularly. V12rac1 stimulated uptake of dextran 70 (a marker of macropinocytosis) and polystyrene beads (markers of phagocytosis) into vesicles that also labeled for cathepsin B. Thus, stimulation of the endocytic pathways of macropinocytosis and phagocytosis by activated Rac1 may be responsible for the increased internalization and subsequent degradation of extracellular proteins.  相似文献   

6.
Vav2 is a widely expressed Rho family guanine nucleotide exchange factor highly homologous to Vav1 and Vav3. Activated versions of Vav2 are transforming, but the normal function of Vav2 and how it is regulated are not known. We investigated the pathways that regulate Vav2 exchange activity in vivo and characterized its function. Overexpression of Vav2 activates Rac as assessed by both direct measurement of Rac-GTP and cell morphology. Vav2 also catalyzes exchange for RhoA, but does not cause morphologic changes indicative of RhoA activation. Vav2 nucleotide exchange is Src-dependent in vivo, since the coexpression of Vav2 and dominant negative Src, or treatment with the Src inhibitor PP2, blocks both Vav2-dependent Rac activation and lamellipodia formation. A mutation in the pleckstrin homology (PH) domain eliminates exchange activity and this construct does not induce lamellipodia, indicating the PH domain is necessary to catalyze nucleotide exchange. To further investigate the function of Vav2, we mutated the dbl homology (DH) domain and asked whether this mutant would function as a dominant negative to block Rac-dependent events. Studies using this mutant indicate that Vav2 is not necessary for platelet-derived growth factor- or epidermal growth factor-dependent activation of Rac. The Vav2 DH mutant did act as a dominant negative to inhibit spreading of NIH3T3 cells on fibronectin, specifically by blocking lamellipodia formation. These findings indicate that in fibroblasts Vav2 is necessary for integrin, but not growth factor-dependent activation of Rac leading to lamellipodia.  相似文献   

7.
Cell lines expressing varying levels of ganglioside GM3 at the cell surface show different degrees of adhesion and spreading on solid phase coated with such glycosphingolipids (GSLs) as Gg3 (GalNAc beta 1----4Gal beta 1----4Glc beta 1----1Cer), LacCer (Gal beta 1----4Glc beta 1----1Cer), or Gb4 (GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1Cer) (where Cer is ceramide), which may have structures complementary to GM3, but not on solid phase coated with various other GSLs. The degree of cell adhesion and spreading on Gg3 was correlated with the degree of cell-surface GM3 expression, as defined by reactivity with anti-GM3 monoclonal antibody (mAb) DH2. Only cells with high GM3 expression adhered on solid phase coated with LacCer or Gb4. Adhesion of GM3-expressing cells on Gg3-, LacCer-, and Gb4-coated solid phase is based on interaction of GM3 with Gg3 and, to a lesser extent, with LacCer and Gb4, as demonstrated by: (i) the interaction of the GM3 liposome with solid phase coated with Gg3, LacCer, and Gb4, respectively; (ii) the abolition of cell adhesion on each GSL-coated solid phase by treatment of cells with mAb DH2 or sialidase; and (iii) the inhibition of cell adhesion by treatment of GSL-coated solid phase with mAb specific to each GSL. Sialosyllactosyl-lysyllysine conjugate was bound to Gg3 adsorbed on a C18 silica gel column in the presence of bivalent cation, suggesting that the carbohydrate moiety of GM3 is involved in GM3-Gg3 interaction. Not only the adhesion and spreading of GM3-expressing cells, but also their cell motility was greatly enhanced on Gg3-coated solid phase, as determined by Transwell assay and phagokinetic track assay on a gold sol-coated surface. Spreading and motility of GM3-expressing cells on Gg3-coated solid phase were both inhibited by treatment of cells with mAb DH2 or sialidase. These results provide evidence that not only cell adhesion, but also spreading and motility in these cell lines are controlled by complementary GSL-GSL interaction.  相似文献   

8.
Invasin-promoted spreading of beta1-integrin-deficient cells, transfected with the beta1A- or beta1B-integrin splice variants, were used to dissect early beta1-integrin signaling events. The beta1B isoform, which has a different membrane-distal part of the cytoplasmic tail from beta1A, is defective in signaling and function. When plated on surfaces coated with the high affinity ligand invasin, beta1B-integrin-expressing cells spread by forming filopodia with distinct adhesive phosphotyrosine complexes at the tips, without signs of lamellipodia. This suggested that the beta1B-integrin mediated a partial signaling sufficient for formation of filopodia but insufficient for lamellipodia formation. When screening for proteins present in the distal filopodial phosphotyrosine complexes of beta1B cells, p130Cas and the filopodia proteins vasodilator-stimulated phosphoprotein and talin were found, whereas the typical focal complex proteins focal adhesion kinase, paxillin, and vinculin were not. Invasin-promoted adhesion induced complex formation of p130Cas and the adapter Crk. Moreover, Crk together with Dock180 were present at the filopodial tips of beta1B-integrin-expressing cells, and there was a prominent Rac1 activation. Expression of dominant negative variants of p130Cas or CrkII blocked beta1B-integrin-mediated filopodia formation, indicating that this signaling scaffold is central in this process.  相似文献   

9.
The kinetics of cell attachment and cell spreading on the coated surfaces of two classes of carbohydrate-reactive proteins, enzymes and lectins, have been compared with those on fibronectin-coated surfaces with the following results: (a) A remarkable similarity between the kinetics of cell attachment to fibronectin-coated and glycosidase- coated surfaces was found. In contrast, cell attachment kinetics induced by lectin- and galactose oxidase-coated surfaces, in general, were strikingly different from those on fibronectin and glycosidase surfaces. The distinction between fibronectin- or glycosidase- and lectin- or galactose oxidase (an enzyme with lectin-type characteristics)-coated surfaces was further supported by the finding that cytochalasin B and EDTA inhibited cell attachment to fibronectin- and glycosidase-coated surfaces but not lectin-coated surfaces. (b) Fibronectin, if labeled and added to a cell suspension, showed only low or negligible interaction with the cell surface. However, fibronectin absorbed on plastic surfaces showed a high cell-attaching activity. It is assumed that fibronectin coated on plastic surfaces may form polyvalent attachment sites in contrast to its lower valency in aqueous solution. (c) Various inhibitors of cell attachment to both fibronectin- , galactose oxidase-, and lectin-coated surfaces were effective only during the first few minutes of the adhesion assay, after which time the attached cells became insensitive to the inhibitors. It is suggested that the initial specific recognition on either lectin-type or fibronectin-type surfaces is followed by an active cell-dependent attachment process. The primary role of the adhesion surface is to stimulate the cell-dependent attachment response. (d) Cells attached on tetravalent concanavalin A (Con A) spread very rapidly and quantitatively, whereas divalent succinyl Con A and monovalent Con A were effective stimulators of cell attachment but not cell spreading. Cross-linking of succinyl Con A restored the cell spreading activity. Tetravalent Con A surfaces specifically bind soluble glycoproteins, whereas succinyl Con A has a greatly reduced ability to bind the same glycoproteins. These results suggest that cross-linking of cell surface glycoproteins by the multivalent adhesive surface may trigger the cellular reaction leading to cell spreading.  相似文献   

10.
The function of rac, a ras-related GTP-binding protein, was investigated in fibroblasts by microinjection. In confluent serum-starved Swiss 3T3 cells, rac1 rapidly stimulated actin filament accumulation at the plasma membrane, forming membrane ruffles. Several growth factors and activated H-ras also induced membrane ruffling, and this response was prevented by a dominant inhibitory mutant rac protein, N17rac1. This suggests that endogenous rac proteins are required for growth factor-induced membrane ruffling. In addition to membrane ruffling, a later response to both rac1 microinjection and some growth factors was the formation of actin stress fibers, a process requiring endogenous rho proteins. Using N17rac1 we have shown that these growth factors act through rac to stimulate this rho-dependent response. We propose that rac and rho are essential components of signal transduction pathways linking growth factors to the organization of polymerized actin.  相似文献   

11.
Protein kinase C (PKC)-alpha phosphorylation of recombinant NG2 cytoplasmic domain and phorbol ester-induced PKC-dependent phosphorylation of full-length NG2 expressed in U251 cells are both blocked by mutation of Thr(2256), identifying this residue as a primary phosphorylation site. In untreated U251/NG2 cells, NG2 is present along with ezrin and alpha(3)beta(1) integrin in apical cell surface protrusions. Phorbol ester treatment causes redistribution of all three components to lamellipodia, accompanied by increased cell motility. U251 cells expressing NG2 with a valine substitution at position 2256 are resistant to phorbol ester treatment: NG2 remains in membrane protrusions and cell motility is unchanged. In contrast, NG2 with a glutamic acid substitution at position 2256 redistributes to lamellipodia even without phorbol ester treatment, rendering transfected U251 cells spontaneously motile. PKC-alpha-mediated NG2 phosphorylation at Thr(2256) is therefore a key step for initiating cell polarization and motility.  相似文献   

12.
Rho family GTPases have been assigned important roles in the formation of actin-based morphologies in nonneuronal cells. Here we show that microinjection of Cdc42Hs and Rac1 promoted formation of filopodia and lamellipodia in N1E-115 neuroblastoma growth cones and along neurites. These actin-containing structures were also induced by injection of Clostridium botulinum C3 exoenzyme, which abolishes RhoA-mediated functions such as neurite retraction. The C3 response was inhibited by coinjection with the dominant negative mutant Cdc42Hs(T17N), while the Cdc42Hs response could be competed by coinjection with RhoA. We also demonstrate that the neurotransmitter acetylcholine (ACh) can induce filopodia and lamellipodia on neuroblastoma growth cones via muscarinic ACh receptor activation, but only when applied in a concentration gradient. ACh-induced formation of filopodia and lamellipodia was inhibited by preinjection with the dominant negative mutants Cdc42Hs(T17N) and Rac1(T17N), respectively. Lysophosphatidic acid (LPA)-induced neurite retraction, which is mediated by RhoA, was inhibited by ACh, while C3 exoenzyme-mediated neurite outgrowth was inhibited by injection with Cdc42Hs(T17N) or Rac1(T17N). Together these results suggest that there is competition between the ACh- and LPA-induced morphological pathways mediated by Cdc42Hs and/or Rac1 and by RhoA, leading to either neurite development or collapse.  相似文献   

13.
NG2 is a membrane-associated chondroitin sulfate proteoglycan with a core protein of 300 kD. Previously it was shown immunochemically that the core protein of NG2 can bind type VI collagen (Stallcup, W., Dahlin, K., and P. Healy. 1990. J. Cell Biol. 111:3177-3188). We have extended our studies on the interaction of NG2 and type VI collagen by transfecting cells with the full-length rat NG2 cDNA. B28 rat neural cells and U251MG human glioma cells used for transfection do not synthesize NG2. Both cell lines secrete type VI collagen into tissue culture medium but do not anchor it at the cell surface. Upon transfection of these cells with the NG2 cDNA, NG2 was correctly localized to the cell surface. Furthermore, type VI collagen could now be detected on the surface of NG2-positive cells in a pattern that coincided with that of NG2. This ability of NG2 to anchor type VI collagen to the cell surface could be abolished by incubating the cells in the presence of anti-NG2 monoclonal antibodies. These findings indicate that NG2 functions as a cell surface receptor for type VI collagen and may play a role in modulating the assembly of pericellular matrix.  相似文献   

14.
Hepatocyte growth factor (HGF), the ligand for the Met receptor tyrosine kinase, is a potent modulator of epithelial-mesenchymal transition and dispersal of epithelial cells, processes that play crucial roles in tumor development, invasion, and metastasis. Little is known about the Met-dependent proximal signals that regulate these events. We show that HGF stimulation of epithelial cells leads to activation of the Rho GTPases, Cdc42 and Rac, concomitant with the formation of filopodia and lamellipodia. Notably, HGF-dependent activation of Rac but not Cdc42 is dependent on phosphatidylinositol 3-kinase. Moreover, HGF-induced lamellipodia formation and cell spreading require phosphatidylinositol 3-kinase and are inhibited by dominant negative Cdc42 or Rac. HGF induces activation of the Cdc42/Rac-regulated p21-activated kinase (PAK) and c-Jun N-terminal kinase, and translocation of Rac, PAK, and Rho-dependent Rho-kinase to membrane ruffles. Use of dominant negative and activated mutants reveals an essential role for PAK but not Rho-kinase in HGF-induced epithelial cell spreading, whereas Rho-kinase activity is required for the formation of focal adhesions and stress fibers in response to HGF. We conclude that PAK and Rho-kinase play opposing roles in epithelial-mesenchymal transition induced by HGF, and provide new insight regarding the role of Cdc42 in these events.  相似文献   

15.
Activation of the Met receptor tyrosine kinase through its ligand, hepatocyte growth factor (HGF), promotes an epithelial-mesenchymal transition and cell dispersal. However, little is known about the HGF-dependent signals that regulate these events. HGF stimulation of epithelial cell colonies leads to the enhanced recruitment of the CrkII and CrkL adapter proteins to Met-dependent signaling complexes. We provide evidence that signals involving CrkII and CrkL are required for the breakdown of adherens junctions, the spreading of epithelial colonies, and the formation of lamellipodia in response to HGF. The overexpression of a CrkI SH3 domain mutant blocks these HGF-dependent events. In addition, the overexpression of CrkII or CrkL promotes lamellipodia formation, loss of adherens junctions, cell spreading, and dispersal of colonies of breast cancer epithelial cells in the absence of HGF. Stable lines of epithelial cells overexpressing CrkII show enhanced activation of Rac1 and Rap1. The Crk-dependent breakdown of adherens junctions and cell spreading is inhibited by the expression of a dominant negative mutant of Rac1 but not Rap1. These findings provide evidence that Crk adapter proteins play a critical role in the breakdown of adherens junctions and the spreading of sheets of epithelial cells.  相似文献   

16.
Substratum-bound concanavalin A (conA) caused attachment and spreading of human T lymphocytes identified by monoclonal anti-T cell antibodies and sheep erythrocyte rosette formation. The simultaneous presence of conA in the medium increased the spreading, whereas preincubation of the cells with conA inhibited spreading. The tendency of conA to induce spreading was dependent on the concentration used, the higher the conA concentration the more pronounced was the spreading. For example, conA at 10 micrograms ml-1 triggered the formation of prominent substratum-attached filopodia with a length of 1-10 micron in 60-80% of T-enriched lymphocytes obtained from separate individuals. At the same conA dose the filopodia were, in 10-20% of the lymphocytes, accompanied by development of lamellipodia. With conA at 100 micrograms ml-1 the number of cells that underwent pronounced spreading was 55-90% in separate individuals. Observation of T-enriched cells fixed at different times after initiation of spreading induced by conA at 100 micrograms ml-1 indicated that filopodia formation represented the initial morphological alteration during the spreading process. This process thereafter proceeded with development of lamellipodia, extensive cytoplasmic spreading and flattening of the central cell mass. Quiescent and mitogen-activated cells exhibited the same sequence of changes during spreading. Spreading led to disappearance of the microvilli with a length of 0.1-0.7 micron present on lymphocytes in suspension, although some microvilli persisted over the cell center.  相似文献   

17.
Although it is well accepted that the constituents of the cellular microenvironment modulate a myriad of cellular processes, including cell morphology, cytoskeletal dynamics and uptake pathways, the underlying mechanism of how these pathways influence non-viral gene transfer have not been studied. Transgene expression is increased on fibronectin (Fn) coated surfaces as a consequence of increased proliferation, cell spreading and active engagement of clathrin endocytosis pathway. RhoGTPases mediate the crosstalk between the cell and Fn, and regulate cellular processes involving filamentous actin, in-response to cellular interaction with Fn. Here the role of RhoGTPases specifically Rho, Rac and Cdc42 in modulation of non-viral gene transfer in mouse mesenchymal stem (mMSCs) plated in a fibronectin microenvironment was studied. More than 90% decrease in transgene expression was observed after inactivation of RhoGTPases using difficile toxin B (TcdB) and C3 transferase. Expression of dominant negative RhoA (RhoAT19N), Rac1(Rac1T17N) and Cdc42 (Cdc42T17N) also significantly reduced polyplex uptake and transgene expression. Interactions of cells with Fn lead to activation of RhoGTPases. However, further activation of RhoA, Rac1 and Cdc42 by expression of constitutively active genes (RhoAQ63L, Rac1Q61L and Cdc42Q61L) did not further enhance transgene expression in mMSCs, when plated on Fn. In contrast, activation of RhoA, Rac1 and Cdc42 by expression of constitutively active genes for cells plated on collagen I, which by itself did not increase RhoGTPase activation, resulted in enhanced transgene expression. Our study shows that RhoGTPases regulate internalization and effective intracellular processing of polyplexes that results in efficient gene transfer.  相似文献   

18.
19.
n-Chimaerin is a GTPase-activating protein (GAP) mainly for Rac1 and less so for Cdc42Hs in vitro. The GAP activity of n-chimaerin is regulated by phospholipids and phorbol esters. Microinjection of Rac1 and Cdc42Hs into mammalian cells induces formation of the actin-based structures lamellipodia and filopodia, respectively, with the former being prevented by coinjection of the chimaerin GAP domain. Strikingly, microinjection of the full-length n-chimaerin into fibroblasts and neuroblastoma cells induces the simultaneous formation of lamellipodia and filopodia. These structures undergo cycles of dissolution and formation, resembling natural morphological events occurring at the leading edge of fibroblasts and neuronal growth cones. The effects of n-chimaerin on formation of lamellipodia and filopodia were inhibited by dominant negative Rac1(T17N) and Cdc42Hs(T17N), respectively. n-Chimaerin's effects were also inhibited by coinjection with Rho GDP dissociation inhibitor or by treatment with phorbol ester. A mutant n-chimaerin with no GAP activity and impaired p21 binding was ineffective in inducing morphological changes, while a mutant lacking GAP activity alone was effective. Microinjected n-chimaerin colocalized in situ with F-actin. Taken together, these results suggest that n-chimaerin acts synergistically with Rac1 and Cdc42Hs to induce actin-based morphological changes and that this action involves Rac1 and Cdc42Hs binding but not GAP activity. Thus, GAPs may have morphological functions in addition to downregulation of GTPases.  相似文献   

20.
alpha-crystallin (alphaA and alphaB) is a major lens protein, which belongs to the small heat-shock family of proteins and binds to various cytoskeletal proteins including actin, vimentin and desmin. In this study, we investigated the cellular localization of alphaA and alphaB-crystallins in migrating epithelial cells isolated from porcine lens. Immunofluorescence localization and confocal imaging of alphaB-crystallin in confluent and in migrating subconfluent cell cultures revealed a distinct pattern of subcellular distribution. While alphaB-crystallin localization was predominantly cytoplasmic in confluent cultures, it was strongly localized to the leading edges of cell membrane or the lamellipodia in migrating cells. In accordance with this pattern, we found abundant levels of alphaB-crystallin in membrane fractions compared to cytosolic and nuclear fractions in migrating lens epithelial cells. alphaA-crystallin, which has 60% sequence identity to alphaB-crystallin, also exhibited a distribution profile localizing to the leading edge of the cell membrane in migrating lens epithelial cells. Localization of alphaB-crystallin to the lamellipodia appears to be dependent on phosphorylation of residue serine-59. An inhibitor of p38 MAP kinase (SB202190), but not the ERK kinase inhibitor PD98059, was found to diminish localization of alphaB-crystallin to the lamellipodia, and this effect was found to be associated with reduced levels of Serine-59 phosphorylated alphaB-crystallin in SB202190-treated migrating lens epithelial cells. alphaB-crystallin localization to the lamellipodia was also altered by the treatment with RGD (Arg-Ala-Asp) peptide, dominant negative N17 Rac1 GTPase, cytochalasin D and Src kinase inhibitor (PP2), but not by the Rho kinase inhibitor Y-27632 or the myosin II inhibitor, blebbistatin. Additionally, in migrating lens epithelial cells, alphaB-crystallin exhibited a clear co-localization with the actin meshwork, beta-catenin, WAVE-1, a promoter of actin nucleation, Abi-2, a component of WAVE-1 protein complex and Arp3, a protein of the actin nucleation complex, suggesting potential interactions between alphaB-crystallin and regulatory proteins involved in actin dynamics and cell adhesion. This is the first report demonstrating specific localization of alphaA and alphaB-crystallins to the lamellipodia in migrating lens epithelial cells and our findings indicate a potential role for alpha-crystallin in actin dynamics during cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号