首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholesterol, a major structural component of plasma membranes, has a profound influence on cell surface receptor characteristics and on adenylate cyclase activity. beta-Adrenergic receptor number, adenylate cyclase activity, and receptor-cyclase coupling were assessed in rat lung membranes following preincubation with cholesteryl hemisuccinate. beta-Adrenergic receptor number increased by 50% without a change in antagonist affinity. However, beta-adrenergic receptor affinity for isoproterenol increased 2-fold as a result of an increase in the affinity of the isoproterenol high-affinity binding site. The increase in agonist affinity did not potentiate hormone-stimulated adenylate cyclase activity, which decreased 3-fold following cholesterol incorporation. However, the ratio of isoproterenol to GTP-stimulated activity was unchanged with cholesterol. Stimulation distal to the receptor by GTP, NaF, GppNHp, Mn2+ and forskolin also demonstrated 50-80% reduced enzyme activity following cholesterol incorporation. These data suggest that membrane cholesterol incorporation decreases catalytic unit activity without affecting transduction of the hormone signal.  相似文献   

2.
Cholesterol, a major structural component of plasma membranes, has a profound influence on cell surface receptor characteristics and on adenylate cyclase activity. β-Adrenergic receptor number, adenylate cyclase activity, and receptor-cyclase coupling were assessed in rat lung membranes following preincubation with cholesteryl hemisuccinate. β-Adrenergic receptor number increased by 50% without a change in antagonist affinity. However, β-adrenergic receptor affinity for isoproterenol increased 2-fold as a result of an increase in the affinity of the isoproterenol high-affinity binding site. This increase in agonist affinity did not potentiate hormone-stimulated adenylate cyclase activity, which decreased 3-fold following cholesterol incorporation. However, the ratio of isoproterenol to GTP-stimulated activity was unchanged with cholesterol. Stimulation distal to the receptor by GTP, NaF, GppNHp, Mn2+ and forskolin also demonstrated 50–80% reduced enzyme activity following cholesterol incorporation. These data suggest that membrane cholesterol incorporation decreases catalytic unit activity without affecting transduction of the hormone signal.  相似文献   

3.
Treatment of rat prostatic epithelial cells with cholesteryl hemisuccinate (ChH) resulted in a time- and dose-dependent inhibition of the stimulatory effect of the neuropeptide vasoactive intestinal peptide (VIP) on cyclic AMP accumulation, with a 40% decrease in the response to a maximally effective VIP concentration. Cell treatment with ChH led also to a similar blocking of isoproterenol (a beta-adrenergic agonist) action but did not modify forskolin (which is assumed to act directly on the catalytic unit of adenylate cyclase) activity upon cyclic AMP levels. The levels of the transduction protein Gs were similar in membranes from both control and ChH-treated cells as suggested by experiments on cholera toxin-catalyzed ADP-ribosylation. The inhibitory effect of ChH was accompanied by an increase of membrane microviscosity as estimated by measurements of fluorescence polarization. Experiments on VIP binding indicated that increasing cholesterol concentration in the plasma membrane led to a higher VIP binding capacity without changes in the affinity of VIP receptors. These data suggest that membrane cholesterol incorporation diminishes the coupling efficiency between adenylate cyclase and the VIP-receptor complex or other receptor systems (i.e., desensitization) due to an increase of plasma membrane rigidity.  相似文献   

4.
Diets supplemented with high levels of saturated or unsaturated fatty acids supplied by addition of sheep kidney fat or sunflower seed oil, respectively, were fed to rats with or without dietary cholesterol. The effects of these diets on cardiac membrane lipid composition, catecholamine-stimulated adenylate cyclase and beta-adrenergic receptor activity associated with cardiac membranes, were determined. The fatty acid-supplemented diets, either with or without cholesterol, resulted in alterations in the proportion of the (n-6) to (n-3) series of unsaturated fatty acids, with the sunflower seed oil increasing and the sheep kidney fat decreasing this ratio, but did not by themselves significantly alter the ratio of saturated to unsaturated fatty acids. However, cholesterol supplementation resulted in a decrease in the proportion of saturated and polyunsaturated fatty acids and a dramatic increase in oleic acid in cardiac membrane phospholipids irrespective of the nature of the dietary fatty acid supplement. The cholesterol/phospholipid ratio of cardiac membrane lipids was also markedly increased with dietary cholesterol supplementation. Although relatively unaffected by the nature of the dietary fatty acid supplement, catecholamine-stimulated adenylate cyclase activity was significantly increased with dietary cholesterol supplementation and was positively correlated with the value of the membrane cholesterol/phospholipid ratio. Although the dissociation constant for the beta-adrenergic receptor, determined by [125I](-)-iodocyanopindolol binding, was unaffected by the nature of the dietary lipid supplement, the number of beta-adrenergic receptors was dramatically reduced by dietary cholesterol and negatively correlated with the value of the membrane cholesterol/phospholipid ratio. These results indicate that the activity of the membrane-associated beta-adrenergic/adenylate cyclase system of the heart can be influenced by dietary lipids particularly those altering the membrane cholesterol/phospholipid ratio and presumably membrane physico-chemical properties. In the face of these dietary-induced changes, a degree of homeostasis was apparent both with regard to membrane fatty acid composition in response to an altered membrane cholesterol/phospholipid ratio, and to down regulation of the beta-adrenergic receptor in response to enhanced catecholamine-stimulated adenylate cyclase activity.  相似文献   

5.
Dietary lipid supplements high in either saturated fat derived from sheep kidney fat or unsaturated fat derived from sunflower seed oil, and a low mixed fat reference diet were fed to marmoset monkeys for 20 months and the effects on cardiac membrane lipid composition, and myocardial catecholamine-stimulated adenylate cyclase and beta-adrenergic receptor binding activity were investigated. For cardiac membranes enriched for beta-adrenergic binding activity, the dietary lipid treatment resulted in small changes in the proportion of saturated to unsaturated fatty acids and substantial changes in the (n - 6) to (n - 3) series of unsaturated fatty acids in the membrane phospholipids. The sheep kidney fat diet increased the cholesterol-to-phospholipid ratio in cardiac membranes in comparison to the other diets. This diet also significantly elevated basal and isoproterenol-, epinephrine- and norepinephrine-stimulated adenylate cyclase activity. The value of the dissociation constant (Kd) and the receptor number (Bmax) for the binding of [125I]ICYP to the beta-adrenergic receptor was significantly reduced in marmosets fed the sheep kidney fat diet. These results suggest that dietary lipids can influence the activity of the beta-adrenergic/adenylate cyclase system of the heart. Modulation of this transmembrane signalling system may be induced by changes in the properties of the associated membrane lipids, particularly by alteration in the membrane cholesterol-to-phospholipid ratio. This effect may be limited to those animal species in which the nature of the dietary fatty acid intake may be influencing cardiac membrane cholesterol homeostasis, which is in agreement with previous results in rats following dietary cholesterol supplementation (McMurchie et al. (1987) Biochim. Biophys. Acta 898, 137-153). ICYP, (-)-iodocyanopindolol.  相似文献   

6.
The role of lipids in the function of membrane receptors for hormones and neurotransmitters is still obscure. To gain information on this subject, a delipidated receptor preparation was developed. The beta-adrenergic receptor from turkey erythrocyte membranes was solubilized in deoxycholate and was freed extensively of phospholipids and of cholesterol by gel filtration. The delipidated preparation, after removal of the detergent, showed little, if any, ligand binding to the receptor as measured with the beta-adrenergic antagonist [125I] iodocyanopindolol. Readdition of soybean lipids restored specific radioligand binding. The lipid reconstituted receptor demonstrated agonist and antagonist binding affinities which were not very different from those of the native receptor. The receptor also retained its ability to function, as demonstrated by transfer to a foreign adenylate cyclase system. The delipidated receptor preparation lent itself conveniently to study the requirement for specific lipids in restoration of agonist and antagonist binding. Phosphatidylethanolamine restored maximal binding. Acidic phospholipids and sphingomyelin were inefficient in reconstitution of the receptor. The effect of cholesterol addition was also investigated. Binding was dramatically increased when a cholesterol ester was added in mixture with the acidic phospholipids, cardiolipin or phosphatidylinositol. Further studies unexpectedly revealed that reconstitution of the delipidated receptor is not exclusively dependent on the addition of a phospholipid; a mixture of 1-monooleylglycerol with cholesteryl hemisuccinate restored binding as efficiently as phosphatidylethanolamine. The presently described preparation should be useful in elucidating the part played by lipids in the action of the receptor in the adenylate cyclase system.  相似文献   

7.
The activity of the beta-adrenergic receptor/adenylate cyclase system of the marmoset monkey heart was investigated following dietary cholesterol supplementation (0.5%). After 22 weeks, plasma cholesterol levels in the cholesterol group were more than twice that of the control group. In the cholesterol-fed group, the affinity for ICYP binding to cardiac membranes was elevated more than 2-fold, while the receptor number was decreased by 31%. Isoproterenol, norepinephrine and sodium fluoride stimulated adenylate cyclase activity was significantly higher in the cholesterol-fed group although the fold stimulation over basal levels was not affected. The most prominent change in the cardiac membrane lipids was an increase in the cholesterol to phospholipid ratio in marmoset monkeys fed cholesterol. These results indicate that in the marmoset, membrane cholesterol is an important factor in determining various properties of the cardiac beta-adrenergic receptor particularly receptor affinity which may impact on the response of the beta-adrenergic receptor/adenylate cyclase system of the heart to catecholamines. This result is in agreement with dietary fatty acid supplements designed to increase cardiac membrane cholesterol in this animal species (McMurchie, E.J. et al. (1988) Biochim. Biophys. Acta 937, 347-358). Elevated membrane cholesterol enhances beta-adrenergic receptor affinity and certain aspects of adenylate cyclase activity. This is a likely mechanism whereby atherogenic diets could promote cardiac arrhythmia in non-human primates and indeed in man.  相似文献   

8.
Incubation of rat testicular membranes with cholesteryl hemisuccinate resulted in an increase in both membrane lipid microviscosity and 125I-labelled hCG specific binding. The purpose of this investigation was to establish which functional groups of cholesteryl hemisuccinate are important for the stimulatory effects. The data obtained showed that only esters of cholesterol with dicarboxylic acids, not those of monocarboxylic acids, increase the accessibility of LH/hCG receptors and membrane rigidity. Experiments with cholesteryl sulfates showed that there are polar groups on C3 carbon of cholesterol having no stimulatory effect on receptors, although an increase in membrane rigidity occurred. The side-chain of cholesterol is important for the stimulatory action. Androstenolone hemisuccinate was ineffective in this respect. On the other hand, partially modified side-chains (hemisuccinates of beta-sitosterol and stigmasterol) did not result in a marked reduction of the stimulatory action. The carboxyl group of cholesteryl hemisuccinate must be 'free': its esterification abolishes the stimulatory effect of cholesteryl hemisuccinate on both the LH/hCG receptor and membrane microviscosity. These results suggest that an intact carboxyl group of ester and the side-chain of cholesterol are indispensable for the stimulatory effect of cholesteryl hemisuccinate on the accessibility of LH/hCG receptors.  相似文献   

9.
Beta-Adrenergic agonist-stimulated hyperpolarization, whole-cell cAMP accumulation, and activity of isoproterenol-stimulated membrane-bound adenylate cyclase (EC 4.6.1.1) in Xenopus laevis ovarian oocytes are entirely dependent on the presence of nascent follicle cells. A method was developed to remove rapidly and completely all extra-oocyte cell types to yield defolliculated oocytes that exhibited normal viability and resting membrane potentials yet lacked beta-adrenergic receptor (beta AR)-stimulated responses. Purified follicle membranes contained beta AR-stimulated adenylate cyclase activity, whereas oocyte cell membranes did not. Purified oocyte membrane preparations from X. laevis oocytes previously microinjected with C6-2B rat astrocytoma mRNA, and subsequently defolliculated, exhibited novel beta AR and forskolin-stimulated adenylate cyclase activity. These experiments demonstrate that oocytes expressed rat C6-2B mRNA coding for the beta-adrenergic receptor and the components necessary for forskolin-stimulated adenylate cyclase activity.  相似文献   

10.
The nonspecific lipid transfer protein from beef liver was used to modify the phospholipid composition of intact turkey erythrocytes in order to study the dependence of isoproterenol-stimulated adenylate cyclase activity on membrane phospholipid composition. Incorporation of phosphatidylinositol into turkey erythrocytes inhibited isoproterenol-stimulated cyclic AMP accumulation in a linear, concentration-dependent manner. Inhibition was relatively specific for phosphatidylinositol; phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol and phosphatidic acid were from 3 to 7 times less effective as inhibitors of hormone-stimulated cyclase activity. Inhibition by phosphatidylinositol was not reversible when up to 90% of the incorporated phosphatidylinositol was removed, either by incubation with phosphatidylinositol-specific phospholipase C or a second incubation with transfer protein; possibly adenylate cyclase activity depends on a small pool of phosphatidylinositol that is inaccessible to either phospholipase C hydrolysis or removal by lipid transfer protein. Phosphatidylinositol incorporation inhibits adenylate cyclase activity by uncoupling beta-adrenergic receptors from the remainder of the cyclase complex. Phosphatidylinositol incorporation had no effect on stimulation of cAMP accumulation by either cholera toxin or forskolin, indicating that inhibition occurs only at the level of receptor. Phosphodiesterase activity was not altered in phosphatidylinositol-modified cells. Inhibition of cAMP accumulation was not the result of changes in either membrane fluidity or in cAMP transport out of modified turkey erythrocytes. Phosphatidylinositol inhibition of isoproterenol-stimulated cyclase activity may serve as a useful model system for hormone-induced desensitization.  相似文献   

11.
D C Bode  P B Molinoff 《Biochemistry》1988,27(15):5700-5707
The effects of chronic exposure to ethanol on the physical and functional properties of the plasma membrane were examined with cultured S49 lymphoma cells. The beta-adrenergic receptor-coupled adenylate cyclase system was used as a probe of the functional properties of the plasma membrane. Steady-state fluorescence anisotropy of diphenylhexatriene and the lipid composition of the plasma membrane were used as probes of the physical properties of the membrane. Cells were grown under conditions such that the concentration of ethanol in the growth medium remained stable and oxidation of ethanol to acetaldehyde was not detected. Chronic exposure of S49 cells to 50 mM ethanol or growth of cells at elevated temperature resulted in a decrease in adenylate cyclase activity. There were no changes in the density of receptors or in the affinity of beta-adrenergic receptors for agonists or antagonists following chronic exposure to ethanol. The fluorescence anisotropy of diphenylhexatriene was lower in plasma membranes prepared from cells that had been treated with 50 mM ethanol than in membranes prepared from control cells. However, this change was not associated with changes in the fatty acid composition or the cholesterol to phospholipid ratio of the plasma membrane. There was a small but statistically significant decrease in the amount of phosphatidylserine and an increase in the amount of phosphatidylethanolamine. These changes cannot account for the decrease in anisotropy. In contrast to the effect of ethanol, a decrease in adenylate cyclase activity following growth of S49 cells at 40 degrees C was not associated with a change in anisotropy.  相似文献   

12.
Human A431 and rat glioma C6 cells exposed to isoproterenol underwent a time- and dose-dependent loss of isoproterenol-stimulated adenylate cyclase activity. Desensitization was accompanied by sequestration of beta-adrenergic receptors, which became less accessible to the hydrophilic antagonist 3H-labeled 4-(3-tert-butylamino-2-hydroxypropoxy)benzimidazole-2-one hydrochloride ([3H]CGP-12177) and redistributed from the heavier density plasma membrane fraction to a lighter density membrane fraction. Prior treatment of the cells with concanavalin A or phenylarsine oxide blocked sequestration of the receptors but not desensitization of the agonist-stimulated adenylate cyclase. The membranes from such pretreated cells were exposed to alkali to inactivate adenylate cyclase, and the receptors were transferred to a foreign adenylate cyclase by membrane fusion with polyethylene glycol. beta receptors from desensitized cells exhibited a reduced ability to maximally stimulate the foreign adenylate cyclase, but remained accessible to [3H]CGP-12177 in the fused membranes. When isoproterenol-treated cells were washed free of agonist, there was a time-dependent recovery of agonist responsiveness and [3H]CGP-12177-binding sites. Using the fusion technique, the receptors recovered their functional activity in the resensitized cells. In concanavalin A-treated cells, desensitization and resensitization appeared to occur in the absence of receptor sequestration. Finally, membranes from desensitized cells pretreated with concanavalin A were fused with polyethylene glycol and assayed for agonist-stimulated adenylate cyclase. There was no reversal of the desensitized state. Thus, the primary, essential step in the desensitization process is a reduction in functional activity of the beta-adrenergic receptor. In contrast, sequestration of the receptors is not a prerequisite, but a secondary event during desensitization.  相似文献   

13.
Rabbit heart membranes possessing the adenylate cyclase activity were isolated and purified by extraction with high ionic strength solutions and centrifugation in the sucrose density gradient. It was shown that the membranes are characterized by a high percentage of cholesterol (molar ratio cholesterol/phospholipids is 0.24) and an increased activity of Na, K-ATPase, which suggests the localization of adenylate cyclase in the sarcolemma. During centrifugation in the sucrose density gradient the activities of andenylate cyclase and Na,K-ATPase are not separated. Treatment of heart sarcolemma with a 0.3% solution of lubrol WX results in 10--20% solubilization of adenylate cyclase. Purification of the enzyme in the membrane fraction is accompanied by a decrease in the activity of phosphodiesterase; however, about 2% of the heart diesterase total activity cannot be removed from the sarcolemma even after its treatment with 0.3% lubrol WX. Epinephrine and NaF activate adenylate cyclase without changing the pH dependence of the enzyme. The alpha-adrenergic antagonist phentolamine has no effect on the adenylate cyclase activation by catecholamines, glucagon and histamine; the beta-adrenergic antagonist alprenolol competitively inhibits the effects of isoproterenol, epinephrine and norepinephrine, having no effect on the enzyme activation by glucagon and histamine. There is no competition between epinephrine, glucagon and histamine for the binding site of the hormone; however, there may occur a competition between the hormone receptors for the binding to the enzyme. A combined action of several hormones on the membranes results in the averaging of their individual activating effects. When the hormones were added one after another, the extent of adenylate cyclase activation corresponded to that induced by the first hormone; the activation was insensitive to the effect of the second hormone added. It is assumed that the outer membrane of myocardium cells contains a adenylate cyclase and three types of receptors, each being capable to interact with the same form of enzyme. The activity of adenylate cyclase is determined by the type of the receptor, to which it is bound and by the amount of the enzyme-receptor complex.  相似文献   

14.
Continuous treatment (1-10 days) of rats with desipramine (10 mg/kg, twice per day) caused desensitization of the beta-adrenergic receptor-coupled adenylate cyclase system of cerebral cortical membranes. The decrease in the isoproterenol-stimulated adenylate cyclase activity was more rapid and greater than the decrease in the number of beta-adrenergic receptors in membranes during treatment of the membrane donor rats with desipramine, indicating that the desensitization occurring at an early stage of the treatment was not accounted for solely by the decrease in the receptor number. Neither the guanine nucleotide regulatory protein (N) nor the adenylate cyclase catalyst was impaired by the drug treatment, since there was no decrease in the cyclase activity measured in the presence or absence of GTP, guanyl-5'-yl-beta-gamma-imidodiphosphate [Gpp(NH)p], NaF, or forskolin. Gpp(NH)p-induced activation of membrane adenylate cyclase developed with a lag time of a few minutes in membranes from control or drug-treated rats. The lag was shortened by the addition of isoproterenol, indicating that beta-receptors were coupled to N in such a manner as to facilitate the exchange of added Gpp(NH)p with endogenous GDP on N. This effect of isoproterenol rapidly decreased during the drug treatment of rats. Thus, functional uncoupling of the N protein from receptors was responsible for early development of desensitization of beta-adrenergic receptor-mediated adenylate cyclase in the cerebral cortex during desipramine therapy.  相似文献   

15.
Plasma membrane vesicles containing adenylate cyclase and beta-adrenergic receptors were prepared from 1321N1 human astrocytoma cells by a procedure involving the use of concanavalin A to stabilize the plasma membrane to fragmentation and vesiculation upon cell lysis. Treatment of cells with concanavalin A causes these plasma membrane markers to sediment to a higher density of sucrose and in a narrower band than observed with untreated cells. Upon treatment of the heavy membrane fragments with alpha-methylmannoside to remove bound concanavalin A, the enzyme markers again sediment a lower densities of sucrose. This reversible change in sedimentation behavior has been used to obtain preparations of plasma membranes enriched 14- to 21-fold (recovery 25%) in adenylate cyclase activity and about 12-fold (recovery 16%) in beta-adrenergic receptor density, as compared to lysates. The adenylate cyclase of purified membranes responded normally to isoproterenol and prostaglandin E1. Experiments with S49 and YAC mouse lymphoma cells and human skin fibroblasts indicate that this procedure may be adaptable to the isolation of plasma membranes from a variety of cultured cell lines.  相似文献   

16.
1. The lipids composition of rat liver plasma membranes was substantially altered by introducing synthetic phosphatidylcholines into the membrane by the techniques of lipid substitution or lipid fusion. 40-60% of the total lipid pool in the modified membranes consisted of a synthetic phosphatidylcholine. 2. Lipid substitution, using cholate to equilibrate the lipid pools, resulted in the irreversible loss of a major part of the adenylate cyclase activity stimulated by F-, GMP-P(NH)P or glucagon. However, fusion with presonicated vesicles of the synethic phosphatidylcholines causes only small losses in adenylate cyclase activity stimulated by the same ligands. 3. The linear form of the Arrhenius plots of adenylate cyclase activity stimulated by F- or GMP-(NH)P was unaltered in all of the membrane preparations modified by substitution or fusion, with very similar activation energies to those observed with the native membrane. The activity of the enzyme therefore appears to be very insensitive to its lipid environment when stimulated by F- or gmp-p(nh)p. 4. in contrast, the break at 28.5 degrees C in the Arrhenius plot of adenylate cyclase activity stimulated by glucagon in the native membrane, was shifted upwards by dipalmitoyl phosphatidylcholine, downwards by dimyristoyl phosphatidylcholine, and was abolished by dioleoyl phosphatidylcholine. Very similar shifts in the break point were observed for stimulation by glucagon or des-His-glucagon in combination with F- or GMP-P(NH)P. The break temperatures and activation energies for adenylate cyclase activity were the same in complexes prepared with a phosphatidylcholine by fusion or substitution. 5. The breaks in the Arrhenius plots of adenylate cyclase activity are attributed to lipid phase separations which are shifted in the modified membranes according to the transition temperature of the synthetic phosphatidylcholine. Coupling the receptor to the enzyme by glucagon or des-His-glucagon renders the enzyme sensitive to the lipid environment of the receptor. Spin-label experiments support this interpretation and suggest that the lipid phase separation at 28.5 degrees C in the native membrane may only occur in one half of the bilayer.  相似文献   

17.
Torpedo acetylcholine receptor was reconstituted into liposomes of pure synthetic lipids in order to study the influence of the lipid environment on affinity state transitions and the ion translocation function of the receptor. A critical concentration of 30 to 40% of cholesteryl hemisuccinate was necessary in liposomes made of cholesteryl hemisuccinate and dimyristoyl phosphatidylcholine to mimic the kinetics of agonist-induced state transitions observed in native membranes. With increasing chain length of the saturated lecithins, a marked increase in carbamylcholine dissociation constants was observed. Substitution by other dimyristoyl phospholipids for dimyristoyl phosphatidylcholine had the same, though quantitatively less pronounced effects. Introduction of unsaturation in the acyl chains reverted the effect of increasing chain length. Unsaturated phosphatidylethanolamines in combination with 28-35 mol% of cholesteryl hemisuccinate was the best lipid mixture for reconstitution of the receptor-gating function. When phosphatidylethanolamine was replaced totally or partially by other phospholipids with the same or different acyl chain composition, a marked decrease of ion transport was apparent, even when similar vesicle size, receptor incorporation, and agonist-induced affinity transitions were obtained. Therefore, the maintenance of the affinity state transitions of the reconstituted receptor is a necessary but not sufficient condition for the manifestation of the ion-gating receptor activity. On the other hand, the more unsaturated the acyl chains of phosphatidylethanolamine are, the higher the response that was observed, suggesting that a critical lipid packing is essential for the ion translocation function of the receptor.  相似文献   

18.
Chronic exposure of frog erythrocytes to beta-adrenergic agonists leads to desensitization of the responsiveness of adenylate cyclase to isoproterenol and is accompanied by "down-regulation", a decrease in the number of beta-adrenergic receptors on the cell surface. When frog erythrocyte plasma membranes are prepared by osmotic lysis of cells, the receptors lost from the cell surface during desensitization can be recovered in a "light membrane fraction", obtained by centrifuging the cell cytosol at 158,000 X g for 1 hr. These receptors are sequestered away from the plasma membrane fraction which contains the adenylate cyclase and the guanine nucleotide regulatory protein. If desensitized frog erythrocytes are disrupted by gentler freeze/thaw procedures, however, the sequestered beta-adrenergic receptors can be demonstrated to be physically associated with the plasma membrane. Typically, plasma membranes prepared in this fashion do not demonstrate a significant down regulation despite attenuation of isoproterenol-stimulated adenylate cyclase activity. Under these conditions, beta-adrenergic receptors from control and desensitized preparations co-migrate on sucrose density gradients in exactly the same place as the plasma membrane marker, adenylate cyclase. In contrast, when membranes from osmotically lysed desensitized cells are fractionated on sucrose gradients the down regulated receptors are sequestered in a light membrane fraction which barely enters the gradient and which is physically separated from adenylate cyclase activity. The data are consistent with a novel mechanism of receptor down-regulation which appears to involve the sequestration of the beta-adrenergic receptors away from the cell surface into a membrane compartment which remains physically associated with the plasma membrane.  相似文献   

19.
Cultured rat glioma C6 cells exfoliate membrane vesicles which have been termed 'exosomes' into the culture medium. The exosomes contained both stimulatory and inhibitory GTP-binding components of adenylate cyclase (the stimulatory, Gs, and the inhibitory, Gi, regulatory components) and beta-adrenergic receptors but were devoid of adenylate cyclase activity. It was therefore apparent that the catalytic component of adenylate cyclase was either not exfoliated or was inactivated during the exfoliation process. The presence of Gs or Gi in the exosomes was detected by ADP ribosylation using [alpha-32P]NAD in the presence of cholera or pertussis toxins, respectively. The exosomal concentration of each of the two components was estimated to be about one fifth of that of the cell membrane when expressed on a per mg protein basis. Exosomal Gs was almost as active as the membrane-derived Gs in its ability to reconstitute NaF- and guanine nucleotide-stimulated adenylate cyclase activity in membranes of S49 cyc- cells, which lack a functional Gs. The ability of exosomal Gs to reconstitute isoproterenol-stimulated activity, however, was much lower than that of membrane Gs. The density of beta-adrenergic receptors in the exosomes was much less than that found in the membranes. Although the exosomal receptors bound the antagonist iodocyanopindolol with the same affinity as receptors from the cell membrane, the affinity for the agonist isoproterenol was 13- to 18-fold lower in the exosomes. In addition, this affinity was not modulated by GTP in the exosomes. Thus, exfoliated beta-adrenergic receptors seem to be impaired in their ability to couple to and activate Gs. This was directly tested by coupling the receptors to a foreign adenylate cyclase using membrane fusion. The fusates were then assayed for agonist-stimulated activity. While significant stimulation of the acceptor adenylate cyclase was obtained using C6 membrane receptors, the exosomal receptors were completely inactive. Thus during exfoliation, there appear to be changes in the components of the beta-adrenergic-sensitive adenylate cyclase that results in a nonfunctional system in the exosomes.  相似文献   

20.
Extraction of membrane cholesterol and incorporation of cholesteryl hemisuccinate into the membrane affect the activity of the membrane-bound Mg2+-ATPase. Increasing the ratio of cholesterol to phospholipid from 0.30 mg/mg in the control membranes to 0.45-0.90 in the enriched membranes results in a slight increase of the activity of about 20%. Diminishing the ratio of cholesterol to phospholipid to about one tenth of the ratio of the control membrane results in a decrease of the activity to about 30% of the untreated control. Benzyl alcohol inactivates the membrane-bound enzyme. Digitonin-solubilized Mg2+-ATPase is also inactivated by benzyl alcohol. For concentrations below 20 mM the dependence of the solubilized and the membrane-bound enzymes are virtually identical, and linearly dependent on alcohol concentration. This linear relationship continues up to 70 mM for the solubilized enzyme, while inhibition of the membrane-bound form shows a slightly steeper dependence on inhibitor concentration. It is suggested that the activity of the native Mg2+-ATPase depends on the organization of the lipid phase of the membrane and that addition of benzyl alcohol or depletion of cholesterol results in a disorganization of the lipid phase which in turn results in diminished activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号