首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The photoselection-induced time-resolved linear dichroism of a bacteriorhodopsin suspension of purple membrane from 350 to 750 nm is measured by a new pseudo-null measurement technique. In combination with time-resolved absorption measurements, these linear dichroism measurements are used to determine the reorientation of the retinal chromophore of bacteriorhodopsin from 50 ns to 50 microseconds after photolysis. This time range covers the times when the K photointermediate decays to form L, as well as the early times during the formation of the M intermediate in the photocycle. An analysis of the photoselection-induced linear dichroism measured directly, along with the absorbance changes polarized parallel to the linearly polarized excitation, shows that the anisotropy is invariant over this time period, implying that the photolyzed chromophore rotates less than 8 degrees C with respect to unphotolyzed chromophores during this part of the photocycle.  相似文献   

2.
Glutamic acid at position 113 in bovine rhodopsin ionizes to form the counterion to the protonated Schiff base (PSB), which links the 11-cis-retinylidene chromophore to opsin. Photoactivation of rhodopsin requires both Schiff base deprotonation and neutralization of Glu-113. To better understand the role of electrostatic interactions in receptor photoactivation, absorbance difference spectra were collected at time delays from 30 ns to 690 ms after photolysis of rhodopsin mutant E113Q solubilized in dodecyl maltoside at different pH values at 20 degrees C. The PSB form (pH 5. 5, lambda(max) = 496 nm) and the unprotonated Schiff base form (pH 8. 2, lambda(max) = 384 nm) of E113Q rhodopsin were excited using 477 nm or 355 nm light, respectively. Early photointermediates of both forms of E113Q were qualitatively similar to those of wild-type rhodopsin. In particular, early photoproducts with spectral shifts to longer wavelengths analogous to wild-type bathorhodopsin were seen. In the case of the basic form of E113Q, the absorption maximum of this intermediate was at 408 nm. These results suggest that steric interaction between the retinylidene chromophore and opsin, rather than charge separation, plays the dominant role in energy storage in bathorhodopsin. After lumirhodopsin, instead of deprotonating to form metarhodopsin I(380) on the submillisecond time scale as is the case for wild type, the acidic form of E113Q produced metarhodopsin I(480), which decayed very slowly (exponential lifetime = 12 ms). These results show that Glu-113 must be present for efficient deprotonation of the Schiff base and rapid visual transduction in vertebrate visual pigments.  相似文献   

3.
The primary stages of rhodopsin photolysis were studied with the low temperature absorption spectroscopy technique. Digitonin extract of bovine rhodopsin was irradiated at -155 degrees C with blue light (436 nm). The following changes of the dark spectrum were recorded in the course of slow rise of the temperature in 1-3 degrees C steps. Simultaneous appearance of more than one spectral product was revealed throughout the batho- to lumirhodopsin transition. An intermediate product transformed along with bathorhodopsin to a next product known as a "blue-shifted intermediate", was observed. The data suggest that appearance of more than one intermediate at each stage of the rhodopsin photolysis reflects existence of multiple conformation states of the rhodopsin molecule in the course of its photoconversion.  相似文献   

4.
Enthalpy changes (Delta H) of the photointermediates that appear in the photolysis of octopus rhodopsin were measured at physiological temperatures by the laser-induced transient grating method. The enthalpy from the initial state, rhodopsin, to bathorhodopsin, lumirhodopsin, mesorhodopsin, transient acid metarhodopsin, and acid metarhodopsin were 146 +/- 15 kJ/mol, 122 +/- 17 kJ/mol, 38 +/- 8 kJ/mol, 12 +/- 5 kJ/mol, and 12 +/- 5 kJ/mol, respectively. These values, except for lumirhodopsin, are similar to those obtained for the cryogenically trapped intermediate species by direct calorimetric measurements. However, the Delta H of lumirhodopsin at physiological temperatures is quite different from that at low temperature. The reaction volume changes of these processes were determined by the pulsed laser-induced photoacoustic method along with the above Delta H values. Initially, in the transformation between rhodopsin and bathorhodopsin, a large volume expansion of +32 +/- 3 ml/mol was obtained. The volume changes of the subsequent reaction steps were rather small. These results are compared with the structural changes of the chromophore, peptide backbone, and water molecules within the membrane helixes reported previously.  相似文献   

5.
Photochemical studies were conducted on human rhodopsin at 20 degrees C to characterize the intermediates which precede the formation of metarhodopsin II, the trigger for the enzyme cascade mechanism of visual transduction. Human rhodopsin was prepared from eyes which had previously been used for corneal donations. Time resolved absorption spectra collected from 10(-8) to 10(-6) s after photolysis of human rhodopsin in detergent suspensions displayed biexponential decay kinetics. The apparent lifetimes obtained from the data are 65 +/- 20 and 292 +/- 25 ns, almost a factor of 2 slower than the corresponding rates in bovine rhodopsin. The spectra can be fit well using a model in which human bathorhodopsin decays toward equilibrium with a blue-shifted intermediate (BSI) which then decays to lumirhodopsin. Spectra and kinetic rate constants were determined for all these intermediates using a global analysis which showed that the spectra of the human intermediates are remarkably similar to bovine intermediates. Microscopic rate constants derived from this model are 7.4 x 10(6) s-1 for bathorhodopsin decay and 7.5 x 10(6) s-1 and 4.6 x 10(6) s-1 for the forward and reverse reactions of BSI, respectively. Decay of lumirhodopsin to later intermediates was studied from 10(-6) to 10(-1) s after photolysis of rhodopsin in human disk membrane suspensions. The human metarhodopsin I in equilibrium metarhodopsin II equilibrium appears to be more forward shifted than in comparable bovine studies.  相似文献   

6.
Flash photolysis of rhodopsin in rabbit's retina has been analysed theoretically, and the results are found to be in good agreement with the experimental results of Hagins (1957). We have also obtained the variation of relative concentrations of rhodopsin, lumirhodopsin, isorhodopsin and metarhodopsin I during the period of the flash corresponding to two different intensities of the flash. It has been found that the quantum efficiencies of conversion of lumirhodopsin into rhodopsin and isorhodopsin will lie in the range 0.24–0.45 and 0.20–0.44 respectively; quantum efficiencies of conversion of metarhodopsin I into rhodopsin and isorhodopsin are found to have values greater than 0.52 and 0.45 respectively and the quantum efficiency of conversion of isorhodopsin into lumirhodopsin has been found to be approximately 0.865. Also the maximum value of the rate constant of the reaction metarhodopsin Imetarhodopsin II at 37 C has been determined in decerebrated eye and it has been found that it is of the same order as found by Pugh (1975) in the case of human eye.Work partially supported by Department of Science and Technology  相似文献   

7.
8.
M Nakagawa  S Kikkawa  T Iwasa    M Tsuda 《Biophysical journal》1997,72(5):2320-2328
Light-induced protein conformational changes in the photolysis of octopus rhodopsin were measured with a highly sensitive time-resolved transient UV absorption spectrophotometer with nanosecond time resolution. A negative band around 280 nm in the lumirhodopsin minus rhodopsin spectra suggests that alteration of the environment of some of the tryptophan residues has taken place before the formation of lumirhodopsin. A small recovery of the absorbance at 280 nm was observed in the transformation of lumirhodopsin to mesorhodopsin. Kinetic parameters suggest that major conformational changes have taken place in the transformation of mesorhodopsin to acid metarhodopsin. In this transformation, drastic changes of amplitude and a shift of a difference absorption band around 280 nm take place, which suggest that some of the tryptophan residues of rhodopsin become exposed to a hydrophilic environment.  相似文献   

9.
10.
The bleaching of rhodopsin by short-duration flashes of a xenon discharge lamp was studied in vivo in the cat retina with the aid of a rapid, spectral-scan fundus reflectometer. Difference spectra recorded over a broad range of intensities showed that the bleaching efficacy of high-intensity flashes was less than that of longer duration, steady lights delivering the same amount of energy. Both the empirical results and those derived from a theoretical analysis of flash photolysis indicate that, under the conditions of these experiments, the upper limit of the flash bleaching of rhodopsin in cat is approximately 90%. Although the fact that a full bleach could not be attained is attributable to photoreversal, i.e., the photic regeneration of rhodopsin from its light-sensitive intermediates, the 90% limit is considerably higher than the 50% (or lower) value obtained under other experimental circumstances. Thus, it appears that the duration (approximately 1 ms) and spectral composition of the flash, coupled with the kinetic parameters of the thermal and photic reactions in the cat retina, reduce the light-induced regeneration of rhodopsin to approximately 10%.  相似文献   

11.
Microvillar membranes of octopus photoreceptor cells were treated with phospholipase A2, phospholipase C, hexane, or their combinations. By these means, various membrane preparations containing qualitatively and quantitatively different lipids were obtained. The lipid composition and phospholipid content of the membrane preparations obtained by the above methods were determined.Photochemical processes in the digitonin extract of the native and treated membranes have been studied by flash photometry. The results suggest that several different variations in the lipids can affect the rates of the photochemical transformations; these are: the content of phospholipid, the amount of unsaturated hydrocarbon chains and free fatty acids.  相似文献   

12.
Studies of the pressure effect on the photochemical reaction of squid rhodopsin have been initiated. On irradiation of rhodopsin with blue light at 6 kb, an intermediate having absorption maximum at 502 nm appeared, which we call p-lumirhodopsin. Upon release of pressure, a new intermediate having absorption maximum at 472 nm, which we call p-LM-rhodopsin. Molar free volume change takes place in the transformations of p-lumirhodopsin → p-LM-rhodopsin and p-LM-rhodopsin → Metarhodopsin.  相似文献   

13.
F F Litvin  S P Balashov 《Biofizika》1977,22(6):1111-1114
The conditions of preferential accumulation of intermediates of the photochemical reaction cycle of bacteriorhodopsin (BR) P550 and P419 at low temperature are found. Upon illumination P550 and P419 undergo photochemical conversions into the light-adapted form of BR (P570), forming during this conversions a number of new intermediates: P550 leads to P560-- -- -- leads to P570; P419 leads to P421-- -- -- leads to P565-- -- -- leads to P585-- -- -- leads to P570; P419 leads to P470-- -- -- leads to P570. All intermediates are photoactive. All light reactions are photoreversible and give formation to the products with absorption maximum shifted to the red as compared to the initial state. The absorption spectra of intermediates are complex and include several bands which are more pronounced in the spectrum of P419 (maxima at 442, 419, 398 nm, a shoulder at 375 nm) and P421, less in the spectrum of P570 (maximum at 578 nm, shoulders at 540 and 608 nm) and others.  相似文献   

14.
15.
The intermediate photolytic sequence of octopus rhodopsin was studied at different temperatures and different pH values by means of a flash photolysis-rapid scan spectrophotometry near physiological temperature. The first photoproduct in the photolysis of rhodopsin was lumirhodopsin. Transformation of lumirhodopsin leads to mesorhodopsin took place independently of the pH of the solution. Mesorhodopsin was transformed to acid metarhodopsin in acid solution. In alkaline solution, mesorhodopsin was transformed to transient acid metarhodopsin whose absorption spectrum was similar to acid metarhodopsin. Transient acid metarhodopsin was then transformed to alkaline metarhodopsin reaching a tautomeric equilibrium which was determined by the pH of the solution.  相似文献   

16.
1. The number of exposed sulfhydryl groups in cattle rod photoreceptor membranes has been determined in suspension and after solubilization in various detergents both before and after illumination.2. In suspensions, two sulfhydryl groups are modified per mole of rhodopsin, both by Ellman's reagent 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide, while no extra SH groups are uncovered upon illumination. Neither reagent affects the spectral integrity of rhodopsin at 500 nm and the recombination capacity is retained upon modification of both rhodopsin and opsin.3. However, in detergents (digitonin, Triton X-100 and cetyltrimethylammonium bromide (CTAB)) 2–3 additional sulfhydryl groups appear upon illumination, in agreement with earlier reports.4. A total number of six sulfhydryl groups and two disulfide bridges are found in rod photoreceptor membranes, expressed per mole of rhodopsin.5. DTNB reacts somewhat faster with membrane suspensions after than before illumination. The less reactive sulfhydryl modifying agents O-methylisourea and methyl-p-nitrobenzene sulfonate show a similar behavior.6. It is concluded that illumination of rhodopsin in vivo will not uncover additional SH groups, although the reactivity of one exposed SH group may increase somewhat. These findings also exclude a role of SH groups in the covalent binding of the chromophore.  相似文献   

17.
18.
The time-resolved spectra of photoproducts from ligand photodissociation of oxyhemoglobin are measured in the Soret spectral region for times from 10 ns to 320 microseconds after laser photolysis. Four processes are detected at a heme concentration of 80 microM: a 38-ns geminate recombination, a 137-ns tertiary relaxation, and two bimolecular processes for rebinding of molecular oxygen. The pseudo-first-order rate constants for rebinding to the alpha and beta subunits of hemoglobin are 3.2 x 10(4) s-1 (31 microseconds lifetime) and 9.4 x 10(4) s-1 (11 microseconds lifetime), respectively. The significance of kinetic measurements made at different heme concentrations is discussed in terms of the equilibrium compositions of hemoglobin tetramer and dimer mixtures. The rebinding rate constants for alpha and beta chains are observed to be about two times slower in the dimer than in the tetramer, a finding that appears to support the observation of quaternary enhancement in equilibrium ligand binding by hemoglobin tetramers.  相似文献   

19.
The electric dipole moment of solubilized rhodopsin was determined with dielectric dispersion measurements. Rhodopsin was extracted from disc membranes of cattle rod outer segments with the nonionic detergent Triton X-100. The dipole moment of rhodopsin at its isoionic point in the detergent micelle is 720 D (150 charge-A). This value is comparable to dipole moments of nonmembrane proteins, especially those which tend to aggregate or polymerize. Flash irradiation of the rhodopsin results in an increase in the dipole moment of about 25 D (5 charge-A). The light-induced increase in dipole moment appears to be composed of two parts--a faster component related to a change in the number of protons bound by rhodopsin and a slower component apparently independent of the change in proton binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号