首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 207 毫秒
1.
Results on the effect of sub-lethal concentrations of zinc chloride (ZnCl2), cadmium chloride (CdCl2), and mercuric chloride (HgCl2) on Euglena are presented. During the growth cycle respiratory oxygen uptake and photosynthetic oxygen evolution in the light are initially strongly inhibited by Zn, Cd and Hg. The effects of the three metals on photosynthesis, using oxygen evolution as a criterion was confirmed by carbon fixation techniques.Photosystem I (PSI) associated electron transport 2,6-dichlorophenol indophenol (DCPIP)red. methyl viologen (MV) O2, in contrast to total photosynthetic capacity, was only slightly inhibited by Zn, Cd and Hg, whereas the levels of activity of NADP-oxidoreductase in cells untreated or treated with heavy metals showed development like total photosynthesis. Metals strongly inhibited this enzyme which means that the supply of NADPH is lowered due to the action of Zn, Cd and Hg. Photosystem II (PSII) associated electron transport (H2O dibromothymoquinone/2,3-dimethyl-5,6-methylenedioxy-D-benzoquinone O2), however, was severely inhibited in a way similar to total photosynthesis. Effects on the cooperation of PSI + II showed patterns similar to PSII alone, i.e., heavy metals strongly reduced PSI + II dependent activities.Abbreviations DAD diaminodurene - DBMIB dibromothymoquinone - DCPIP 2,6-dichlorophenolindophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMMIB 2,3-dimethyl-5,6-methylenedioxy-p-benzoquinone - DPC 1,5-diphenylcarbazide - MV methylviologen - PS photosystem Dedicated to Professor Kandler on occasion of his 60th birthday  相似文献   

2.
4-O-Glycosylation of 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O-benzyl-6-O-benzoyl--D-galactopyranosyl)--D-glucopyranoside with a disaccharide donor, 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-1-thio-2-trichloroacetamido--D-galactopyranoside, in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid resulted in a tetrasaccharide, 2-azidoethyl (2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-(1 3)-(4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido--D-galactopyranosyl)-(1 4)-(2,3-di-O-benzyl-6-O-benzoyl--D-galactopyranosyl)-(1 4)-2,3,6-tri-O-benzyl--D-glucopyranoside, in 69% yield. The complete removal of O-protecting groups in the tetrasaccharide, the replacement of N-trichloroacetyl by N-acetyl group, and the reduction of the aglycone azide group to amine led to the target aminoethyl glycoside of -D-Gal-(1 3)--D-GalNAc-(1 4)--D-Gal-(1 4)--D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of asialo-GM1 ganglioside in 72% overall yield. Selective 3-O-glycosylation of 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,6-di-O-benzyl--D-galactopyranosyl)--D-glucopyranoside with thioglycoside methyl (ethyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero--D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid afforded 2-azidoethyl [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosyl)oate]-(2 3)-(2,6-di-O-benzyl--D-galactopyranosyl)-(1 4)-2,3,6-tri-O-benzyl--D-glucopyranoside, the selectively protected derivative of the oligosaccharide chain of GM3 ganglioside, in 79% yield. Its 4-O-glycosylation with a disaccharide glycosyl donor, (4-trichloroacetophenyl-4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl--D-galactopyranosyl) 1-thio-2-trichloroacetamido--D-galactopyranoside in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid gave 2-azidoethyl (2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-(1 3)-(4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido--D-galactopyranosyl)-(1 4)-{[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosyl)onate]-(2 3)}-(2,6-di-O-benzyl--D-galactopyranosyl)-(1 4)-2,3,6-tri-O-benzyl--D-glucopyranoside in 85% yield. The resulting pentasaccharide was O-deprotected, its N-trichloroacetyl group was replaced by N-acetyl group, and the aglycone azide group was reduced to afford in 85% overall yield aminoethyl glycoside of -D-Gal-(1 3)--D-GalNAc-(1 4)-[-D-Neu5Ac-(2 3)]--D-Gal-(1 4)--D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of GM1 ganglioside.  相似文献   

3.
The functional size of Photosystem II (PS II) was investigated by radiation inactivation. The technique provides an estimate of the functional mass required for a specific reaction and depends on irradiating samples with high energy -rays and assaying the remaining activity. The analysis is based on target theory that has been modified to take into account the temperature dependence of radiation inactivation of proteins. Using PS II enriched membranes isolated from spinach we determined the functional size of primary charge separation coupled to water oxidation and quinone reduction at the QB site: H2O (Mn)4 Yz P680 Pheophytin Q phenyl-p-benzoquinone. Radiation inactivation analysis indicates a functional mass of 88 ± 12 kDa for electron transfer from water to phenyl-p-benzoquinone. It is likely that the reaction center heterodimer polypeptides, D1 and D2, contribute approximately 70 kDa to the functional mass, in which case polypeptides adding up to approximately 20 kDa remain to be identified. Likely candidates are the and subunits of cytochrome b 559and the 4.5 kDa psbI gene product.Abbreviations Cyt cytochrome - PS Photosystem - P680 primary electron donor of Photosystem II - QA primary quinone acceptor of Photosystem II - QB secondary quinone acceptor of Photosystem II - Yz tyrosine donor to P680  相似文献   

4.
Campylobacter sputorum subspeciesbubulus contains a membrane-bound nitrite reductase which catalyses the six-electron reduction of nitrite to ammonia. Formate andL-lactate are used as hydrogen donors. Cells ofC. sputorum grown with nitrate or nitrite contain cytochromes of theb-andc-type and a carbon monoxide-binding cytochromec. In addition, a special membrane-bound carbon monoxide-binding pigment is found. Nitrite reduction with formate orL-lactate as a hydrogen donor is strongly inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Nitrite reduction by bacterial suspensions with lactate as a hydrogen donor is strongly inhibited by carbonylcyanide-m-chlorophenyl-hydrazone (CCCP) whereas nitrite reduction with formate as a hydrogen donor is not inhibited at all. H+/O values and H+/NO 2 - values were measured with ascorbate + N,N,N,N-tetramethyl-p-phenylenediamine (TMPD), formate (in the absence and presence of carbonic anhydrase) andL-lactate as a hydrogen donor. The results are summarized in a scheme for electron transport from formate or lactate to oxygen or nitrite which shows a periplasmic orientation of formate dehydrogenase and nitrite reductase and a cytoplasmic orientation of lactate dehydrogenase and oxygen reduction, and which shows proton translocation with a H+/2e value of 2.0. The H+/O and H+/NO 2 - values predicted by this scheme are in good agreement with the experimental values.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - MTPP+ methyltriphenylphosphonium cation - TMPD N,N,N,N-tetramethyl-p-phenylenediamine; H+/O (H+/NO 2 - ), number of protons liberated in the outer bulk phase at the reduction of one atom O (one ion NO 2 - ); H+/2e (q+/2e), number of protons (charges) translocated across the cytoplasmic membrane during flow of two electrons to an acceptor  相似文献   

5.
Transitions in growth irradiance level from 92 to 7 Em-2 s-1 and vice versa caused changes in the pigment contents and photosynthesis of Oscillatoria agardhii. The changes in chlorophyll a and C-phycocyanin contents during the transition from high to low irradiance (HL) were reflected in photosynthetic parameters. In the LH transition light utilization efficiencies of the cells changed faster than pigment contents. This appeared to be related to the lowering of light utilization efficiencies of photosynthesis. As a possible explanation it was hypothesized that excess photosynthate production led to feed back inhibition of photosynthesis. Time-scales of changes in the maximal rate of O2 evolution were discussed as changes in the number of reaction centers of photosystem II in relation to photosynthetic electron transport. Parameters that were subject to change during irradiance transitions obeyed first order kinetics, but hysteresis occurred when comparing HL with LH transients. Interpretation of first order kinetic analysis was discussed in terms of adaptive response vs changes in growth rate.Non-standard abbreviations Chla chlorophyll a - CPC C-phycocyanin - PS II photosystem II - PS I photosystem I - RC II reaction center of photosystem II - P photosynthetic O2-evolution - I irradiance, Em-2 s-1 - light utilization efficiency of cells, mmol O2·mg dry wt-1·h-1/Em-2 s-1 - light utilization efficiency of photosynthetic apparatus, mol O2·mol Chla -1·h-1/Em-2 s-1 - Pmax maximal rate of O2 evolution by cells, mol O2·mg dry wt-1·h-1 - Pmax maximal rate of O2 evolution by photosynthetic apparatus, mol O2·mol·Chla -1·h-1 - LL low light, E m-2 s-1 - HL high light, E m-2 s-1 - LH low to high light transition - HL high to low light transition - k specific rate of adaptation, h-1 - specific growth rate, h-1 - Q pool size of cell constituent, mol·mg dry wt-1 - q net synthesis rate of cell constituent, mol·mg dry wt-1·h-1  相似文献   

6.
The inhibition patterns of rabbit sera (RS1 & RS2) from two different rabbits on the photosynthetic electron transport of isolated spinach thylakoids were studied. Fifty l of RSI were required for 100% inhibition of a H2O MV/O2 reaction, while only 10 l of a 1:10 dilution of RS2 were needed for 100% inhibition. The RS2 serum was greatly hemolyzed. The -globulin fraction from purified rabbit serum (RS1) did not inhibit photosynthetic electron transport, indicating that the antibody fraction of the rabbit serum does not contain the inhibitor. It appears that the inhibitor is from the hemolyzed red blood cells. Rabbit sera added prior to chloroplast illumination caused no inhibition, while addition of rabbit sera during illumination inhibited a H2O MV/O2 reaction within 1–3s. Aminotriazole, a catalase inhibitor, did not affect the efficacy of the rabbit sera indicating that the unknown rabbit serum inhibitor is not catalase. Various Hill reactions were employed to determine the site of inhibition. Rabbit sera inhibited the following reactions: DHQ/DCMU MV/O2, DAD/Asc/DBMIB MV/O2, and DCIP/Asc/DBMIB MV/O2. Rabbit sera did not inhibit a H2O DADox reaction indicating that inhibition is on the reducing side of PSI. However, a H2O Fd/NADP+ reaction was not inhibited by rabbit sera. NADP did not interfere with the ability of RS2 to inhibit a MV-mediated Mehler reaction. In simultaneously measured assays of Fd-mediated O2 and NADP+ reductions, RS2 serum inhibited the reduction of O2 by ferredoxin without inhibiting the reduction of NADP+. These results indicate the potential involvement of parallel (branched) electron transport of the reducing side of PSI in the reduction of oxygen.Abbreviations RS1 and RS2 Rabbit serum 1 and 2 - MV methylviologen - DCMU 3,4-dichlorophenyl-N,N-dimethylurea - KFeCN potassium ferricyanide - DCIP dichlorophenolindolphenol - DAD 2,3,5,6-tetramethyl-p-phenylenediamine - DHQ tetramethyl-p-hydroquinone (durohydroquinone) - MES [2-(N-morpholino)-esthanesulfonic acid] - HEPES [N-2-hydroxyethyl piperazine-N-2-ethanesulfonic acid] - DBMIB dibromothymoquinone - PSI and PSII photosystem I and II - Fd ferredoxin - Chl chlorophyll - Asc ascorbate - SOD superoxide dismutase  相似文献   

7.
Development of the photosynthetic electron transport system, under the influence of hormones and nitrate-nutrition, in greening cucumber cotyledon was investigated. Both photosystems, PS I measured as DCPIP MV, and PS II as H2O pBQ, were significantly promoted by GA and kinetin with kinetin being more effective. PS II/PS I ratio, though increased in control, did not change significantly with GA or kinetin treatment. Other partial reactions (H2O MV/K3Fe(CN)6/NADP) were also promoted. Addition of KNO3 showed concentration-dependent effects on growth and photosynthetic electron transport reactions (H2O MV/K3Fe(CN)6/NADP). It is concluded that both hormones and nutritional status influence development of the photosynthetic electron transport system in greening cucumber cotyledons.Abbreviations PS I Photosystem I - PS II Photosystem II - BSA Bovine Serum Albumin - DCMU 3-(3,4-Dichlorophenyl)-1,1-Dimethyl Urea - DCPIP 2,6-Dichlorophenol Indophenol - EDTA Ethylene Diamine Tetra-acetic Acid - GA Gibberellic acid (GA3) - HEPES (N-2-Hydroxyethyl Piperazine-N-2-Ethanesulphonic Acid) - IAA Indole-3-acetic acid - MV Methyl Viologen - NADP Nicotinamide Adenine Dinucleotide Phosphate - pBQ p-benzoquinone  相似文献   

8.
Seed maturation of Pisum sativum cv. Progress No. 9 proceeds more slowly in winter than in summer even when the parent plants are grown in greenhouse conditions with light-and heat-supplementation. For parent plants grown under summer and winter conditions the metabolism of [3H]GA9 in cultured seeds is qualitatively different in seeds of equivalent age and qualitatively the same in seeds of equivalent weight. 13-Hydroxylation of [3H]GA9[3H]GA20 is restricted to early stages of seed development. 2-Hydroxylation of [3H]GA92-OH-[3H]GA9 has only been observed at a stage of development after endogenous GA9 has accumulated. 2-OH-GA9 has been shown to be endogenous to pea and is named GA51. H2-GA31 and its conjugate have not been shown to be present in pea and may be induced metabolites of [3H]GA9. The metabolism of GA20GA29 is used to illustrate a technique of feeding [2H][3H]GAs in order to distinguish a metabolite from the same endogenous compound. The in vitro conversion of [3H]GA20[3H]GA29, and the virtual non-metabolism of [3H]GA29 have been confirmed for seeds in intact fruits. These results are discussed in relation to the apparent absence of conjugated GAs in mature pea seeds.Abbreviations GAn gibberellin An - GC gas chromatography - GC-MS combined gas chromatography-mass spectrometry - GC-RC combined gas chromatography-radio counting - Me methyl ester - RT etention time - SICM selected ion current monitoring - TLC thin layer chromatography - TMS trimethyl silyl ether The author is née Frydman  相似文献   

9.
The magnitude of the proton motive force (p) and its constituents, the electrical () and chemical potential (-ZpH), were established for chemostat cultures of a protease-producing, relaxed (rel ) variant and a not protease-producing, stringent (rel +) variant of an industrial strain ofBacillus licheniformis (respectively referred to as the A- and the B-type). For both types, an inverse relation of p with the specific growth rate was found. The calculated intracellular pH (pHin) was not constant but inversely related to . This change in pHin might be related to regulatory functions of metabolism but a regulatory role for pHin itself could not be envisaged. Measurement of the adenylate energy charge (EC) showed a direct relation with for glucose-limited chemostat cultures; in nitrogen-limited chemostat cultures, the EC showed an approximately constant value at low and an increased value at higher . For both limitations, the ATP/ADP ratio was directly related to .The phosphorylation potential (G'p) was invariant with . From the values for G'p and p, a variable H+/ATP-stoichiometry was inferred: H+/ATP=1.83+0.52µ, so that at a given H+/O-ratio of four (4), the apparent P/O-ratio (inferred from regression analysis) showed a decline of 2.16 to 1.87 for =0 to max (we discuss how more than half of this decline will be independent of any change in internal cell-volume). We propose that the constancy of G'p and the decrease in the efficiency of energy-conservation (P/O-value) with increasing are a way in which the cells try to cope with an apparent less than perfect coordination between anabolism and catabolism to keep up the highest possible with a minimum loss of growth-efficiency. Protease production in nitrogen-limited cultures as compared to glucose-limited cultures, and the difference between the A- and B-type, could not be explained by a different energy-status of the cells.Abbreviations CCCP carbonylcyanide-p-trichloromethoxyphenylhydrazone - DW dry weight of biomass - F Faraday's constant, 96.6 J/(mV × mol) - Fo chemostat outflow-rate (ml/h) - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - G'p phosphorylation potential, the Gibbs energy change for ATP-synthesis from ADP and Pi - G'0p standard Gibbs energy change at specified conditions - H+/ATP number of protons translocated through - ATP synthase in synthesis of one ATP - H+/O protons translocated during transfer of 2 electrons from substrate to oxygen - specific growth rate (1/h) - H+ transmembrane electrochemical proton potential, J/mol - Mb molar weight (147.6 g/mol) of bacteria with general cell formula C6.0H10.8O3.0N1.2 - pHout,in extracellular, intracellular pH - Pi (intracellular) inorganic phosphate - p proton motive force, mV - pH transmembrane pH-difference - transmembrane electrical potential, mV - P/O number of ADP phosphorylated to ATP upon reduction of one O2– to H2O by two electrons transferred through the electron transfer chain - P/O (H+/O) × (H+/ATP)–1 - P/OF, P/ON P/O with the two electrons donated by resp. (NADH + H+) and FADH - q specific rate of consumption or production (mol/g DW × h) - rel +,rel stringent, relaxed genotype - R universal gas constant, 8.36 J/(mol × degree) - T absolute temperature - TPMP+ triphenylmethylphosphonium ion - TPP+ tetraphenyl phosphonium ion - Y growth yield, g DW/mol - Z conversion constant=61.8 mV for 310 K (37 °C) - ZpH transmembrane proton potential or chemical potential, mV  相似文献   

10.
The regulation of the expression of enzyme activities catalyzing initial reactions in the anoxic metabolism of various aromatic compounds was studied at the whole cell level in the denitrifying Pseudomonas strain K 172. The specific enzyme activities were determined after growth on six different aromatic substrates (phenol, 4-hydroxybenzoate, benzoate, p-cresol, phenylacetate, 4-hydroxyphenylacetate) all being proposed to be metabolized anaerobically via benzoyl-CoA. As a control cells were grown on acetate, or aerobically on benzoate. The expression of the following enzyme activities was determined.Phenol carboxylase, as studied by the isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate; 4-hydroxybenzoyl-CoA reductase (dehydroxylating); p-cresol methylhydroxylase; 4-hydroxybenzyl alcohol dehydrogenase; 4-hydroxybenzaldehyde dehydrogenase; coenzymeA ligases for the aromatic acids benzoate, 4-hydroxybenzoate, phenylacetate, and 4-hydroxyphenylacetate; phenylglyoxylate: acceptor oxidoreductase and 4-hydroxyphenylglyoxylate: acceptor oxidoreductase; aromatic alcohol and aldehyde dehydrogenases.The formation of most active enzymes is strictly regulated; they were only induced when required, the basic activities being almost zero. The observed whole cell regulation pattern supports the postulate that the enzyme activities play a role in anoxic aromatic metabolism and that the compounds are degraded via the following intermediates: Phenol 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; benzoate benzoyl-CoA; p-cresol 4-hydroxybenzaldehyde 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; phenylacetate phenylacetyl-CoA phenylglyoxylate benzoyl-CoA plus CO2; 4-hydroxyphenylacetate 4-hydroxyphenylacetyl-CoA 4-hydroxyphenylglyoxylate 4-hydroxybenzoyl-CoA plus CO2 benzoyl-CoA.  相似文献   

11.
Anthocyanins isolated and characterized from the wild carrot suspension cultures used here were 3-O--D-glucopyranosyl-(16)-[-D-xylopyranosyl-(12)-]-D<-galactopyranosylcyanidin (1), 3-O-[-D- xylopyranosyl-(12)--D-galactopyranosyl]cyanidin (2), 3-O-(6-O-sinapoyl)--D-glucopyranosyl-(16)-[-D- xylopyranosyl-(12)-]-D-galactopyranos ylcyanidin (3), 3-O-(6-O-feruoyl)--D-glucopyranosyl-(16)-[- D-xylopyranosyl-(12)-]-D-galactopyranosylcyanidin (4), 3-O-(6-O-coumaroyl)--D-glucopyranosyl-(16)- [-D-xylopyranosyl-(12)-]-D-galactopyrano sylcyanidin (5), 3-O-[6-O-(3,4,5-trimethoxycinnamoyl)]-- D-glucopyranosyl-(16)-[-D-xylopyranosyl-(12)-]-D-galactopyranosylcyanidin (6), 3-O-[6-O-(3,4-dime- thoxycinnamoyl)]--D-glucopyranosyl-(16)-[-D-xylopyranosyl-(12)-]-D-galactopyranosylcyanidin (7), 3-O-[(6-O-sinapoyl)--D-glucopyranosyl-(16)--D-galactopyranosyl]cyanidin (8), and 3-O-(-D-galactopyranosyl)cyanidin (9). Except when cinnamic acids were provided in the culture medium, the major anthocyanin present in the two clones examined was 2. When the naturally occurring and some non-naturally occurring cinnamic acids were provided individually in the medium, 1 and 2 were minor components and the anthocyanin acylated with the supplied cinnamic acid, namely 3, 4, 5, 6, or 7 was the major anthocyanin present in the tissue. When caffeic acid was provided the major anthocyanin in the tissue was 4, thereby suggesting that the caffeic acid was methylated before its use in anthocyanin biosynthesis. Other cinnamic acids supplied had limited effects on the anthocyanins accumulated and appeared not to result in the accumulation of new anthocyanins by the tissue. Thus the tissue can use some but not all analogues of sinapic acid to acylate anthocyanins. Additional anthocyanins were detected in extracts of the wild carrot tissue cultures using mass spectrometry (both MS/MS and HPLC/MS). The additional compounds detected have also been found in cultures of black carrot, an Afghan cultivar of Daucus carota ssp. sativa and the flowers of wild carrot giving no evidence for qualitative differences in the anthocyanins synthesized by subspecies, cell cultures from subspecies, or clones from cell cultures. There are major differences in the amounts of individual anthocyanins found in cultures from different subspecies and in different clones from cell cultures. Here anthocyanins without acyl groups were usually found in the tissues and their accumulation is discussed. On the basis of the structures of the isolated anthocyanins, a likely pathway from cyanidin to the accumulated anthocyanins is proposed and discussed.Abbreviations Sin sinapoyl - Fer feruoyl - 4-Coum. 4-coumaroyl - 3,4-MeO2Cin 3,4-dimethoxyeinnamoyl - 3,4,5-MeO3Cin 3,4,5-trimethoxycinnamoyl - Cya cyanidin  相似文献   

12.
Summary The vermilion gene was used as a target to determine the mutational specificity of ethyl methanesulfonate (EMS) in germ cells of Drosophila melanogaster. To study the impact of DNA repair on the type of mutations induced, both excision-repair-proficient (exr +) and excision-repair-deficient (exr ) strains were used for the isolation of mutant flies. In all, 28 mutants from the exr + strain and 24 from the exr strain, were characterized by sequence analysis. In two mutants obtained from the exr + strain, small deletions were observed. All other mutations were caused by single base-pair changes. In two mutants double base-pair substitutions had occurred. Of the mutations induced in the exr + strain, 22 (76%) were GCAT transitions, 3 (10%) ATTA transversions, 2 (6%) GCTA transversions and 2 (6%) were deletions. As in other systems, the mutation spectrum of EMS in Drosophila is dominated by GCAT transitions. Of the mutations in an exr background, 12 (48%) were GCAT transitions, 7 (28%) ATTA transversions, 5 (20%) GCTA transversions and 1 (4%) was a ATGC transition. The significant increase in the contribution of transversion mutations obtained in the absence of an active maternal excision-repair mechanism, clearly indicates efficient repair of N-alkyl adducts (7-ethyl guanine and 3-ethyl adenine) by the excision-repair system in Drosophila germ cells.  相似文献   

13.
Barley seedlings (Hordeum vulgare L. Boone) were grown at 20°C with 16 h/8 h light/dark cycle of either high (H) intensity (500 mole m-2 s-1) or low (L) intensity (55 mole m-2 s-1) white light. Plants were transferred from high to low (H L) and low to high (L H) light intensity at various times from 4 to 8 d after leaf emergence from the soil. Primary leaves were harvested at the beginning of the photoperiod. Thylakoid membranes were isolated from 3 cm apical segments and assayed for photosynthetic electron transport, Photosystem II (PS II) atrazine-binding sites (QB), cytochrome f(Cytf) and the P-700 reaction center of Photosystem I (PS I). Whole chain, PS I and PS II electron transport activities were higher in H than in L controls. QB and Cytf were elevated in H plants compared with L plants. The acclimation of H L plants to low light occurred slowly over a period of 7 days and resulted in decreased whole chain and PS II electron transport with variable effects on PS I activity. The decrease in electron transport of H L plants was associated with a decrease in both QB and Cytf. In L H plants, acclimation to high light occurred slowly over a period of 7 days with increased whole chain, PS I and PS II activities. The increase in L H electron transport was associated with increased levels of QB and Cytf. In contrast to the light intensity effects on QB levels, the P-700 content was similar in both control and transferred plants. Therefore, PS II/PS I ratios were dependent on light environment.Abbreviations Asc ascorbate - BQ 2,5-dimethyl-p-benzoquinone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCIP 2,6-dichlorophenolindophenol - H control plants grown under high light intensity - H L plants transferred from high to low light intensity - L low control plants grown under low light intensity - L H plants transferred from low to high light intensity - MV methyl viologen - P-700 photoreaction center of Photosystem I - QB atrazine binding site - TMPD N,N,N,N-tetramethyl-p-phenylenediamine Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC. Paper No. 11990 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA.  相似文献   

14.
Summary The tryptic peptides from the A and B chains of cat hemoglobins A and B have been isolated and the amino acid compositions determined. Differences between the two chains were found in two peptides,T-1 (GlySer) andT-14 (AsnSer and LysArg). The GlySer and LysArg substitutions are placed at-1 and-144 respectively from earlier work, and the third substitution, AsnSer at-139 is suggested from this work. In addition, the presence of a blocked amino terminus in B has been confirmed. Tentative sequences constructed by homology with known-chain structures suggest the occurrence of substitutions at 1 1 contacts in A and B that may be functionally significant. There are at least 18 differences in amino acid composition between cat A and dog-chains and 22 differences between cat A and normal adult human-chains.  相似文献   

15.
Summary Mössbauer spectroscopy was used to investigate the cellular acquisition of iron byPseudomonas aeruginosa which had been incubated with ferripyoverdine for 20, 40, 60, 120 or 360 min. Studies revealed that no ferripyoverdine accumulated in the cells at any of these times and that the amounts and kinds of iron complexes produced by cellular metabolism vary with time. At 20 and 40 min a ferric species, with isomer shift =0.38–0.42 mm/s and quadrupole splitting E Q=0.94–0.92 mm/s, was the major iron metabolite comprising approximately 80% of the iron. At later times at least three other ferric species appeared with =0.54 0.72, E Q = 0.84 1.07 mm/s. Ferrous species, =1.43 1.77 mm/s and E Q = 2.69 1.82 mm/s, were also seen at times as early as 20 min and comprised as much as 17% of the total iron at 20 and 40 min. The parameters of all these species identify them as being six-coordinated high-spin complexes. In addition a low-spin species, =0.19 mm/s E Q=0.67 0.91 mm/s, never before reported in cells, appeared at 60, 120, and 360 min as one of the major iron metabolites (50% or more). All isomer shifts are measured with respect to natural iron.  相似文献   

16.
A novel syrup containing neofructo-oligosaccharides was produced from sucrose (Brix 70) by whole cells of Penicillium citrinum. The efficiency of fructo-oligosaccharides production was more than 55% and those of the main carbohydrate components, 1-kestose (Fruf 21Fruf 21 Glc), nystose (Fruf 21Fruf 21 Fruf 21 Glc) and neokestose (Fruf 26 Glc12 Fruf), were 22, 14 and 11%, respectively.  相似文献   

17.
The flash-induced kinetics of various characteristics of Photosystem II (PS II) in the thylakoids of oxygenic plants are modulated by a period of two, due to the function of a two-electron gate in the electron acceptor side, and by a period of four, due to the changes in the state of the oxygen-evolving complex. In the absence of inhibitors of PS II, the assignment of measured signal to the oxygen-evolving complex or to quinone acceptor side has frequently been done on the basis of the periodicity of its flash-induced oscillations, i.e. four or two. However, in some circumstances, the period four oscillatory processes of the donor side of PS II can generate period two oscillations. It is shown here that in the Kok model of oxygen evolution (equal misses and equal double hits), the sum of the concentrations of the S 0 and S 2 states (as well as the sum of concentrations of S 1 and S 3 states) oscillates with period of two: S 0+S 2S 1+S 3S 0+S 2S 1+S 3. Moreover, in the generalized Kok model (with specific miss factors and double hits for each S-state) there always exist such 0, 1, 2, 3 that the sum 0[S0] + 1[S1] + 2[S2] + 3[S3] oscillates with period of two as a function of flash number. Any other coefficients which are linearly connected with these coefficients, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbew7aLzaaja% aaaa!3917!\[\hat \varepsilon \]i = c1i + c2, also generate binary oscillations of this sum. Therefore, the decomposition of the flash-induced oscillations of some measured parameters into binary oscillations, depending only on the acceptor side of PS II, and quaternary oscillations, depending only on the donor side of PS II, becomes practically impossible when measured with techniques (such as fluorescence of chlorophyll a, delayed fluorescence, electrochromic shift, transmembrane electrical potential, changes of pH and others) that could not spectrally distinguish the donor and acceptor sides. This property of the Kok cycle puts limits on the simultaneous analysis of the donor and acceptor sides of the RC of PS II in vivo and suggests that binary oscillations are no longer a certain indicator of the origin of a signal in the acceptor side of PS II.Abbreviations PS II Photosystem II - P680 primary electron donor of reaction center of PS II - QA one electron acceptor plastoquinone - QB two electron acceptor plastoquinone - S n redox state of the oxygen evolving complex, where n=0,1,2,3 and 4 - Chl a chlorophyll a This paper is dedicated to the memory of Alexander Kononenko.  相似文献   

18.
The involvement of phospholipids in the regulation of photosynthetic electron transport activities was studied by incubating isolated pea thylakoids with phospholipase C to remove the head-group of phospholipid molecules. The treatment was effective in eliminating 40–50% of chloroplast phospholipids and resulted in a drastic decrease of photosynthetic electron transport. Measurements of whole electron transport (H2Omethylviologen) and Photosystem II activity (H2Op-benzoquinone) demonstrated that the decrease of electron flow was due to the inactivation of Photosystem II centers. The variable part of fluorescence induction measured in the absence of electron acceptor was decreased by the progress of phospholipase C hydrolysis and part of the signal could be restored on addition of 3-(3,4-dicholorophenyl)-1,1-dimethylurea. The B and Q bands of thermoluminescence corresponding to S2S3QB and S2S3QA charge recombination, respectively, was also decreased with a concomitant increase of the C band, which originated from the tyrosine D+QA charge recombination. These results suggest that phospholipid molecules play an important role in maintaining the membrane organization and thus maintaining the electron transport activity of Photosystem II complexes.Abbreviations DCMU 3-(3,4-dicholorophenyl)-1,1-dimethylurea - Fvar variable fluorescence - LHC light-harvesting complex - MGDG monogalactosyldiacylglycerol - PS photosystem  相似文献   

19.
The establishment of the steady-state rate of photosynthetic O2 evolution by cells of Anabaena variabilis and other cyanobacteria was found to be preceded by a lag-phase the duration of which depended on the time of cell preincubation in the dark. Electron acceptors (benzoquinone, N,N,N,N-tetramethyl-p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine or 2,6-dichlorophenolindophenol) abolished the lag-phase as well as the inhibitory effect of cyanide on electron transfer. Mono-, di-and trivalent cations added to the cell suspension markedly reduced the lag-phase. As cation concentrations were increased, acceleration and subsequent deceleration of the O2 evolution rate were observed. The efficient concentrations of cations decreased as their valency increased. The lag-phase and the rate of photosynthetic O2 evolution by the blue-green algae are suggested to depend on the value of the membrane surface charge governing the electrostatic interaction between unidentified membrane-bound redox components. The combination of valinomycin and nigericin as well as gramicidin D enhanced the duration of the lagphase by deenergization of thylakoid membrane.Abbreviations 9AA 9-aminoacridine - BQ benzoquinone - DAD 2,3,5,6-tetramethyl-p-phenylenediamine - DPIP 2,6-dichlorophenolindophenol - FeCy ferrycyanide - HEPES N-2-hydroxyethylpiperazine-N-2-ethane-sulphonic acid - MES 2(N-morpholino)ethane sulphonic acid - TMPD N,N,NN-tetramethyl-p-phenylenediamine - Tris tris(hydroxymethyl)aminomethane  相似文献   

20.
Summary The agglutinin isolated from the seeds of Maclura pomifera (MPA) recognizes a mucin-type disaccharide sequence, Gal13GalNAc (T) on a human erythrocyte membrane. We have utilized the enzyme-linked lectinosorbent assay (ELLSA) and inhibition assay to more systematically analyze the carbohydrate specificity of MPA with glyco-recognition factors and mammalian Gal/GalNAc structural units in lectin–glycoform interactions. From the results, it is concluded that the high densities of polyvalent GalNAc1Ser/Thr (Tn) and Gal13GalNAc1Ser/Thr (T) glycotopes in macromolecules are the most critical factors for MPA binding, being on a nanogram basis 2.0 × 105, 4.6 × 104 and 3.9 × 104 more active than monovalent Gal, monomeric T and Tn glycotope, respectively. Other carbohydrate structural units in mammalian glycoconjugates, such as human blood group Sd (a+) related disaccharide (GalNAc14Gal) and Pk/P1 active disaccharide (Gal14Gal) were inactive. These results demonstrate that the configurations of carbon-4 and carbon-2 are essential for MPA binding and establish the importance of affinity enhancement by high-density polyvalencies of Tn/T glycotopes in MPA–glycan interactions. The overall binding profile of MPA can be defined in decreasing order as high density of polyvalent Tn/T (M.W. > 4.0 × 104) >> Tn-containing glycopeptides (M.W. < 3.0 × 103) > monomeric T/Tn and P (GalNAc13Gal) > GalNAc > Gal >> Man, LAra, DFuc and Glc (inactive). Our findings should aid in the selection of this lectin for elucidating functions of carbohydrate chains in life processes and for applications in the biomedical sciences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号