首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 338 毫秒
1.
ADP-ribosyl cyclases catalyze the transformation of nicotinamide adenine dinucleotide (NAD+) into the calcium-mobilizing nucleotide second messenger cyclic adenosine diphosphoribose (cADP-ribose) by adenine N1-cyclization onto the C-1' ' position of NAD+. The invertebrate Aplysia californica ADP-ribosyl cyclase is unusual among this family of enzymes by acting exclusively as a cyclase, whereas the other members, such as CD38 and CD157, also act as NAD+ glycohydrolases, following a partitioning kinetic mechanism. To explore the intramolecular cyclization reaction, the novel nicotinamide 2-fluoroadenine dinucleotide (2-fluoro-NAD+) was designed as a sterically very close analogue to the natural substrate NAD+, with only an electronic perturbation at the critical N1 position of the adenine base designed to impede the cyclization reaction. 2-Fluoro-NAD+ was synthesized in high yield via Lewis acid catalyzed activation of the phosphoromorpholidate derivative of 2-fluoroadenosine 5'-monophosphate and coupling with nicotinamide 5'-monophosphate. With 2-fluoro-NAD+ as substrate, A. californica ADP-ribosyl cyclase exhibited exclusively a NAD+ glycohydrolase activity, catalyzing its hydrolytic transformation into 2-fluoro-ADP-ribose, albeit at a rate ca. 100-fold slower than for the cyclization of NAD+ and also, in the presence of methanol, into its methanolysis product beta-1' '-O-methyl 2-fluoro-ADP-ribose with a preference for methanolysis over hydrolysis of ca. 100:1. CD38 likely converted 2-fluoro-NAD+ exclusively into the same product. We conclude that A. californica ADP-ribosyl cyclase can indeed be classified as a multifunctional enzyme that also exhibits a classical NAD+ glycohydrolase function. This alternative pathway that remains, however, kinetically cryptic when using NAD+ as substrate can be unmasked with a dinucleotide analogue whose conversion into the cyclic derivative is blocked. 2-Fluoro-NAD+ is therefore a useful molecular tool allowing dissection of the kinetic scheme for this enzyme.  相似文献   

2.
J T Slama  A M Simmons 《Biochemistry》1991,30(9):2527-2534
Two new photoactive analogues of oxidized nicotinamide adenine dinucleotide (NAD+) which are resistant to cleavage by NAD glycohydrolase were synthesized and characterized. The beta-D-ribonucleotide ring of the nicotinamide riboside moiety of NAD+ was replaced with a 2,3-dihydroxycyclopentane ring forming a carbocyclic dinucleotide analogue. Photoreactivity was achieved by the incorporation of an azido group at the 8-position of the adenosyl ring. The previously published synthesis of carbocyclic pyridine dinucleotide analogues [Slama, J. T., & Simmons, A. M. (1988) Biochemistry 27, 183] was modified by resolving the carbocyclic 1-aminoribose analogues and producing optically pure (+)-(1S)- or (-)-(1R)-4 beta-amino-2 alpha,3 alpha-dihydroxy-1 beta-cyclopentanemethanol. Each of these was converted to the corresponding carbocyclic nicotinamide 5'-nucleotide analogue and coupled with 8-azidoadenosine 5'-monophosphate. Two photoactive and isomeric NAD+ analogues were thus prepared. 8-Azidoadenosyl carba-NAD is the analogue in which D-dihydroxycyclopentane is substituted for the D-ribose of the nicotinamide nucleoside moiety. 8-Azido-adenosyl pseudocarba-NAD contains the L-carbocycle in place of the D-ribotide ring. 8-Azidoadenosyl carba-NAD was shown to inhibit the NAD glycohydrolase from Bungarus fasciatus venom competitively with an inhibitor dissociation constant of 187 microM. 8-Azidoadenosyl pseudocarba-NAD was shown to inhibit the same enzyme competitively with a Ki of 73 microM. The superior NADase inhibitor, 8-azidoadenosyl pseudocarba-NAD, was characterized kinetically and shown to fulfill the criteria required of a specific active site directed photoaffinity probe. Irradiation of mixtures of the photoprobe and NAD glycohydrolase with short-wave ultraviolet light resulted in the rapid and irreversible loss of enzyme activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The interaction between the nicotinamide adenine dinucleotide binding domain of calf spleen NAD glycohydrolase and its ligands has been studied. The use of competitive inhibitors, structurally related to different portions of the NAD molecule (i.e. adenosine and nicotinamide moieties), revealed the considerable importance of the binding between the pyrophosphate linkage and probably an arginyl residue of the active site. This interaction allows the positioning of the substrate in a conformation which permits catalysis to occur. The binding between the 2'-hydroxyl of the adenosine moiety and a residue of the active site, which exists in NAD-linked dehydrogenases, is probably missing in the calf spleen NAD glycohydrolase, based on the inhibition by salicylates, 2'-deoxyadenosine 5'-monophosphate and the hydrolysis of the 2'-deoxyadenosine analogue of NAD. The NAD glycohydrolase could be completely inactivated by 2,3-butanedione, an arginyl-modifying reagent. The reaction followed pseudo-first-order kinetics and the modification was found to be reversible. Woodward's reagent K, a reagent for carboxyl residues, partially inactivated the enzyme, which resulted in a change of the NAD glycohydrolase kinetic parameters Km and V. The inactivation rate was complicated by a parallel decomposition of the reagent.  相似文献   

4.
J T Slama  A M Simmons 《Biochemistry》1989,28(19):7688-7694
Analogues of oxidized nicotinamide adenine dinucleotide (NAD+) in which a 2,3-dihydroxycyclopentane ring replaces the beta-D-ribonucleotide ring of the nicotinamide riboside moiety of NAD+ have recently been synthesized [Slama, J. T., & Simmons, A. M. (1988) Biochemistry 27, 183]. Carbocyclic NAD+ analogues have been shown to inhibit NAD glycohydrolases and ADP-ribosyl transferases such as cholera toxin A subunit. In this study, the diastereomeric mixture of dinucleotides was separated, and the inhibitory capacity of each of the purified diastereomers was defined. The NAD+ analogue in which the D-dihydroxycyclopentane is substituted for the D-ribose is designated carba-NAD and was demonstrated to be a poor inhibitor of the Bungarus fasciatus venom NAD glycohydrolase. The diastereomeric dinucleotide pseudo-carbocyclic-NAD (psi-carba-NAD), containing L-dihydroxycyclopentane in place of the D-ribose of NAD+, was shown, however, to be a potent competitive inhibitor of the venom NAD glycohydrolase with an inhibitor dissociation constant (Ki) of 35 microM. This was surprising since psi-carba-NAD contains the carbocyclic analogue of the unnatural L-ribotide and was therefore expected to be a biologically inactive diastereomer. psi-Carba-NAD also competitively inhibited the insoluble brain NAD glycohydrolase from cow (Ki = 6.7 microM) and sheep (Ki = 31 microM) enzyme against which carba-NAD is ineffective. Sensitivity to psi-carba-NAD was found to parallel sensitivity to inhibition by isonicotinic acid hydrazide, another NADase inhibitor. psi-Carba-NAD is neither a substrate for nor an inhibitor of alcohol dehydrogenase, whereas carba-NAD is an efficient dehydrogenase substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The visible absorption bands in the region 525-575 nm of the catalytic cobalt ion in cobalt(II) horse liver alcohol dehydrogenase show characteristic pH-dependent changes both in the free enzyme and its complexes with nicotinamide adenine dinucleotide (NAD+) and NAD+ plus ethanol or 2,2,2-trifluoroethanol. In the free enzyme, the change of the coordination environment has an apparent pK of about 9.4. In the binary complex with NAD+ the spectral changes are complex, indicating changes in the coordination sphere in a lower pH range with an estimated pK value of about 7.9. The ternary complexes enzyme X NAD+ X ethanol and enzyme X NAD+ X 2,2,2-trifluoroethanol exhibit very similar, characteristic spectral features; their apparent pK values are 6.3 and less than 4, respectively. We ascribe these pK values to the ionization of the alcohol bound in the ternary complexes. The results demonstrate that the catalytic cobalt ion is sensing changes of the ionization state of the protein when going from low pH forms to high pH forms both in the absence and presence of coenzyme and substrate/inhibitor.  相似文献   

6.
Coenzyme analogues with the adenosine ribose replaced with n-propyl, n-butyl, and n-pentyl groups; coenzyme analogues with the adenosine replaced with 3-(4-acetylanilino)propyl and 6-(4-acetylanilino)hexyl moieties; and nicotinamide mononucleotide, nicotinamide hypoxanthine dinucleotide, and 3-acetylpyridine adenine dinucleotide were used in steady-state kinetic studies with native and activated, amidinated enzymes. The Michaelis and inhibition constants increased up to 100-fold upon modification of coenzyme or enzyme. Turnover numbers with NAD+ and ethanol increased in some cases up to 10-fold due to increased rates of dissociation of enzyme-reduced coenzyme complexes. Rates of dissociation of oxidized coenzyme appeared to be mostly unaffected, but the values calculated (10-60 s-1) were significantly less than the turnover numbers with acetaldehyde and reduced coenzyme (20-900 s-1, at pH 8, 25 degrees C). Rates of association of coenzyme analogues also decreased up to 100-fold. When Lys-228 in the adenosine binding site was picolinimidylated, turnover numbers increased about 10-fold with NAD(H). Furthermore, the pH dependencies for association and dissociation of NAD+ and turnover number with NAD+ and ethanol showed the fastest rates above a pK value of 8.0. Turnover with NADH and acetaldehyde was fastest below a pK value of 8.1. These results can be explained by a mechanism in which isomerization of the enzyme-NAD+ complex (110 s-1) is partially rate limiting in turnover with NAD+ and ethanol (60 s-1) and is controlled by ionization of the hydrogen-bonded system that includes the water ligated to the catalytic zinc and the imidazole group of His-51.  相似文献   

7.
NAD glycohydrolases are the longest known enzymes that catalyze ADP-ribose transfer. The function of these ubiquitous, membrane-bound enzymes has been a long standing puzzle. The NAD glycohydrolase are briefly reviewed in light of the discovery by our laboratory that NAD glycohydrolases are bifunctional enzymes that can catalyze both the synthesis and hydrolysis of cyclic ADP-ribose, a putative second messenger of calcium homeostasis.Abbreviations NADase nicotinamide adenine dinucleotide glycohydrolase - NAD nicotinamide adenine dinucleotide - ADP-ribose adenosine diphosphoribose - cADPR cyclic adenosine diphosphoribose  相似文献   

8.
The distribution of nicotinamide adenine dinucleotide (NAD) glycohydrolase in rat liver was investigated by subcellular fractionation and by isolation of hepatocytes and sinusoidal cells. The behavior of NAD glycohydrolase in subcellular fractionation was peculiar because, although the enzyme was mainly microsomal, plasma membrane preparations contained distinctly more NAD glycohydrolase than could be accounted for by their content in elements derived from the endoplasmic reticulum or the Golgi complex identified by glucose-6-phosphatase and galactosyltransferase, respectively. When microsomal and plasmalemmal preparations were brought to equilibrium in a linear-density gradient, NAD glycohydrolase differed from these enzymes and behaved like 5'-nucleotidase and alkaline phosphodiesterase I. NAD glycohydrolase was markedly displaced towards higher densities after treatment with digitonin. This behavior in density-gradient centrifugation strongly suggests that NAD glycohydrolase is an exclusive enzyme of the plasma membrane. NAD glycohydrolase differed clearly from other plasmalemmal enzymes when the liver was fractionated into hepatocytes and sinusoidal cells; its specific activity was considerably greater in sinusoidal cell than in hepatocyte preparations. Further subfractionation of sinusoidal cell preparations into endothelial and Kupffer cells by counterflow elutriation showed that NAD glycohydrolase is more active in Kupffer cells. We estimate that the specific activity of NAD glycohydrolase activity is at least 65-fold higher at the periphery of Kupffer cells than at the periphery of hepatocytes. As the enzyme shows not structure-linked latency and is an exclusive constituent of the plasma membranes, we conclude that it is an ectoenzyme that cannot lead to a rapid turnover of the cytosolic pyridine nucleotides.  相似文献   

9.
A new screening technique has been developed for the rapid identification of Neurospora crassa mutants that are deficient in nicotinamide adenine dinucleotide glycohydrolase (NADase) and nicotinamide adenine dinucleotide phosphate glycohydrolase (NADPase) activities. Using this procedure, five single-gene mutants were isolated whose singular difference from wild type appeared to be the absence of NAD(P)ase (EC 3.2.2.6). All five mutants were found to be genetically allelic and did not complement in heterocaryons. This gene, nada [NAD(P)ase], was localized in linkage group IV. One of the nada alleles was found to specify an enzyme that was critically temperature sensitive and had altered substrate affinity. Mutations at the nada locus did not affect the genetic program for the expression of NAD(P)ase during cell differentiation, nor did they have a general effect on NAD catabolism. Nada mutations did not have simultaneous effects on other glycohydrolase activities. Tests of dominance (in heterocaryons) and in vitro mixing experiments did not provide evidence that nada mutations alter activators or inhibitors of NAD(P)ase. Thus, the nada gene appears to specify only the structure of N. crassa NAD(P)ase.  相似文献   

10.
K H Dahl  M F Dunn 《Biochemistry》1984,23(26):6829-6839
Liver alcohol dehydrogenase (LADH) carboxymethylated at Cys-46 (CMLADH) forms two different ternary complexes with 4-trans-(N,N-dimethylamino)cinnamaldehyde (DACA). The complex with reduced nicotinamide adenine dinucleotide (NADH) is characterized by a 38-nm red shift of the long-wavelength pi, pi* transition to 436 nm, while the complex with oxidized nicotinamide adenine dinucleotide (NAD+) is characterized by a 60-nm red shift to 458 nm. CMLADH also forms a ternary complex with NAD+ and the Z isomer of 4-trans-(N,N-dimethylamino)cinnamaldoxime in which the absorption of the oxime (lambda max = 354 nm) is red shifted 80 nm to 434 nm. Pyrazole and 4-methylpyrazole are weak competitive inhibitors of ligand binding to the substrate site of native LADH. These inhibitors were found to form ternary complexes with CMLADH and NADH which are more stable than the corresponding complexes with the native enzyme. The transient reductions of the aldehydes DACA and p-nitrobenzaldehyde (NBZA) were studied under single-turnover conditions. Carboxymethylation decreases the DACA reduction rate 80-fold and renders the process essentially independent of pH over the region 5-9, whereas this process depends on a pKa of 6.0 in the native enzyme. At pH 7.0, the rate constant for NBZA reduction also is decreased at least 80-fold to a value of 7.7 +/- 0.3 s-1. Since primary kinetic isotope effects are observed when NADH is substituted with (4R)-4-deuterio-NADH (kH/kD = 3.0 for DACA and kH/kD = 2.3 for NBZA), the rate-limiting step for both aldehydes involves hydride transfer. The altered pH dependence is concluded to be due to an increase in the pK value of the zinc-coordinated DACA-alcohol in the ternary complex with NAD+ by more than 3 units. This perturbation is brought about by the close proximity of the negatively charged carboxymethyl carboxylate.  相似文献   

11.
The catalytic properties of membrane-bound calf spleen NAD glycohydrolase were studied in comparison with previous data obtained with a solubilized hydrosoluble form of the enzyme. When the hydrolysis of NAD catalyzed by membrane-bound NAD glycohydrolase was studied at pH values below 7.5, only insignificant interference by other NAD-hydrolyzing enzymes was detected, and no proton-diffusional inhibition was observed. The kinetics could, therefore, be followed using a titrimetric assay for NAD glycohydrolase activity. The effect of pH, ionic strength on the kinetic parameters, and shifts in binding constants for several ligands of the membrane-bound enzyme indicate that the NAD glycohydrolase activity is influenced by an electrostatic potential due to negative charges (polyelectrolyte effect). No significant changes in kinetic mechanism could be found between both NAD glycohydrolase forms. The association of the enzyme with the membrane results in a remarkably increased thermal stability, in changes in binding properties of the active site and in the emergence of new inhibitor binding sites; e.g. adenosine 3':5'-monophosphate (cyclic AMP) and adenosine, which do not inhibit the hydrosoluble form of NAD glycohydrolase, are good inhibitors (respectively competitive and mixed) of the membrane-bound enzyme. These data (i.e. allotopic changes) probably can be ascribed to enzyme conformational changes induced and stabilized by interaction with membrane constituents.  相似文献   

12.
K H Dahl  M F Dunn 《Biochemistry》1984,23(18):4094-4100
Evidence that horse liver alcohol dehydrogenase forms a ternary complex with 4-trans-(N,N-dimethylamino)cinnamaldehyde (DACA) and oxidized nicotinamide adenine dinucleotide (NAD+) is presented. Formation of the complex is characterized by a 97-nm red shift of the free chromophore to 495 nm (epsilon 495 approximately 6.0 X 10(4) M-1 cm-1). This shift is larger than the 66-nm red shift of the E(NADH,-DACA) complex (lambda max = 464 nm) previously reported by Dunn and Hutchinson [Dunn, M.F., & Hutchison, J.S. (1973) Biochemistry 12, 4882-4892]. The large red shift of the E(NAD+,DACA) complex is due to the combined effects of coordination of the carbonyl oxygen of DACA to the active-site zinc ion and to the close proximity of the positively charged nicotinamide ring of NAD+. The stability of this complex is pH dependent and depends on a single apparent ionization with pKa = 7.6 +/- 0.3. The pH-independent dissociation constant for binding of DACA to E(NAD+) is 23 +/- 6 microM. The stoichiometry of DACA binding to the E(NAD+) complex is shown to be one per active site (two per enzyme molecule). Liver alcohol dehydrogenase is also shown to catalyze the NAD+-mediated oxidation of DACA to the corresponding carboxylic acid with a very slow turnover rate. The possibility that the observed E(NAD+,DACA) complex is an intermediate in the enzyme-catalyzed oxidation of DACA is discussed.  相似文献   

13.
An oxidized nicotinamide adenine dinucleotide phosphate/oxidized nicotinamide adenine dinucleotide (NADP+/NAD+) nonspecific L-glutamate dehydrogenase from Bacteroides thetaiotaomicron was purified 40-fold (NADP+ or NAD+ activity) over crude cell extract by heat treatment, (NH4)2SO2 fractionation, diethylaminoethyl-cellulose, Bio-Gel A 1.5m, and hydroxylapatite chromatography. Both NADP+- and NAD+-dependent activities coeluted from all chromatographic treatments. Moreover, a constant ratio of NADP+/NAD+ specific activities was demonstrated at each purification step. Both activities also comigrated in 6% nondenaturing polyacrylamide gels. Affinity chromatography of the 40-fold-purified enzyme using Procion RED HE-3B gave a preparation containing both NADP+- and NAD+-linked activities which showed a single protein band of 48,5000 molecular weight after sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. The dual pyridine nucleotide nature of the enzyme was most readily apparent in the oxidative direction. Reductively, the enzyme was 30-fold more active with reduced NADP than with reduced NAD. Nonlinear concave 1/V versus 1/S plots were observed for reduced NADP and NH4Cl. Salts (0.1 M) stimulated the NADP+-linked reaction, inhibited the NAD+-linked reaction, and had little effect on the reduced NADP-dependent reaction. The stimulatory effect of salts (NADP+) was nonspecific, regardless of the anion or cation, whereas the degree of NAD+-linked inhibition decreased in the order to I- greater than Br- greater than Cl- greater than F-. Both NADP+ and NAD+ glutamate dehydrogenase activities were also detected in cell extracts from representative strains of other bacteroides deoxyribonucleic acid homology groups.  相似文献   

14.
Binding of NAD+ by cholera toxin.   总被引:5,自引:0,他引:5       下载免费PDF全文
1. The Km for NAD+ of cholera toxin working as an NAD+ glycohydrolase is 4 mM, and this is increased to about 50 mM in the presence of low-Mr ADP-ribose acceptors. Only molecules having both the adenine and nicotinamide moieties of NAD+ with minor alterations in the nicotinamide ring can be competitive inhibitors of this reaction. 2. This high Km for NAD+ is also reflected in the dissociation constant, Kd, which was determined by a variety of methods. 3. Results from equilibrium dialysis were subject to high error, but showed one binding site and a Kd of about 3 mM. 4. The A1 peptide of the toxin is digested by trypsin, and this digestion is completely prevented by concentrations of NAD+ above 50 mM. Measurement (by densitometric scanning of polyacrylamide-gel electrophoretograms) of the rate of tryptic digestion at different concentrations of NAD+ allowed a more accurate determination of Kd = 4.0 +/- 0.4 mM. Some analogues of NAD+ that are competitive inhibitors of the glycohydrolase reaction also prevented digestion.  相似文献   

15.
M R Eftink  K Bystr?m 《Biochemistry》1986,25(21):6624-6630
The association of the coenzyme NAD+ to liver alcohol dehydrogenase (LADH) is known to be pH dependent, with the binding being linked to the shift in the pK of some group on the protein from a value of 9-10, in the free enzyme, to 7.5-8 in the LADH-NAD+ binary complex. We have further characterized the nature of this linkage between NAD+ binding and proton dissociation by studying the pH dependence (pH range 6-10) of the proton release, delta n, and enthalpy change, delta Ho(app), for formation of both binary (LADH-NAD+) and ternary (LADH-NAD+-I, where I is pyrazole or trifluoroethanol) complexes. The pH dependence of both delta n and delta Ho(app) is found to be consistent with linkage to a single acid dissociating group, whose pK is perturbed from 9.5 to 8.0 upon NAD+ binding and is further perturbed to approximately 6.0 upon ternary complex formation. The apparent enthalpy change for NAD+ binding is endothermic between pH 7 and pH 10, with a maximum at pH 8.5-9.0. The pH dependence of the delta Ho(app) for both binary and ternary complex formation is consistent with a heat of protonation of -7.5 kcal/mol for the coupled acid dissociating group. The intrinsic enthalpy changes for NAD+ binding and NAD+ plus pyrazole binding to LADH are determined to be approximately 0 and -11.0 kcal/mol, respectively. Enthalpy change data are also presented for the binding of the NAD+ analogues adenosine 5'-diphosphoribose and 3-acetylpyridine adenine dinucleotide.  相似文献   

16.
Extracts of Salmonella typhimurium were chromatographed by using Sephadex G-150 to separate the various enzymes involved with pyridine nucleotide cycle metabolism. This procedure revealed a previously unsuspected nicotinamide adenine dinucleotide (NAD) glycohydrolase (EC 3.2.2.5) activity, which was not observed in crude extracts. In contrast to NAd glycohydrolase, NAD pyrophosphatase (EC 3.6.1.22) was readily measured in crude extracts. This enzyme possessed a native molecular weight of 120,000. Other enzymes examined included nicotinamide mononucleotide (NMN) deamidase (EC 3.5.1.00), molecular weight of 43,000; NMN glycohydrolase (EC 3.2.2.14), molecular weight of 67,000; nicotinic acid phosphoribosyl transferase (EC 2.4.2.11), molecular weight of 47,000; and nicotinamide deamidase (EC 3.5.1.19), molecular weight of 35,000. NMN deamidase and NMN glycohydrolase activities were both examined for end product repression by measuring their activities in crude extracts prepared from cells grown with and without 10(-5) M nicotinic acid. No repression was observed with either activity. Both activities were also examined for feedback inhibition by NAD, reduced NAD, and NADP. NMN deamidase was unaffected by any of the compounds tested. NMN glycohydrolase was greatly inhibited by NAD and reduced NAD, whereas NADP was much less effective. Inhibition of NMN glycohydrolase was found to level off at an NAD concentration of ca. 1 mN, the approximate intracellular concentration of NAD.  相似文献   

17.
Substitution of Co(II) for the catalytic site Zn(II) of horse liver alcohol dehydrogenase (LADH) yields an active enzyme derivative, CoIIE, with characteristic Co(II) charge-transfer and d-d electronic transitions that are sensitive to the events which take place during catalysis [Koerber, S. C., MacGibbon, A. K. H., Dietrich, H., Zeppezauer, M., & Dunn, M. F. (1983) Biochemistry 22, 3424-3431]. In this study, UV-visible spectroscopy and rapid-scanning stopped-flow (RSSF) kinetic methods are used to detect and identify intermediates in the LADH catalytic mechanism. In the presence of the inhibitor isobutyramide, the pre-steady-state phase of alcohol (RCH2OH) oxidation at pH above 7 is characterized by the formation and decay of an intermediate with lambda max = 570, 640, and 672 nm for both aromatic and aliphatic alcohols (benzyl alcohol, p-nitrobenzyl alcohol, anisyl alcohol, ethanol, and methanol). By comparison with the spectrum of the stable ternary complex formed with oxidized nicotinamide adenine dinucleotide (NAD+) and 2,2',2'-trifluoroethoxide ion (TFE-), CoIIE(NAD+, TFE-), the intermediate which forms is proposed to be the alkoxide ion (RCH2O-) complex, CoIIE(NAD+, RCH2O-). The timing of reduced nicotinamide adenine dinucleotide (NADH) formation indicates that intermediate decay is limited by the interconversion of ternary complexes, i.e., CoIIE(NAD+, RCH2O-) in equilibrium CoIIE(NADH, RCHO). From competition experiments, we infer that, at pH values below 5, NAD+ and alcohol form a CoIIE(NAD+, RCH2OH) ternary complex. RSSF studies carried out as a function of pH indicate that the apparent pKa values for the ionization of alcohol within the ternary complex, i.e., CoIIE(NAD+, RCH2OH) in equilibrium CoIIE(NAD+, RCH2O-) + H+, fall in the range 5-7.5. Using pyrazole as the dead-end inhibitor, we find that the single-turnover time courses for the reduction of benzaldehyde, p-nitrobenzaldehyde, anisaldehyde, and acetaldehyde at pH above 7 all show evidence for the formation and decay of an intermediate. Via spectral comparisons with CoIIE-(NAD+, TFE-) and with the intermediate formed during alcohol oxidation, we identify the intermediate as the same CoIIE(NAD+, RCH2O-) ternary complex detected during alcohol oxidation.  相似文献   

18.
Summary NAD glycohydrolase activity was studied using bovine erythrocytes, erythrocyte ghosts and partially purified enzyme preparations. During catalysis the enzyme becomes irreversibly inactivated in a process related to substrate turnover. Self-inactivation was observed with intact cells, ghosts and solubilized enzyme and could be demonstrated with NAD, NADP and nicotinamide 1,N6 ethenoadenine dinucleotide as substrates. Thionicotinamide adenine dinucleotide and NADH, which are not substrates for the enzyme, do not inactivate but are reversible substrate-competitive inhibitors. Added thiols had no effect on enzyme self-inactivation. Of the reaction products, added nicotinamide partially protected the enzyme while added ADPR had no effect. Thermodynamic parameters calculated from Arrhenius plots for rate constants of self-inactivation indicate a large negative S for transition state formation suggesting a process other than extensive denaturation. Erythrocyte ghost NADases from several other mammalian sources have been demonstrated to undergo a self-inactivation similar to that observed with the bovine enzyme.This work was supported by Research Grant PCM 76-05839 from the National Science Foundation.  相似文献   

19.
1,N6-Etheno derivatives of pyridine analogues of NAD+ were synthesized, characterized and tested as substrates for a fluorimetric assay of nucleotide pyrophosphatase (EC 3.6.1.9). Upon cleavage of their pyrophosphate bond, the fluorescence of pyridine-1,N6-ethenoadenine dinucleotide (epsilon PdAD+) and of 4-hydrazinocarbonyl-pyridine-1,N6-ethenoadenine dinucleotide (epsilon hy4PdAD+) increased respectively 15-and 73-fold, at pH 7.4. This property allows a convenient steady-state assay of nucleotide pyrophosphatase by continuous monitoring of reaction progress. Both compounds were good substrates of this class of enzyme. The relative insensitivity of the fluorescence of epsilon PdAD+ and epsilon hy4PdAD+ to pH changes allowed assays under conditions preserving cellular integrity. epsilon PdAD+ is useful as a substrate for measuring nucleotide pyrophosphatase activity on the outside of mammalian cells because it is not a substrate for the external NAD+ glycohydrolase. epsilon Hy4PdAD+ proved useful when high sensitivity was needed.  相似文献   

20.
The kinetic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae was determined using initial velocity studies in the absence and presence of product and dead end inhibitors in both reaction directions. Data suggest a steady state random kinetic mechanism. The dissociation constant of the Mg-homoisocitrate complex (MgHIc) was estimated to be 11 +/- 2 mM as measured using Mg2+ as a shift reagent. Initial velocity data indicate the MgHIc complex is the reactant in the direction of oxidative decarboxylation, while in the reverse reaction direction, the enzyme likely binds uncomplexed Mg2+ and alpha-ketoadipate. Curvature is observed in the double-reciprocal plots for product inhibition by NADH and the dead-end inhibition by 3-acetylpyridine adenine dinucleotide phosphate when MgHIc is the varied substrate. At low concentrations of MgHIc, the inhibition by both nucleotides is competitive, but as the MgHIc concentration increases, the inhibition changes to uncompetitive, consistent with a steady state random mechanism with preferred binding of MgHIc before NAD. Release of product is preferred and ordered with respect to CO2, alpha-ketoadipate, and NADH. Isocitrate is a slow substrate with a rate (V/E(t)) 216-fold slower than that measured with HIc. In contrast to HIc, the uncomplexed form of isocitrate and Mg2+ bind to the enzyme. The kinetic mechanism in the direction of oxidative decarboxylation of isocitrate, on the basis of initial velocity studies in the absence and presence of dead-end inhibitors, suggests random addition of NAD and isocitrate with Mg2+ binding before isocitrate in rapid equilibrium, and the mechanism approximates rapid equilibrium random. The Keq for the overall reaction measured directly using the change in NADH as a probe is 0.45 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号