首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The production of Leuconostoc mesenteroides sucrose phosphorylase has been studied in 10- and 20-L batch fermentations. A fermentation medium was devised combining rapid growth, high cell yield, and high enzyme levels. Overall fermentation dynamics and enzyme fermentation patterns are elucidated here in detail. Sucrose is phosphorolyzed into fructose and glucose-1-phosphate (G-1-P) with G-1-P preferentially utilized (thus saving ATP). Subsequently, fructose is gradually metabolized and is also converted to mannitol. Invertase activity is absent. Sucrose phosphorylase is formed transitorily with peak levels toward the end of active growth; a sharp decline in enzyme activity occurs upon further fermentation. The moment of cell (enzyme) harvest is thus critical in view of obtaining active cell or enzyme preparations for sucrose phosphorolysis. Microaerophilic and strictly anaerobic fermentations displayed no appreciable difference in sucrose phosphorylase formation profile. The enzyme is intracellularly located. It is constitutively formed in the absence of sucrose, contrary to that of Pseudomonas species; other disaccharide phosphorylases are not formed.  相似文献   

3.
The kinetic mechanisms of the NAD- and NADP-linked reactions catalyzed by glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides were examined using product inhibition, dead-end inhibition and alternate substrate experiments. The results are consistent with a steady-state random mechanism for the NAD-linked and an ordered, sequential mechanism with NADP+ binding first for the NADP-linked reaction. Thus, the enzyme can bind NADP+, NAD+, and glucose 6-phosphate, but the enzyme-glucose 6-phosphate complex can react only with NAD+, not with NADP+. This affects the rate equation for the NADP-linked reaction by introducing a term for a dead-end enzyme-glucose 6-phosphate complex. The kinetic mechanisms represent revisions of those proposed previously (C. Olive, M.E. Geroch, and H.R. Levy, 1971, J. Biol. Chem. 246, 2047-2057) and provide a kinetic basis for the regulation of coenzyme utilization of the enzyme by glucose 6-phosphate concentration (H.R. Levy, and G.H. Daouk, 1979, J. Biol. Chem. 254, 4843-4847) and NADPH/NADP+ concentration ratios (H.R. Levy, G.H. Daouk, and M.A. Katopes, 1979, Arch, Biochem. Biophys. 198, 406-413). The kinetic mechanisms were found to be the same at pH 6.2 and pH 7.8. The kinetics of ATP inhibition of the NAD- and NADP-linked reactions were examined at pH 6.2 and pH 7.8. The results are interpreted in terms of ATP addition to binary enzyme-coenzyme and enzyme-glucose 6-phosphate complexes.  相似文献   

4.
The specificity and kinetic parameters of the reactions catalyzed by glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides has been examined under a range of conditions in order to elucidate details about the mechanism of action of this enzyme. The rate of oxidation of glucose 6-phosphate is inhibited by the addition of various organic solvents. However, the low, inherent glucose dehydrogenase activity of this enzyme was stimulated under these conditions, and was further activated by divalent anions that were observed to be inhibitors of the glucose 6-phosphate dehydrogenation. From an examination of the pH variation of the enzyme kinetic parameters two groups on the enzyme that appear to be involved in the binding of the phosphate group of the sugar substrate have been detected. An enzyme catalytic group, probably a carboxylic acid, has been identified that accepts the proton from the hydroxyl group at carbon-1 of the sugar substrate during its oxidation to a lactone. The ionization of a group on the enzyme with a pK of 8.7 resulted in an increase in the maximum velocity of the glucose-6-phosphate dehydrogenase activity of the enzyme as a consequence of a pH-dependent product release step that is no longer rate limiting at high pH. Stabilization of gluconic acid-delta-lactone against nonenzymatic hydrolysis by organic solvents has allowed the kinetic parameters of the reverse reaction to be reliably measured for the first time in a narrow pH range.  相似文献   

5.
The hprK gene encoding bifunctional HPrK/P (kinase/ phosphorylase) was cloned from L. mesenteroides SY1, a strain isolated from kimchi. hprK was transcribed as a monocistronic gene. His-tagged HPrH16A and HPrK/P were produced in E. coli BL21(DE3) using pET26b(+) and purified. HPrK/P phosphorylation assay with purified proteins showed that the kinase activity of HPrK/P increased at slightly acidic pHs. Divalent cations such as Mg2+ and Mn2+ and glycolytic intermediates such as fructose-1, 6-bisphosphate (FBP) and phosphoenolpyruvate (PEP) increased the kinase activity of HPrK/P, but inorganic phosphate strongly inhibited it. Kinetic studies for the kinase activity of HPrK/P showed that the apparent Km values were 0.18 and 14.57 microM for ATP and HPr, respectively. The Km value for the phosphorylase activity of HPrK/P was 14.16 microM for P-Ser-HPr (HPr phosphorylated at the serine residue).  相似文献   

6.
7.
Schwarz A  Nidetzky B 《FEBS letters》2006,580(16):3905-3910
Mutagenesis of Asp-196 into Ala yielded an inactive variant of Leuconostoc mesenteroides sucrose phosphorylase (D196A). External azide partly complemented the catalytic defect in D196A with a second-order rate constant of 0.031 M-1 s-1 (pH 5, 30 degrees C) while formate, acetate and halides could not restore activity. The mutant utilized azide to convert alpha-D-glucose 1-phosphate into beta-D-glucose 1-azide, reflecting a change in stereochemical course of glucosyl transfer from alpha-retaining in wild-type to inverting in D196A. Phosphorolysis of beta-D-glucose 1-azide by D196A occurred through a ternary complex kinetic mechanism, in marked contrast to the wild-type whose reactions feature a common glucosyl enzyme intermediate and Ping-Pong kinetics. Therefore, Asp-196 is identified unambiguously as the catalytic nucleophile of sucrose phosphorylase, and its substitution by Ala forces the reaction to proceed via single nucleophilic displacement. D196A is not detectably active as alpha-glucosynthase.  相似文献   

8.
9.
A sucrase gene from Leuconostoc mesenteroides was cloned and expressed in Escherichia coli. The cloned enzyme did not show dextransucrase or sucrose phosphorylase activity. HPLC and GC-MS analyses of the sucrase products indicated the presence of fructose and glucose in equimolar amounts. IPTG induction did not increase sucrase activity in E. coli indicating that the cloned gene may be transcribed from its own promoter. To our knowledge, this is the first sucrase cloned from L. mesenteroides that has invertase activity.  相似文献   

10.
Enolase on the surface of streptococci putatively facilitates pathogenic invasion of the host organisms. The related Leuconostoc mesenteroides 512FMCM is nonpathogenic, but it too has an extracellular enolase. Purified isolates of extracellular dextransucrase from cultures of L. mesenteroides contain minute amounts of enolase, which separate as small crystals. Expression of L. mesenteroides enolase in Escherichia coli provides a protein (calculated subunit mass of 47 546 Da) catalyzing the conversion of 2-phsopho-D-glycerate to phosphoenolpyruvate. The pH optimum is 6.8, with Km and kcat values of 2.61 mM and 27.5 s(-1), respectively. At phosphate concentrations of 1 mM and below, fluoride is a noncompetitive inhibitor with respect to 2-phospho-D-glycerate, but in the presence of 20 mM phosphate, fluoride becomes a competitive inhibitor. Recombinant enolase significantly inhibits the activity of purified dextransucrase, and does not bind human plasminogen. Results here suggest that in some organisms enolase may participate in protein interactions that have no direct relevance to pathogenic invasion.  相似文献   

11.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides utilizes either NAD+ or NADP+ as coenzyme. Kinetic studies showed that NAD+ and NADP+ interact with different enzyme forms (Olive, C., Geroch, M. E., and Levy, H. R. (1971) J. Biol. Chem.246, 2047–2057). In the present study the techniques of fluorescence quenching and fluorescence enhancement were used to investigate the interaction between Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase and coenzymes. In addition, kinetic studies were performed to examine interaction between the enzyme and various coenzyme analogs. The maximum quenching of protein fluorescence is 5% for NADP+ and 50% for NAD+. The dissociation constant for NADP+, determined from fluorescence quenching measurements, is 3 μm, which is similar to the previously determined Km of 5.7 μm and Ki of 5 μm. The dissociation constant for NAD+ is 2.5 mm, which is 24 times larger than the previously determined Km of 0.106 mm. Glucose 1-phosphate, a substrate-competitive inhibitor, lowers the dissociation constant and maximum fluorescence quenching for NAD+ but not for NADP+. This suggests that glucose 6-phosphate may act similarly and thus play a role in enabling the enzyme to utilize NAD+ under physiological conditions. When NADPH binds to the enzyme its fluorescence is enhanced 2.3-fold. The enzyme was titrated with NADPH in the absence and presence of NAD+; binding of these two coenzymes is competitive. The dissociation constant for NADPH from these measurements is 24 μm; the previously determined Ki is 37.6 μm. The dissociation constant for NAD′ is 2.8 mm, in satisfactory agreement with the value obtained from protein fluorescence quenching measurements. Various compounds which resemble either the adenosine or the nicotinamide portion of the coenzyme structure are coenzyme-competitive inhibitors; 2′,5′-ADP, the most inhibitory analog tested, gives NADP+-competitive and NAD+-noncompetitive inhibition, consistent with the kinetic mechanism previously proposed. By using pairs of coenzyme-competitive inhibitors it was shown in kinetic studies that the two portions of the NAD+ structure cannot be accommodated on the enzyme simultaneously unies they are covalently linked. Fluorescence studies showed that there are both “buried” and “exposed” tryptophan residues in the enzyme structure.  相似文献   

12.
The role of acid-base catalysis in the two-step enzymatic mechanism of alpha-retaining glucosyl transfer by Leuconostoc mesenteroides sucrose phosphorylase has been examined through site-directed replacement of the putative catalytic Glu237 and detailed comparison of purified wild-type and Glu237-->Gln mutant enzymes using steady-state kinetics. Reactions with substrates requiring Br?nsted catalytic assistance for glucosylation or deglucosylation were selectively slowed at the respective step, about 10(5)-fold, in E237Q. Azide, acetate and formate but not halides restored catalytic activity up to 300-fold in E237Q under conditions in which the deglucosylation step was rate-determining, and promoted production of the corresponding alpha-glucosides. In situ proton NMR studies of the chemical rescue of E237Q by acetate and formate revealed that enzymatically formed alpha-glucose 1-esters decomposed spontaneously via acyl group migration and hydrolysis. Using pH profiles of kcat/K(m), the pH dependences of kinetically isolated glucosylation and deglucosylation steps were analysed for wild-type and E237Q. Glucosylation of the wild-type proceeded optimally above and below apparent pK(a) values of about 5.6 and 7.2 respectively whereas deglucosylation was dependent on the apparent single ionization of a group of pK(a) approximately 5.8 that must be deprotonated for reaction. Glucosylation of E237Q was slowed below apparent pK(a) approximately 6.0 but had lost the high pH dependence of the wild-type. Deglucosylation of E237Q was pH-independent. The results allow unequivocal assignment of Glu237 as the catalytic acid-base of sucrose phosphorylase. They support a mechanism in which the pK(a) of Glu237 cycles between approximately 7.2 in free enzyme and approximately 5.8 in glucosyl enzyme intermediate, ensuring optimal participation of the glutamate residue side chain at each step in catalysis. Enzyme deglucosylation to an anionic nucleophile took place with Glu237 protonated or unprotonated. The results delineate how conserved active-site groups of retaining glycoside hydrolases can accommodate enzymatic function of a phosphorylase.  相似文献   

13.
Glucansucrase from Leuconostoc mesenteroides was immobilized in 1?% (w/v) with sodium alginate to produce oligosaccharides. Glucansucrase gave three activity bands of approx. 240, 178, and 165?kDa after periodic acid-Schiff staining with sucrose. The immobilized enzyme had 40?% activity after ten batch reactions at 30?°C and 75?% activity after a month of storage at 4?°C, which is six times more stable than the free enzyme. Immobilized enzyme was more stable at lower (3.5?4.5) and higher (6.5?7.0) pH ranges and higher temperatures (35?40?°C) compared with the free enzyme. Immobilized and free glucansucrase were employed in the acceptor reaction with maltose and each produced gluco-oligosaccharide ranging from trisaccharides to homologous pentasaccharides.  相似文献   

14.
15.
Leuconostoc mesenteroides LM34 was isolated from kimchi, a traditional fermented Korean food. L. mesenteroides LM34 produced extracellular glucansucrase (DSRLM34), which is responsible for the synthesis of soluble glucan using sucrose. The DSRLM34 gene consists of a 4,503 bp open reading frame (ORF) and encodes an enzyme of 1,500 amino acids with an apparent molecular mass of 165 kDa. The deduced amino-acid sequence showed the highest amino-acid sequence identity (98%) to that of glucansucrase of Lactobacillus lactis. The gene was over-expressed in Escherichia coli strain and the recombinant enzyme (rDSRLM34) was purified. Both DSRLM34 and rDSRLM34 synthesized glucan mainly containing α-1, 6 glucosidic linkage and branched α-1, 3 glucosidic linkages. The enzyme exhibited optimum activity at 30°C and pH 5.0. DSRLM34 has promising potential as a thickening agent in sucrose-supplemented milk.  相似文献   

16.
Amino acid sequencing of glucose 6-phosphate dehydrogenase (Glc6PD) from Leuconostoc mesenteroides yielded sequence for over 75% of the protein. Two oligonucleotides based on the amino acid sequence were used to isolate a partial Glc6PD gene clone (pLmz delta N65), from a pUC9 library, containing 85% of the coding sequence and the 3'-untranslated DNA, but lacking the 5'-noncoding DNA sequence and the portion of the gene encoding the 65 N-terminal amino acids. Attempts to obtain a full-length clone from lambda libraries were unsuccessful, possibly due to restriction of L. mesenteroides DNA by Escherichia coli host cells. The 5'-untranslated DNA was amplified by the polymerase chain reaction and partially sequenced. To obtain unmodified DNA for the gene, oligonucleotides corresponding to the 5'- and 3'-noncoding sequences were used to amplify the gene by the polymerase chain reaction, and a 1.8-kilobase pair fragment was isolated and cloned into pUC19. The recombinant plasmid, pLmz, contains the entire Glc6PD gene and expresses the gene in E. coli. pLmz was sequenced showing that the enzyme consists of 485 amino acids. L. mesenteroides Glc6PD is 31% identical to the human enzyme.  相似文献   

17.
An NADH oxidase was purified to homogeneity from Leuconostoc mesenteroides with a specific activity 100-fold higher than that of the crude extract. The purified NADH oxidase was an acidic protein having an S0 20,W of 5.49S and a molecular weight of 104,000, consisting of a dimer with 53,000 subunit size. The enzyme could use O2, dichlorophenolindophenol and methylene blue as oxidants, but not H2O2, cytochrome c, or ferricyanide. The physiological substrate was beta-NADH (Km = 0.12 mM) with O2 as the oxidant, probably forming H2O, rather than H2O2. Activity toward alpha-NADH was observed (Km = 0.14 mM), but the maximum velocity was 3 orders of magnitude lower than that with beta-NADH. alpha-NADPH and beta-NADPH were inert for the reaction. The enzyme showed a flavoprotein absorption spectrum with maxima at 273, 379, and 450 nm with a shoulder at 465 nm: the absorption at 450-465 nm disappeared on adding excess NADH or hydrosulfite. One mol of the holoenzyme contained approximately 2 mol of FAD. The apoenzyme was obtained by treatment with EDTA-KBr solution and could be reconstituted partially by adding FAD, but not riboflavin or FMN. The maximum activity of the reaction was observed at pH 6.5 in a temperature range of 35-45 degrees C. The activation energy was estimated to be 3.77 kcal/mol. The enzyme was inhibited by SH reagents, quinacrine, quinine, and Cu2+, but not by EDTA. Adenine and its nucleoside 5'-di- and triphosphates showed competitive inhibitions, while various metabolites, such as H2O2, FDP, acetyl phosphate, lactate, ethanol, and acetate, did not affect the reaction.  相似文献   

18.
The target size of four soluble enzymes (beta-galactosidase, pyruvate kinase, alcohol dehydrogenase, and glucose-6-phosphate dehydrogenase) in the presence or absence of subcellular membrane fractions has been determined by the radiation-inactivation method using samples in the frozen state. For each of the four enzymes, full activity was recovered after freezing and thawing in the absence of radiation. We found minimal (less than 20%) binding of the enzymes to either submitochondrial vesicles or sarcoplasmic reticulum vesicles. Under the conditions tested, beta-galactosidase, pyruvate kinase, and alcohol dehydrogenase exhibited target sizes which varied according to the experimental conditions, i.e., the buffer selected and also the presence or absence of membrane preparations. For these tetrameric enzymes, the target sizes were generally comparable to either a monomer or a dimer. By contrast, the target size of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides was found to be essentially invariant when frozen in a variety of buffers and in the presence or absence of either cryoprotectant (sucrose or glycerol) or different membrane preparations. The target size from 19 separate determinations gave an average value of 104 +/- 16 kDa, which is comparable to the molecular weight of the enzyme (104 kDa). We conclude that glucose-6-phosphate dehydrogenase from L. mesenteroides is a reliable internal standard for radiation-inactivation studies of membrane preparations in the frozen state.  相似文献   

19.
The gene encoding alternansucrase (ASR) from Leuconostoc mesenteroides NRRL B-1355, an original sucrose glucosyltransferase (GTF) specific to alternating alpha-1,3 and alpha-1,6 glucosidic bond synthesis, was cloned, sequenced and expressed into Escherichia coli. Recombinant enzyme catalyzed oligoalternan synthesis from sucrose and maltose acceptor. From sequence comparison, it appears that ASR possesses the same domains as those described for GTFs specific to either contiguous alpha-1,3 osidic bond or contiguous alpha-1,6 osidic bond synthesis. However, the variable region and the glucan binding domain are longer than in other GTFs (by 100 and 200 amino acids respectively). The N-catalytic domain which presents 49% identity with the other GTFs from L. mesenteroides possesses the three determinants potentially involved in the glucosyl enzyme formation.  相似文献   

20.
The extracellular dextransucrase from Leuconostoc mesenteroides NRRL B-640 was purified using polyethylene glycol fractionation (PEG) and gel-filtration. The cell free extract was subjected to fractionation by PEG-200, 400 and 1500. The 10% (w/v) PEG-1500 gave dextransucrase with maximum specific activity of 23 with 40 fold purification in a single step. The purified enzyme showed multiple molecular forms on SDS-PAGE, however the same sample showed a single band on non-denaturing native-PAGE. The purified dextransucrase fractions obtained from PEG-1500, confirmed the presence of dextran, when run on SDS-PAGE under non-denaturing gels for in situ activity detection by Periodic Acid Schiff's staining. The activity bands corresponded to the native and active form of the purified dextransucrase of approximately, 180kDa molecular size, that appeared on the denaturing gels stained with Coomassie Brilliant Blue. No bands appeared after staining the activity of dextransucrase on non denaturing SDS-PAGE gels with raffinose, which excluded the presence of fructosyltransferases. Further purification of 10% PEG-1500 purified dextransucrase by gel-filtration gave dextransucrase with specific activity of 35 with 61 fold purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号