首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of polymerase chain reaction with a set of arbitrary primers (RAPD–PCR) was used to describe genetic variation and to estimate genetic diversity in East-European windhounds, Russian Borzoi and Russian Chortai. For comparison, windhounds of two West-European breeds (Whippet and Greyhound) and single dogs of other breed types (shepherd, terriers, mastiffs, and bird dogs) were examined. For all dog groups, their closest related species, the wolf Canis lupus, was used as an outgroup. Variation of RAPD markers was studied at several hierarchic levels: intra- and interfamily (for individual families of Russian Psovyi and Chortai windhounds), intra- and interbreed (for ten dog breeds), and interspecific (C. familiaris–C. lupus). In total, 57 dogs and 4 wolves were studied. Using RAPD–PCR with three primers, 93 DNA fragments with a length of 150–1500 bp were detected in several Windhound families with known filiation. These fragments were found to be inherited as dominant markers and to be applicable for estimation of genetic differences between parents and their offspring and for comparison of individuals and families with different level of inbreeding. A high level of intra- and interbreed diversity was found in Russian Borzoi and Russian Chortai. In these dogs, genetic similarity indices varied in a range of 72.2 to 93.4% (parents–offspring) and 68.0 to 94.5 (sibs). Based on the patterns of RAPD markers obtained using six primers, a dendrogram of genetic similarity between the wolf and different dog breeds was constructed, and indices of intragroup diversity were calculated. All studied breeds grouped into two clusters, windhounds (Borzoi-like dogs) and other dog breeds. Russian windhounds represent a very heterogeneous group, in which the Russian Borzoi is closer to Greyhound than the Russian Chortai. All studied wolves constituted a separate cluster. Significant differences were found between the wolf and dogs by the number of RAPD markers (92.8 and 86.1, respectively) and by the indices of genetic diversity (54.3 and 64.8%, respectively). The reason for the high intraspecific variation of dogs (including Russian windhounds) and the prospects of using the studied group of markers for genetic analysis and differentiation in C. familiaris are discussed.  相似文献   

2.
The RAPD-PCR technique was applied to identify genetic markers able to distinguish between four canid species: the arctic fox (Alopex lagopus), red fox (Vulpes vulpes), Chinese raccoon dog (Nyctereutes procyonoides procyonoides) and six breeds of the domestic dog (Canis familiaris). A total of 29 ten-nucleotide arbitrary primers were screened for their potential use in the differentiation of these species. Ten primers amplified RAPD profiles that made it possible to distinguish between the investigated taxa. A number of species-specific bands was scored within RAPD profiles produced by these primers: 35.6% of all the polymorphic bands were unique to the Chinese raccoon dog, 29.6% were unique to the domestic dog, 21.2% were diagnostic for the red fox and 13.6% for the arctic fox. No breed-specific fragments were amplified from canine DNA; however, three primers produced bands characteristic for the dog, but not present in all of the investigated breeds. A Neighbor-Joining tree constructed on the basis of the analysis of RAPD profiles amplified by six primers revealed that the phylogenetic distance between the dog and the arctic fox is larger than the distance between the dog and the red fox. The phylogenetic branch of the Chinese raccoon dog was the most distinct on the dendrogram, suggesting that this species belongs to a different phylogenetic lineage. Obtained results make it possible to conclude that RAPD analysis can be a powerful tool for developing molecular markers useful in distinguishing between species of the family Canidae and for studying their phylogenetic relations.  相似文献   

3.
4.
The present study investigated the use of the random amplified polymorphic DNA (RAPD) method to detect genetic variation in cattle and sheep. The animals studied consisted of samples from five Finnish cattle breeds: native Eastern (18 animals), Northern (24), Western Finncattle (24), Finnish Ayrshire (24), and Finnish Friesian (18); as well as a white (6 animals) and a grey (9) colour type of Finnsheep. The cattle and sheep populations were analysed with 11 and 13 RAPD primers demonstrating the most repeatable amplification pattern. Two out of ten RAPD fragments tested by cross hybridization showed homology between the two species. The RAPD method did not prove efficient for finding new polymorphisms in either species, because we found only three polymorphic RAPD markers for cattle and seven markers for sheep with different allele frequencies between the breeds. Although there is a greater presence of polymorphic RAPD markers in sheep, according to the similarity indices the sheep populations showed a higher degree of homogeneity than the cattle breeds. However, the interbreed and intrabreed similarity indices for cattle did not suggest any significant differentiation of the Finnish breeds, contrary to earlier results based on blood group and protein polymorphism.  相似文献   

5.
Unequal contribution of sexes in the origin of dog breeds   总被引:6,自引:0,他引:6       下载免费PDF全文
Dogs (Canis familiaris) were domesticated from the gray wolf (Canis lupus) at least 14,000 years ago, and there is evidence of dogs with phenotypes similar to those in modern breeds 4000 years ago. However, recent genetic analyses have suggested that modern dog breeds have a much more recent origin, probably <200 years ago. To study the origin of contemporaneous breeds we combined the analysis of paternally inherited Y chromosome markers with maternally inherited mitochondrial DNA and biparentally inherited autosomal microsatellite markers in both domestic dogs and their wild ancestor, the gray wolf. Our results show a sex bias in the origin of breeds, with fewer males than females contributing genetically, which clearly differs from the breeding patterns in wild gray wolf populations where both sexes have similar contributions. Furthermore, a comparison of mitochondrial DNA and Y chromosome diversity in dog groups recognized by the World Canine Organization, as well as in groups defined by the breeds' genetic composition, shows that paternal lineages are more differentiated among groups than maternal lineages. This demonstrates a lower exchange of males than of females between breeds belonging to different groups, which illustrates how breed founders may have been chosen.  相似文献   

6.
Riabinina OM 《Genetika》2006,42(7):917-920
The hypervariable site of the mitochondrial DNA (mtDNA) control region has been studied in several sheepdog breeds. The genetic diversity is high in the Central Asian guardian dog and the Northern Caucasian wolf dog (an aboriginal group of breeds) and low in the Caucasian guardian dog. Haplotypes of groups A, B, C, and E/W have been found in Central Asian guardian dogs; haplotypes of groups A and B, in Caucasian guardian dogs. There is evidence suggesting a gene flow from Scandinavian dog populations to the Northern Caucasus. The results of the analysis allow the Caucasian guardian dog, Northern Caucasian wolf dog, Central Asian guardian dog, and the Turkish breeds akbash and kangal to be combined into a single group with an extremely low degree of differentiation.  相似文献   

7.
Polymorphic components of the common carp Cyprinus carpio L. genome were examined by means of polymerase chain reaction with random primers (RAPD-PCR). Using four primers, genetic diversity estimates were obtained for 12 populations and seven strains of Russian common carp breeds, as well as for European Hungarian common carp and Amur wild common carp (N = 87). The highest number of polymorphic loci was revealed in Angelinskii common carp, as well as in the samples of Altai common carp and Amur wild common carp (P = 23.8-18.7%), while the lowest number of polymorphic loci was in the BB strain of Ropsha common carp. The index of genetic diversity, H, was high (11%) in Amur wild common carp, as well as in Altai and Angelinskii common carps. In the remaining breeds, the value of this index varied from 4 to 8%. Based on summarized RAPD profile (132 bands), a dendrogram of genetic differences was constructed. In this dendrogram, all breeds examined grouped into two clusters. One of the clusters was formed by Hungarian and Angelinskii common carps, and the three samples of Altai common carp. The second cluster was formed by the group consisting of the representatives of Cherepetskskii, Stavropol, and Ropsha common carps, along with the differing from them Amur wild common carp. The observed differentiation was confirmed by the analysis of the polymorphic markers variance by the method of principle components. Evolutionary history and the reasons for genetic differentiation of Russian common carp breeds are discussed.  相似文献   

8.
The variation in polymorphic DNA (RAPD and minisatellite) and protein markers was compared for nine Russian chicken breeds differing in morphological and productivity types and in origin, three European egg breeds, and three meat breeds of the Asian origin. Genetic diversity indices were calculated for each breed group and each marker type and were used to construct dendrograms of genetic similarity. In all breed groups, minisatellites and RAPD markers revealed higher genetic diversity as compared with protein markers. With any type of markers, genetic diversity of the Russian and Asian meat breeds proved to be significantly higher than that of the European egg breeds. The differentiating potentialities of molecular and genetic biochemical markers at the breed level and the origin of the Russian chicken breeds are discussed.  相似文献   

9.
The variation in polymorphic DNA (RAPD and minisatellite) and protein markers was compared for nine Russian chicken breeds differing in morphological and productivity types and in origin, three European egg breeds, and three broiler breeds of the Asian origin. Genetic diversity indices were calculated for each breed group and each marker type and were used to construct dendrograms of genetic similarity. In all breed groups, minisatellites and RAPD markers revealed higher genetic diversity as compared with protein markers. With any type of markers, genetic diversity of the Russian and Asian broiler breeds proved to be significantly higher than that of the European egg breeds. The differentiating potentialities of molecular and genetic biochemical markers at the breed level and the origin of the Russian chicken breeds are discussed.  相似文献   

10.
At present, the Tibetan Mastiff is the oldest and most ferocious dog in the world. However, the origin of the Tibetan Mastiff and its Phylogenetic relationship with other large breed dogs such as Saint Bernard are unclear. In this study, the primers were designed according to the mitochondrial genome sequence of the domestic dog, and the 2,525 bp mitochondrial sequence, containing the whole sequence of Cytochrome b, tRNA-Thr, tRNA-Pro, and control region of the Tibetan Mastiff, was obtained. Using grey wolves and coyotes as outgroups, the Tibetan Mastiff and 12 breeds of domestic dogs were analyzed in phylogenesis. Tibetan Mastiff, domestic dog breeds, and grey wolves were clustered into a group and coyotes were clustered in a group separately. This indicated that the Tibetan Mastiff and the other domestic dogs originated from the grey wolf, and the Tibetan Mastiff belonged to Carnivora, Canidae, Canis, Canis lupus, Canis lupus familiaris on the animal taxonomy. In domestic dogs, the middle and small breed dogs were clustered at first; German Sheepdog, Swedish Elkhound, and Black Russian Terrier were clustered into one group, and the Tibetan Mastiff, Old English Sheepdog, Leonberger, and Saint Bernard were clustered in another group. This confirmed the viewpoint that many of the famous large breed dogs worldwide Such as Saint Bernard possibly had the blood lineage of the Tibetan Mastiff, based on the molecular data. According to the substitution rate, we concluded that the approximate divergence time between Tibetan Mastiff and grey wolf was 58,000 years before the present (YBP), and the approximate divergence time between other domestic dogs and grey wolf was 42,000 YBP, demonstrating that the time of origin of the Tibetan Mastiff was earlier than that of the other domestic dogs.  相似文献   

11.
Polymorphic animal microsatellites have proved valuable genetic markers. For this project, the variability of 19 canine microsatellite loci was examined within and between three pure breeds of dog: Greyhounds, Labradors, and German Shepherds. The number of alleles, absolute and relative frequencies, and the statistics that express polymorphism within a breed were determined. The evolutionary relationships among these closely related dog breeds were estimated by genetic distance measures developed for use with microsatellite loci. According to the pairwise genetic distances, Greyhounds and German Shepherds had longer diverse evolutionary histories than Greyhounds and Labradors or Labradors and German Shepherds. Although a few breed-specific alleles were observed, the significant differences between breeds are in their relative frequencies and distribution of the alleles across a locus. None of the three pure dog breeds corresponds to Hardy-Weinberg equilibrium. A considerable reduction in intrapopulation variation was observed within three pure breeds, compared with the population of individuals belonging to 15 dog breeds. This reduction was especially pronounced in the Greyhound breed, which expressed the lowest degree of variation. Intrapopulation variations of Labradors and German Shepherds did not differ significantly, that of Labradors being only slightly higher. The intra-species variation of dogs is lower than in humans, mouse, or rat, but similar to that in domestic animals, probably reflecting similarly high inbreeding coefficients. However, some highly informative loci were common to all dog breeds tested so far. Such population data are necessary for mapping studies and linkage analysis in dogs. Received: 31 July 1996 / Accepted: 21 October 1996  相似文献   

12.
Polymorphic components of the common carp Cyprinus carpio L. genome were examined by means of polymerase chain reaction with random primers (RAPD-PCR). Using four primers, genetic diversity estimates were obtained for 12 populations and seven strains of Russian common carp breeds, as well as for European Hungarian common carp and Amur wild common carp (N = 87). The highest number of polymorphic loci was revealed in Angelinskii common carp, as well as in the samples of Altai common carp and Amur wild common carp (P = 23.8?18.7%), while the lowest number (12.8%) of polymorphic loci was in the BB strain of Ropsha common carp. The index of genetic diversity, H, was high (11%) in Amur wild common carp, as well as in Altai and Angelinskii common carps. In the remaining breeds, the value of this index varied from 4 to 8%. Based on summarized RAPD profile (132 bands), a dendrogram of genetic differences was constructed. In this dendrogram, all breeds examined grouped into two clusters. One of the clusters was formed by Hungarian and Angelinskii common carps, and the three samples of Altai common carp. The second cluster was formed by the group consisting of the representatives of Cherepetskskii, Stavropol, and Ropsha common carps, along with the differing from them Amur wild common carp. The observed differentiation was confirmed by the analysis of the polymorphic markers variance by the method of principle components. Evolutionary history and the reasons for genetic differentiation of Russian common carp breeds are discussed.  相似文献   

13.
《Small Ruminant Research》2008,74(1-3):291-295
An investigation using random amplified polymorphic DNA (RAPD) markers was performed to determine the breed-specific primers and designate the RAPD fingerprints and genetic diversities of sheep breeds (Morkaraman, Akkaraman, Tuj and Hemshin) in northeastern Anatolia. The DNA samples were isolated from a total of 91 animals from four breeds, and 50 random primers were screened. Estimation of genetic relationships between the breeds revealed two clearly distinct groups of breeds: one consisted of the Morkaraman and Akkaraman breeds, and the other consisted of the Tuj and Hemshin breeds.  相似文献   

14.
我国主要地方绵羊品种随机扩增多态DNA研究   总被引:28,自引:2,他引:28  
巩元芳  李祥龙  刘铮铸  李金泉 《遗传》2002,24(4):423-426
对蒙古羊、湖羊、滩羊、小尾寒羊、乌珠穆沁羊、藏绵羊、阿勒泰羊7个地方绵羊品种和无角陶赛特羊、德国美利奴羊、萨福克羊3个引入品种基因组DNA进行了RAPD分析。结果表明:(1)RAPD可作为一种有效的标记用于绵羊品种之间遗传亲缘关系的分析。(2)在所使用的43种随机引物中,有35种引物扩增出多态谱带,多态频率为66.24%,说明RAPD技术用于研究绵羊核DNA的遗传变异具有较高的检出率和灵敏度。(3)总群体平均遗传多样性指数(HSP)为0.9139,说明绵羊群体具有较为丰富的遗传多样性。(4)我国地方绵羊品种间的分子聚类关系与其所处的地理位置、考古学结果,以及细胞遗传学研究结果基本,引入品种间的分子聚类关系也与其育成史基本一致。  相似文献   

15.
中国貉随机扩增多态DNA及其亚种分化关系   总被引:29,自引:2,他引:27  
对来自陕西、云南、越南、安徽和广西等地的8只中国貉(Nyctereutesprocyonides)进行随机扩增多态DNA分析。应用28个10bp的随机引物,平均每只貉获得的RAPD标记数约为130条。遗传距离计算结果显示,中国貉个体间的平均遗传距离指数值为11.20%,最大值为14.93%,最小值为2.94%。以赤狐(Vulpesvulpes)为外群,应用PHYLIP3.0计算软件包中的UPGMA和NJ聚类方法构建分子系统树。结果表明,不同地理群体间的中国貉存在遗传分化;中国貉可分为4组:(1)广西貉,(2)安徽貉,(3)陕西貉,(4)云南貉和越南貉。其中安徽貉和广西貉间的关系稍近,陕西貉则与云南貉-越南貉稍近。对合中国貉的形态分类、地理分布、mtDNA多态分析以及进化遗传学的观点,认为陕西貉、广西貉和安徽貉可能与云南貉-越南貉具有等同的分类地位。  相似文献   

16.
The canine major histocompatibility complex contains highly polymorphic genes, many of which are critical in regulating immune response. Since domestic dogs evolved from Gray Wolves (Canis lupus), common DLA class II alleles should exist. Sequencing was used to characterize 175 Gray Wolves for DLA class II alleles, and data from 1856 dogs, covering 85 different breeds of mostly European origin, were available for comparison. Within wolves, 28 new alleles were identified, all occurring in at least 2 individuals. Three DLA-DRB1, 8 DLA-DQA1, and 6 DLA-DQB1 alleles also identified in dogs were present. Twenty-eight haplotypes were identified, of which 2 three-locus haplotypes, and many DLA-DQA1/DQB1 haplotypes, are also found in dogs. The wolves studied had relatively few dog DLA alleles and may therefore represent a remnant population descended from Asian wolves. The single European wolf included carried a haplotype found in both these North American wolves and in many dog breeds. Furthermore, one wolf DQB1 allele has been found in Shih Tzu, a breed of Asian origin. These data suggest that the wolf ancestors of Asian and European dogs may have had different gene pools, currently reflected in the DLA alleles present in dog breeds.  相似文献   

17.
Genetic variability in purebred dogs is known to be highly structured, with differences among breeds accounting for ∼30% of the genetic variation. However, analysis of the genetic structure in non-cosmopolitan breeds and local populations is still limited. Nine Portuguese native dog breeds, and other peripheral dog populations (five) with regional affinities, were characterized using 16 microsatellites and 225 amplified fragment length polymorphism (AFLP) markers, and the pattern of genetic differentiation was investigated. Although the level of breed differentiation detected is below that of other dog breeds, there is in most cases a correlation between breed affiliation and molecular structure. AFLP markers and Bayesian clustering methods allowed an average of 73.1% of individuals to be correctly assigned to source populations, providing robust genotypic assessment of breed affiliation. A geographical genetic structure was also detected, which suggests a limited influence of African dogs on the Iberian breeds. The sampling effect on the estimation of population structure was evaluated and there was a 2.2% decrease in genetic differentiation among breeds when working animals were included. Genetic diversity of stray dogs was also assessed and there is no evidence that they pose a threat to the preservation of the gene pool of native dog breeds.  相似文献   

18.
目的:应用随机引物扩增多态性DNA技术( random amplified polymorphic DNA , RAPD)对大耳白黑眼兔( white hair black eyes rabbit , WHBE rabbit )、日本大耳白兔( Japanese white rabbit , JW rabbit )和新西兰兔(New Zealand white rabbit, NZW rabbit)3个实验兔品系进行遗传分析。方法选用90只实验兔的皮肤组织样品提取基因组DNA,用60个随机引物对实验兔基因组DNA进行PCR扩增,根据电泳结果筛选出多态性较高的引物进行RAPD-PCR分析,再利用Popgene 3.2统计软件对3个品系的扩增条带进行遗传分析,获得实验数据。结果分析结果表明:(1)60个随机引物中筛选出25个多态性较高的引物,3个品系实验兔共检测到493个扩增片段,长度在100~1800 bp之间,筛选的25个引物中,其中16个引物既可扩增出3个品系共同的DNA条带,也可扩增出WHBE兔特有的特征条带;(2) WHBE兔位点数为234个,其中多态位点数166个,多态位点比为70.94%,JW兔位点数为228个,其中多态位点数122个,多态位点比为53.51%,NZW兔位点数为231个,其中多态位点数94个,多态位点比为40.69%;(3)三个群体的Shannon多样性指数分别为0.3385,0.2222和0.1905;(4) JW兔和NZW兔的遗传相似系数最高,为0.8443,其次为WHBE兔和JW兔的遗传相似系数,为0.8204,WHBE兔和NZW兔的遗传相似系数最低,为0.7862。结论结果表明WHBE兔与JW兔和NZW兔之间有遗传的相似性,也存在着遗传差异,应用RAPD技术可以很好地检测实验兔不同品系之间以及同一品系不同个体之间的亲缘关系。  相似文献   

19.
The screwworm, Cochliomyia hominivorax (Coquerel), is one of the most important pests of livestock in the Western Hemisphere. During early immature stages it is morphologically very similar (first instars are virtually indistinguishable) to the secondary screwworm, C. macellaria (Fabricius). Here, the utility of the random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) was explored as a technique for developing molecular genetic markers for these two species. Of the 120 arbitrary primers screened, 21 primers produced markers that were further investigated. Seven of the 21 primers produced clear and reproducible markers that were tested with DNA of five individuals from four populations of each species; five of these primers showed 12 RAPD markers that differentiated the species in all populations. Analyses of data from these seven primers also suggested that intraspecific polymorphisms exist that could be useful in distinguishing populations of screwworms. Some population genetic tools, such as genetic distance, cluster analysis and bootstrapping, were used to statistically explore these polymorphisms. The resulting statistics showed 100% support for the ability of RAPD-PCR to discriminate between the two species. Bootstrapping with data from one of the genetic distance calculations produced a tree with all individual screwworms in the correct populations, indicating that RAPD-PCR has promise for displaying intraspecific genetic variation that could be used in establishing the general geographic origin of screwworm samples.  相似文献   

20.
The domestic dog mitochondrial DNA (mtDNA)‐gene pool consists of a homogenous mix of haplogroups shared among all populations worldwide, indicating that the dog originated at a single time and place. However, one small haplogroup, subclade d1, found among North Scandinavian/Finnish spitz breeds at frequencies above 30%, has a clearly separate origin. We studied the genetic and geographical diversity for this phylogenetic group to investigate where and when it originated and whether through independent domestication of wolf or dog‐wolf crossbreeding. We analysed 582 bp of the mtDNA control region for 514 dogs of breeds earlier shown to harbour d1 and possibly related northern spitz breeds. Subclade d1 occurred almost exclusively among Swedish/Finnish Sami reindeer‐herding spitzes and some Swedish/Norwegian hunting spitzes, at a frequency of mostly 60–100%. Genetic diversity was low, with only four haplotypes: a central, most frequent, one surrounded by two haplotypes differing by an indel and one differing by a substitution. The substitution was found in a single lineage, as a heteroplasmic mix with the central haplotype. The data indicate that subclade d1 originated in northern Scandinavia, at most 480–3000 years ago and through dog‐wolf crossbreeding rather than a separate domestication event. The high frequency of d1 suggests that the dog‐wolf hybrid phenotype had a selective advantage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号