首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 9-(2'-beta-C-methyl-beta-d-ribofuranosyl)-6-substituted purine derivatives were synthesized as potential inhibitors of HCV RNA replication. Their inhibitory activities in a cell based HCV replicon assay were reported. A prodrug approach was used to further improve the potency of these compounds by increasing the intracellular levels of 5'-monophosphate metabolites. These nucleotide prodrugs showed much improved inhibitory activities of HCV RNA replication.  相似文献   

2.
The novel purine derivatives of 1-aminocyclopropane-1-carboxylic acid (8 and 9) and 1-amino-1-hydroxymethylcyclopropane (12 and 13) with methylene spacer between the base and the cyclopropane ring were prepared by multistep synthetic route involving alkylation of adenine and 6-(N-pyrrolyl)purine with 2-hydroxy-methyl-1-aminocyclopropane-1-carboxylic acid derivative 3 as a key reaction. All novel compounds were racemic. The N-9 substitution of the purine ring and the Z-configuration of the cyclopropane ring in 4-13 were deduced from their 1H and 13C NMR spectra by analyses of chemical shifts, H-H coupling constants and connectivities in two-dimensional homo- and heteronuclear correlation spectra. An unequivocal proof of the stereostructure of 1, 4 and 5 was obtained by their X-ray structure analysis. The novel compounds were evaluated on cytostatic and antiviral activities in several cell lines. The 6-(N-pyrrolyl)purine derivative of 1,2-aminocyclopropane alcohol 12 exhibited a more pronounced inhibitory activity against the proliferation of cervical carcinoma (HeLa) and human fibroblast (WI-38) cells than other types of tumor cell lines. None of the compounds showed inhibitory activities against cytomegalovirus, varicella-zoster virus or other viruses.  相似文献   

3.
The effect of long-term phosphate (Pi) starvation of up to 3 weeks on the levels of purine nucleotides and related compounds was examined using suspension-cultured Catharanthus roseus cells. Levels of adenine and guanine nucleotides, especially ATP and GTP, were markedly reduced during Pi-starvation. There was an increase in the activity of RNase, DNase, 5'- and 3'-nucleotidases and acid phosphatase, which may participate in the hydrolysis of nucleic acids and nucleotides. Accumulation of adenosine, adenine, guanosine and guanine was observed during the long-term Pi starvation. Long-term Pi starvation markedly depressed the flux of transport of exogenously supplied [8-(14)C]adenosine and [8-(14)C]adenine, but these labelled compounds which were taken up by the cells were readily converted to adenine nucleotides even in Pi-starved cells, in which RNA synthesis from these precursors was significantly reduced. The activities of adenosine kinase, adenine phosphoribosyltransferase and adenosine nucleosidase were maintained at a high level in long-term Pi starved cells.  相似文献   

4.
Because of its essential role in HIV replication and lack of human counterpart, HIV integrase is an attractive target for the development of novel anti-AIDS agents. Among the recently developed integrase inhibitors, only the alpha,gamma-diketo acid (DKA) compounds were biologically validated as potent and selective integrase inhibitors. The general structure of DKAs contains a diketo acid moiety as the Mg(2+) chelating pharmacophore, and an adjacent aryl group to provide selectivity. Numerous structure-activity relationship (SAR) studies on DKAs have been conducted, which generally involved substituting the carboxylate group or the aryl group. Our objective was to investigate the SARs of the DKA molecule by incorporating a purine ring in the aryl moiety and replacing the labile diketo acid moiety with other divalent metal (Me(2+)) chelating ligands. A series of amide substituted purine derivatives were synthesized via palladium-catalyzed amidation reactions, and their biological activities against HIV integrase were evaluated. These purine derivatives showed anti-integrase activity at low micromolar range. The biological results indicated that the type of Me(2+) ligands, two-point ligand picolinamide or three-point ligand 8-hydroxy-quinoline-7-carboxamide, affected inhibitory potency depending on the substitution position of the para-fluorobenzyl group. The C(6)-,C(8)-dipicolinamide substituted purine (32) exhibited the best potency among this series.  相似文献   

5.
The syntheses of the novel C-5 substituted pyrimidine derivatives of l-ascorbic acid containing free hydroxy groups at C-2' (6-10) or C-2' and C-3' (11-15) positions of the lactone ring are described. Debenzylation of the 6-chloro- and 6-(N-pyrrolyl)purine derivatives of 2,3-O,O-dibenzyl-l-ascorbic acid (16 and 17) gave the new compounds containing hydroxy groups at C-2' (18) and C-2' and C-3' (19 and 20). Z- and E-configuration of the C4'C5' double bond and position of the lactone ring of the compounds 6-9 were deduced from their one- and two-dimensional (1)H and (13)C NMR spectra and connectivities in NOESY and HMBC spectra. Compounds 15 and 18 showed the best inhibitory activities of all evaluated compounds in the series. The compound 15 containing 5-(trifluoromethyl)uracil showed marked inhibitory activity against all human malignant cell lines (IC(50): 5.6-12.8 microM) except on human T-lymphocytes. Besides, this compound influenced the cell cycle by increasing the cell population in G2/M phase and induced apoptosis in SW 620 and MiaPaCa-2 cells. The compound 18 containing 6-chloropurine ring expressed the most pronounced inhibitory activities against HeLa (IC(50): 6.8 microM) and MiaPaCa-2 cells (IC(50): 6.5 microM). The compound 20 with 6-(N-pyrrolyl)purine moiety showed the best differential inhibitory effect against MCF-7 cells (IC(50): 35.9 microM).  相似文献   

6.
Synthesis of 8-phosphorus substituted isosteres of purine [pyrimidino (4,5-d)-1,3,2-diazaphosphole], 1-deazapurine [pyridino (2,3-d)-1,3,2-diazaphosphole] and 3-deazapurine [pyridino (4,5-d)-1,3,2-diazaphosphole] has been achieved by the reaction of equimolar amounts of triphenylphosphite and 4,5-diaminopyrimidine, 2,3-diaminopyridine and 3,4-diaminopyridine, respectively. These compounds hydrolyzed (cleavage of the phosphorus-nitrogen bounds) in aqueous solutions to provide the corresponding diaminopyrimidine or diaminopyridines. These three new basic ring systems constitute the first reported synthesis of purines in which ring carbon atom is substituted with a phosphorus atom. 8-Phosphorus substituted purine at a concentration of 4 X 10(-4)M caused a 50% inhibition in the growth of leukemia L1210 cells in culture. The biochemical rationale for the synthesis of these compounds is discussed.  相似文献   

7.
Investigation of the Red Sea marine tunicate Symplegma rubra Monniot, 1972 gave three new purine alkaloids namely 6-methoxy-7,9-dimethyl-8-oxoguanine (1), 6-methoxy-9-methyl-8-oxoguanine (2), and 2-methoxy-7-methyl-8-oxoadenine (4) together with seven known compounds: 6-methoxy-7-methyl-8-oxoguanine (3), 9-methyl-8-oxoadenine (5), 7-methyl-8-oxoadenine (6), 8-oxoadenine (7), 3-methylxanthine (8), inosine (9), and homarine (pyridinium-2-carboxylic acid-1-methyl) (10). Compound 6 was reported here for the first time from a natural source. The structure determination of the compounds was accomplished by extensive interpretation of their spectroscopic data including 1D (1H and 13C) and 2D (1H–1H COSY, HSQC, and HMBC) NMR and high-resolution mass spectral data. The isolated compounds were evaluated for their protein kinase inhibitory activity against different kinases (CDK5, CK1, DyrK1A, and GSK3) at 10 μg/mL. The compounds showed moderate activity against these kinases.  相似文献   

8.
A series of the novel purine and pyrimidine nucleoside analogues were synthesised in which the sugar moiety was replaced by the 4-amino-2-butenyl (2-6 and 10-18) and oxiranyl (8 and 20) spacer. The Z- (2-6) and E-isomers (10-18) of unsaturated acyclic nucleoside analogues were synthesized by condensation of 2- and 6-substituted purine and 5-substituted uracil bases with Z- (1) or E-phthalimide (9) precursors. The oxiranyl nucleoside analogues (8 and 20) were obtained by epoxidation of 1 and 9 with m-chloroperoxybenzoic acid and subsequent coupling with adenine. The new compounds were evaluated for their antiviral and antitumor cell activities. Among the olefinic nucleoside analogues, Z-isomer of adenine containing 4-amino-2-butenyl side chain (6) exhibited the best cytostatic activities, particularly against colon carcinoma (SW 620, IC50 = 26 microM). Its E-isomer 15 did not show any antiproliferative activity against malignant tumor cell lines, except for a slight inhibition of colon carcinoma (SW 620, IC50 = 56.5 microM) cells. In general, Z-isomers showed better cytostatic activities than the corresponding E-isomers. (Z)-4-Amino-2-butenyl-adenine nucleoside analogue 6 showed albeit modest but selective activity against HIV-1 (EC50 = 4.83 microg mL(-1)).  相似文献   

9.
To determine the metabolic profiles of purine nucleotides and related compounds in leaves and roots of tea (Camellia sinensis), we studied the in situ metabolic fate of 10 different (14)C-labeled precursors in segments from tea seedlings. The activities of key enzymes in tea leaf extracts were also investigated. The rates of uptake of purine precursors were greater in leaf segments than in root segments. Adenine and adenosine were taken up more rapidly than other purine bases and nucleosides. Xanthosine was slowest. Some adenosine, guanosine and inosine was converted to nucleotides by adenosine kinase and inosine/guanosine kinase, but these compounds were easily hydrolyzed, and adenine, guanine and hypoxanthine were generated. These purine bases were salvaged by adenine phosphoribosyltransferase and hypoxanthine/guanine phosphoribosyltransferase. Salvage activity of adenine and adenosine was high, and they were converted exclusively to nucleotides. Inosine and hypoxanthine were salvaged to a lesser extent. In situ (14)C-tracer experiments revealed that xanthosine and xanthine were not salvaged, although xanthine phosphoribosyltransferase activity was found in tea extracts. Only some deoxyadenosine and deoxyguanosine was salvaged and utilized for DNA synthesis. However, most of these deoxynucleosides were hydrolyzed to adenine and guanine and then utilized for RNA synthesis. Purine alkaloid biosynthesis in leaves is much greater than in roots. In situ experiments indicate that adenosine, adenine, guanosine, guanine and inosine are better precursors than xanthosine, which is a direct precursor of a major pathway of caffeine biosynthesis. Based on these results, possible routes of purine metabolism are discussed.  相似文献   

10.
Enzyme activities of purine catabolism and salvage, the concentrations of high-energy phosphates and the reutilisation of purine bases and purine nucleosides were studied in rat heart myoblasts and myocytes. Rat heart myoblasts H9c2(2-1) were grown in Dulbecco's modified Eagle's minimum essential medium supplemented with 10% fetal calf serum. Reduction of fetal calf serum to 2% for 1 week resulted in a differentiation into myocytes with respect to their morphological features and their enzyme pattern. In differentiated myocytes, activity of 5'-nucleotidase was increased more than 2-fold, and AMP deaminase and creatine kinase activities were more than 10-fold elevated. The concentration of creatine phosphate in differentiated myocytes was doubled compared to that in myoblasts. The uptake into myoblasts and myocytes and the incorporation into adenine nucleotides was highest using adenosine, inosine and adenine uptake rates were intermediate, and hypoxanthine was utilised least. Differentiation of myoblasts into myocytes resulted in a slightly lower overall uptake of adenosine and adenine, whereas about 40% more inosine and hypoxanthine were utilised by myocytes. Increasing the phosphate concentration in the incubation medium up to 50 mmol/l resulted in a stimulation of uptake of all purine compounds tested. This stimulation was more pronounced in myoblasts.  相似文献   

11.
7,8-Dihydro-8-oxo-2′-deoxyguanosine (8-oxodG) is a well-known marker of oxidative stress. We report a mechanistic analysis of several pathways by which 8-oxodG is converted to nucleotide triphosphates and incorporated into both DNA and RNA. Exposure of MCF-7 cells to [14C]8-oxodG combined with specific inhibitors of several nucleotide salvage enzymes followed with accelerator mass spectrometry provided precise quantitation of the resulting radiocarbon-labeled species. Concentrations of exogenously dosed nucleobase in RNA reached one per 106 nucleotides, 5–6-fold higher than the maximum observed in DNA. Radiocarbon incorporation into DNA and RNA was abrogated by Immucillin H, an inhibitor of human purine nucleoside phosphorylase (PNP). Inhibition of ribonucleotide reductase (RR) decreased the radiocarbon content of the DNA, but not in RNA, indicating an important role for RR in the formation of 8-oxodG-derived deoxyribonucleotides. Inhibition of deoxycytidine kinase had little effect on radiocarbon incorporation in DNA, which is in contrast to the known ability of mammalian cells to phosphorylate dG. Our data indicate that PNP and RR enable nucleotide salvage of 8-oxodG in MCF-7 cells, a previously unrecognized mechanism that may contribute to mutagenesis and carcinogenesis.  相似文献   

12.
Twenty-four purine derivatives bearing aryl groups at N9 position were designed and synthesized as HIV-1 Tat-TAR interaction inhibitors. All the compounds showed high antiviral activities in inhibiting the formation of SIV-induced syncytium in CEM174 cells. Ten of them with low cytotoxicities were evaluated by Tat dependent HIV-1 LTR-driven CAT gene expression colorimetric enzyme assay in human 293T cells at a concentration of 30 microM, indicating effective inhibitory activities of blocking the Tat-TAR interaction. The aryl groups at N9 position affected the binding affinities between compounds and TAR RNA, showing some specificities of aryl groups to TAR RNA.  相似文献   

13.
V Murray 《Mutation research》1987,177(2):189-199
The tryptophan synthetase gene A series of mutants in E. coli has been used to examine the mutational specificity of over 80 purine base analogues. 4 purine analogues have been discovered that solely cause transversions. Evidence is presented that hydroxylaminopurine mutagenesis is caused by a covalent reaction of these compounds with DNA. The transversion-causing purine analogues are derivatives of 2-aminopurine (2AP) and 2,6-diaminopurine (2,6DAP). They stimulate the full reversion frequency of those trp A which can revert through an AT----CG transversion. 8 purine base analogues have been found that induce the AT----CG transversion at the trp A88 site; and 2-amino-6-methylaminopurine (2A6MAP) stimulates by 124-fold, 2-amino-6-ethylaminopurine by 20-fold, 2-methylaminopurine (2MAP) by 9.4-fold, 2,6-bismethylaminopurine by 25-fold, 2AP by 230-fold, 2,6DAP by 15-fold, 2.6-diaminopurine riboside by 5-fold, and 2-hydroxylaminopurine by 11-fold. The last 4 analogues also cause transitions. 2A6MAP, 2-amino-6-ethylaminopurine and 2,6-bismethylaminopurine stimulate only the AT----CG transversion while 2MAP additionally gives rise to AT----TA transversions. By testing other negative 2AP derivatives, the structural requirements necessary for AT----CG transversion mutagenesis have been determined. All 12 hydroxylaminopurine base analogues tested, 2,6-dimethoxyaminopurine and 2-hydrazinopurine were found to cause transition mutations. All of the compounds stimulated the AT----GC transition (by up to 1000-fold) and 11 of the 14 base analogues raised the GT----AT transition (by up to 450-fold). On increasing the hydroxylaminopurine concentration, the mutation frequency also increased concomitantly. Since 6-hydroxylamino-9-methylpurine and 6-methylhydroxylaminopurine cause transitions, the mechanism of hydroxylaminopurine mutagenesis cannot be entirely due to an alteration in tautomeric equilibria or "wobble" type base mispairing. It is proposed that a major mechanism for hydroxylaminopurine mutagenesis is due to the reaction of these compounds with the O6-position of guanine and the O4-position of thymine.  相似文献   

14.
The effect of cis-DDP (cis-diamminedichloroplatinum(II)), trans-DDP (trans-diamminedichloroplatinum(II)), SPC (spermine-platinum(II) complex), and K2PtCl4 on the ribomononucleotide and RNA metabolism was studied. When Ehrlich ascites tumor cells were preincubated with the aforementioned compounds and then labeled with [C14]uridine a clear-cut suppression of the radioactive labeling of RNA was observed. As radioactivity incorporated into the pool of the free uridine nucleotides in the cells treated with platinum compounds was even higher in comparison with that of the non-treated cells a conclusion may be drawn with certainty that the platinum compounds studied inhibit RNA biosynthesis. It was also found that under the effect of these compounds in the in vivo-assessed rate of the conversion of uridine nucleotides into cytidine nucleotides was considerably diminished. Using NaH14CO3 as a radioactive precursor it was shown that platinum compounds also inhibited purine biosynthesis de novo, in particular the conversion of IMP into GMP and AMP. The pronounced inhibitory effect of the platinum compounds on essential steps of the pyrimidine and purine biosynthesis de novo may be at least partly responsible for the firmly established inhibition in the present study of RNA biosynthesis by platinum compounds. The inhibition of the synthesis of the mononucleotides and RNA by the platinum compounds may be closely related to their cytostatic and cytotoxic activities.  相似文献   

15.
It was found that adenine, guanine, hypoxanthine, 8-hydroxyadenine, and a number of further purine derivatives react in alkaline media with mercury of the electrode charged to potentials close to zero V (against the saturated calomel electrode) and form sparingly soluble compounds. Formation of these compounds with mercury is manifested on the polarographic (voltammetric) curves by characteristic anodic waves (peaks) which can be exploited for analytical purposes. Differential pulse polarography renders it possible to determine bases at concentrations of 10?5–10?6m. Substantially higher sensitivity can be reached by cathodic stripping voltammetry (CSV). This method is based on a slow accumulation of the sparingly soluble compound at the electrode surface and its subsequent rapid cathodic stripping. A number of purine derivatives can be determined by CSV at concentrations as low as 10?8m (the limit of adenine detection is about 2 × 10?9m). As compared with sulphur-containing substances CSV analysis of the purine derivatives is limited to a narrower range of deposition potentials. It was shown that the presence of an excess of proteins or DNA does not interfere with determination of purine bases.  相似文献   

16.
A series of 8,9-disubstituted adenines (4, 5, 8), 6-substituted aminopurines (10–13) and 9-(p-fluorobenzyl/cyclopentyl)-6-substituted aminopurines (16, 17, 19–30) have been prepared and the antimicrobial activities of these compounds against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA, standard and clinical isolate), Bacillus subtilis, Escherichia coli and Candida albicans were evaluated. 6-[(N-phenylaminoethyl)amino]-9H-purine (12) which has no substitution at N-9 position and 9-cyclopentyl-6-[(4-fluorobenzyl)amino]-9H-purine (24) exhibited excellent activity against C. albicans with MIC 3.12 μg/mL. These compounds displayed better antifungal activity than that of standard oxiconazole. Furthermore, compound 22 carrying 4-chlorobenzylamino group at the 6-position of the purine moiety exhibited comparable antibacterial activity with that of the standard ciprofloxacin against both of the drug-resistant bacteria (MRSA, standard and clinical isolate).  相似文献   

17.
The 1-deaza-, 3-deaza-, 8-aza-1-deaza- and 8-aza-3-deaza-analogs of kinetin and 6-(3-methyl-2-butenylamino)purine and some of their ribosides were synthesized and their growth-promoting activities in the tobacco bioassay were determined and compared with those of the parent compounds. The replacement of nitrogen by carbon in the 1 -position of the purine ring decreases cytokinin activity 15-fold for kinetin and 2-fold for 6-(3-methyl-2-butenylamino)purine (IPA); however, the replacement of nitrogen by carbon in the 3-position decreases the activity 2000 times for kinetin and 1000 times for 6-(3-methyl-2-butenylamino)-purine. The activity of 8-aza-1-deaza-analogs appears to be of the same order of somewhat lower than the corresponding 1-deaza-analogs. The corresponding 8-aza-3-deaza-analogs are less active than kinetin (400 times and 6-(3-methyl-2-butenylamino)purine (40 times). However, they are more active than the corresponding 3-deaza-analogs. The concentration range in which the ribosides show activity is nearly the same as for the corresponding free bases, but the maximum yield of tobacco-callus for the riboside of the 3-deaza-analog of 6-(3-methyl-2-butenylamino)purine is very low.  相似文献   

18.
Phosphoribosylpyrophosphate (PRPP) levels increase several-fold in HL-60 cells adapted to folate deficiency either by continuous passage in folate-deficient medium or by short-term incubation with 10(-8) M methotrexate (MTX). The addition of folic acid (PteGlu) or 5-formyltetrahydrofolic acid (5-CHO-H4PteGlu) in the form of Leucovorin normalizes this effect. The reactions for measuring PRPP levels are time and temperature dependent and are influenced by PRPP-reacting substances in undialyzed serum. Inorganic phosphate (PO4), when added to the assay, markedly stimulates PRPP levels in HL-60 cells and can be used to stress folate-dependent PRPP utilization for purine synthesis. The integrity of the folate-dependent pathways of purine-synthesizing cells can be sensitively assessed by measurement of PRPP levels during a 2-hr assay in the presence of PO4 in medium free of folate but containing dialyzed serum. In HL-60 cells that are folate deficient or in the presence of MTX (as low as 2 X 10(-9) M), PO4-stimulated PRPP levels remain elevated due to ineffective utilization unless folate is added to the incubation mixture. The sensitivity of this PRPP assay to metabolically assess the integrity of folate-dependent reactions in purine synthesis is comparable to that of the deoxyuridine suppression assay. Inorganic phosphate can also be used to stimulate the incorporation of purine analogs, such as 6-mercaptopurine, into intact red blood cells which may have therapeutic implications for targeting drug delivery.  相似文献   

19.
Previous studies of purine nucleotide synthesis de novo have suggested that major regulation of the rate of the pathway is affected at either the phosphoribosylpyrophosphate (PP-Rib-P) synthetase reaction or the amidophosphoribosyltransferase (amido PRT) reaction, or both. We studied control of purine synthesis de novo in cultured normal, hypoxanthine-guanine phosphoribosyltransferase (HGPRT)-deficient, and PP-Rib-P synthetase-superactive human fibroblasts by measuring concentrations and rates of synthesis of PP-Rib-P and purine nucleotide end products, proposed effectors of regulation, during inhibition of the pathway. Incubation of cells for 90 min with 0.1 mM azaserine, a glutamine antagonist which specifically blocked the pathway at the level of conversion of formylglycinamide ribotide, resulted in a 5-16% decrease in purine nucleoside triphosphate concentrations but no consistent alteration in generation of PP-Rib-P. During this treatment, however, rates of the early steps of the pathway were increased slightly (9-15%) in normal and HGPRT-deficient strains, more markedly (32-60%) in cells with catalytically superactive PP-Rib-P synthetases, and not at all in fibroblasts with purine nucleotide feedback-resistant PP-Rib-P synthetases. In contrast, glutamine deprivation, which inhibited the pathway at the amido PRT reaction, resulted in time-dependent nucleoside triphosphate pool depletion (26-43% decrease at 24 h) accompanied by increased rates of PP-Rib-P generation and, upon readdition of glutamine, substantial increments in rates of purine synthesis de novo. Enhanced PP-Rib-P generation during glutamine deprivation was greatest in cells with regulatory defects in PP-Rib-P synthetase (2-fold), but purine synthesis in these cells was stimulated only 1.4-fold control rates by glutamine readdition. Stimulation of these processes in normal and HGPRT-deficient cells and in cells with PP-Rib-P synthetase catalytic defects was, respectively: 1.5 and 2.0-fold; 1.5 and 1.7-fold; and 1.6 and 4.1-fold. These studies support the following concepts. 1) Rates of purine synthesis de novo are regulated at both the PP-Rib-P synthetase and amido PRT reactions by end products, with the latter reaction more sensitive to small changes in purine nucleotide inhibitor concentrations. 2) PP-Rib-P exerts its role as a major regulator of purine synthetic rate by virtue of its interaction with nucleotide inhibitors to determine the activity of amido PRT. 3) Activation of amido PRT by PP-Rib-P is nearly maximal at base line in fibroblasts with regulatory defects in PP-Rib-P synthetase.  相似文献   

20.
Bovine cardiac myosin ATPase activity was rapidly inactivated by the purine disulfide analog of ATP,6,6'-dithiobis(inosinyl imidodiphosphate). Kinetic investigations showed that this analog acted as a site-specific reagent at 0 degrees with a Ki of 130 muM and a half-life of 8.2 min at saturating inhibitor concentrations. Concentrations (50 to 500 muM) of ATP, adenyl-5'-yl imidodiphosphate (AMP-PNP), or ADP that saturated the active site caused an enhancement in the rate of inactivation, indicating the purine disulfide analog was not reacting at the active site. Under these conditions saturation kinetic data were still observed with Ki values remaining unchanged (120 muM) but with the half-life of inactivation decreasing to 6.0 min (ATP) and 4.6 min (AMP-PNP) at saturating inhibitor concentrations. At concentrations greater than 0.5 mM ATP, AMP-PNP, or ADP there was a decrease in the rate of inactivation, implying protection by these nucleotides. However, saturation kinetics of inactivation could no longer be demonstrated, implying a change in the mechanism of inactivation. A comparison of the inactivation of the Mg2+, Ca2+, and EDTA-ATPase activities of cardiac myosin after modification by the purine disulfide analog showed that the Mg2+- and Ca2+ATPase activities plateaued at approximately 60% and 40%, respectively, while the EDTA-ATPase activity continued to decrease to below 10%. This evidence supports the suggestion that the purine disulfide analog was not reacting at the active site. Equilibrium dialysis experiments were used to measure the binding of [8-3H]AMP-PNP to native cardiac myosin, the thiopurine nucleotide-modified myosin, and the derivative formed by displacing the thiopurine nucleotide by cyanide (thiocyanato-myosin). Native myosin bound a total of 2.1 mol of AMP-PNP with a binding constant of 6.0 X 10(6) M-1. There was a 15 to 40% decrease in the number of AMP-PNP binding sites in the enzyme derivatives, but the active sites appeared not to be blocked since the association constants remained essentially unchanged (KA=3.9 X 10(6) M-1 for thiopurine nucleotide-myosin and 12.0 X 10(6) M-1 for thiocyanato-myosin). The kinetic studies and the binding experiments indicate that the purine disulfide analog reacts at a specific site other than the active site but do not offer support to earlier suggestions from skeletal myosin studies that this site is a possible ATP control site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号