首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of resveratrol (trans-3,4',5-trihydroxystilbene) on the oxidative stress in blood platelets induced by platinum compounds [cisplatin and selenium-cisplatin conjugate] were studied in vitro. The production of thiobarbituric acid reactive substances (TBARS), the level of conjugate diene, the generation of superoxide anion radicals (O2-*) and other reactive oxygen species (O2-*, H2O2, singlet oxygen and organic radicals) were measured by chemiluminescence in blood platelets treated with platinum compounds. Cisplatin at the concentration of 10 microg/ml, as well as selenium-cisplatin conjugate (10 microg/ml) induced oxidative stress in blood platelets: an increase in TBARS, conjugate diene, chemiluminescence and generation of O2-*. In the presence of resveratrol (a natural compound with antioxidant activity) at the concentrations of 1-25 microg/ml, the chemiluminescence, the levels of O2-*, conjugate diene and TBARS were reduced (p < 0.05). We showed that resveratrol at different concentrations (1-25 microg/ml) had a protective effect against oxidative stress in platelets caused by platinum compounds (10 microg/ml) and it diminished platelet lipid peroxidation and reactive oxygen species generation induced by platinum compounds.  相似文献   

2.
A radical reaction of low-density lipoprotein (LDL) causes fragmentation and cross-link of apolipoprotein B-100 (apoB). LDL (50 microg/ml) was subjected to the well-studied oxidation with Cu(2+) (1.67 microM). The concentration of alpha-tocopherol decreased to 10% of the initial level during the first 30 min. After this lag time, the conjugated diene content, as measured by absorption at 234 nm, started increasing and the residual apoB at 512 kDa determined by immunoblot after SDS-PAGE (sodium dodecylsulfate-polyacrylamide gel electrophoresis) was also decreased. The particle size of LDL determined by nondenaturing gradient gel electrophoresis decreased steadily during the initial 120 min, when residual native apoB was only 30% of the initial level. Plasma was also oxidized with Cu(2+) (400 microM). Under this condition, a clear lag time was not observed and alpha-tocopherol content, apoB, and the LDL particle size were decreased simultaneously. Based on these experiments, we propose that an oxidation reaction is involved in the formation of small dense LDL.  相似文献   

3.
Radiolabeling of low density lipoprotein (LDL) apoB100 with 125I, an oxidative process, is commonly used in lipoprotein investigation. Since 1) LDL is unstable and oxidation-prone, 2) the modification of apoB100 by oxidation increases the negative charge of particles and leads to the uptake of modified LDL through the scavenger receptor pathway, and 3) oxidized LDL is cytotoxic, it is relevant to investigate whether the oxidative stability of LDL is influenced by its labeling with 125I. The aim of this study was to investigate and compare lipid and protein oxidation markers in human LDL after labeling with 125I by two widely adopted methods that use ICl or the chloramide 1,3,4,6-tetrachloro-3alpha,6alpha-diphenylglycoluril as the oxidizing agent. Native LDL served as a common control and sham-iodinated LDL as a handling control for each procedure. The resistance against copper-induced oxidation of 125I-LDL labeled with ICl was similar to that of controls with regard to the lag time and maximal amount of conjugated diene formed, as there were levels of initial conjugated diene, alpha-tocopherol, and tryptophan. However, radioiodination with the chloramide accelerated the onset of the rapid phase of LDL oxidation due to a drastic depletion of alpha-tocopherol and increased conjugated diene content. Measurements of copper-induced LDL oxidizability showed enhanced indices of lipid oxidation. The lag time and the time to maximal diene production were 65% and 30% shorter than controls. This was accompanied by a 50% reduced tryptophan fluorescence. The anionic surface charge of the LDL particle increased moderately with both labeling procedures. The results indicate that labeling of LDL with 125I may oxidize lipids and apoB100 to a variable extent, depending on the nature of the iodinating agent. This is why assessment of the oxidizability properties of 125I-labeled LDL is recommended for reliable biological studies.  相似文献   

4.
Oxidized (ox-) low density lipoproteins (LDL) is characterized by the formation of lipid peroxides and their decomposition to reactive aldehydes which covalently link to apoB in LDL. These chemical changes are believed to be responsible for the enhanced recognition of ox-LDL by receptors on macrophages in culture. When oxidation is extensive, particle aggregation also occurs. The aim of this study was to characterize aggregation formation and how this influences the interaction of ox-LDL with macrophages in culture. When LDL was oxidized by incubating at 500 micrograms of protein/ml with 10 microM Cu2+ at 20 degrees C for up to 25 h, time-dependent increases in thiobarbituric acid reactive substances, conjugated diene content, electrophoretic mobility, and fluorescence at 360 excitation/430 emission were found. Particle aggregation increased in parallel with several parameters of oxidation and increased with increasing incubation temperatures and LDL concentrations used. When evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, apoB fragments of reproducible sizes and higher molecular weight species appeared after mild oxidation of LDL. The percent of total apoB remaining aggregated in sodium dodecyl sulfate was 50-80% at high degrees of oxidation, whereas it was far less in LDL that had been aggregated without chemical modification. This suggested that intermolecular cross-linking of apoB had occurred during oxidation of LDL at high concentrations. Degradation of ox-LDL in mouse peritoneal macrophages (MPM) increased in parallel with the degree of oxidation and with particle aggregation but reached a plateau after 12 h. Results from cross-competition studies in MPM with soluble and insoluble portions of extensively ox-LDL and with acetyl-LDL were consistent with uptake of soluble ox-LDL via both the scavenger receptor and another receptor on MPM, and uptake of the insoluble ox-LDL by an alternative mechanism.  相似文献   

5.
Endogenously produced dicarbonyls, such as methylglyoxal (MG), are involved in advanced glycation end-product formation and thus linked to the pathophysiology of diabetic chronic complications. While the search for synthetic new antiglycation agents continues, little attention has been paid to putative antiglycation agents in natural compounds. Given the link between glycation and oxidation, in this work, we study the effects of methylglyoxal on two model systems; plasminogen and antithrombin III (AT III), then we set out to unravel a possible antiglycation effect for extracts of the flavonoid-rich common herbal species Achyrocline satureoides (AS) and Ilex paraguariensis (IP). Using SAR-PRO-ARG-pNA as a specific thrombin substrate, we show that incubation of plasma with MG decreases heparin activation of AT III by up to a 70%, in a dose-dependent manner. A parallel dose-dependent decrease in plasminogen activity reaching more than 50% was shown using D-BUT-CHT-lys-pNA as a plasmin-specific substrate. Extracts of AS and IP display a dose dependent inhibition of the action of the dicarbonyl, already significant at a 1/100 dilution of the herbal infusions. The inhibition was comparable to that obtained by using millimolar concentrations of known AGE inhibitors such as aminoguanidine and carnosine as well as micromolar concentrations of the antioxidant ascorbic acid. We believe our system of whole plasma glycation over 16 h with micromolar concentrations of MG, coupled with the measurement of activities of plasminogen and AT III by specific substrates provides a straightforward, practical method for monitoring the action of putative antiglycation agents. If predictably milder glycated forms of AT III and plasminogen were to be secreted in vivo, the loss of activities shown here could act synergistically to generate hyperthrombicity.  相似文献   

6.
Compelling evidence suggests that low-density lipoprotein (LDL) is oxidized by cells within the arterial intima and that, once oxidized, it is profoundly atherogenic. The precise mechanism(s) by which cells promote the oxidation of LDL in vivo are not known; in vitro, however, oxidation of LDL can be enhanced by a number of differing mechanisms, including reaction with free and protein-bound metal ions, thiols, reactive oxygen species, lipoxygenase, myeloperoxidase and peroxynitrite. This review is concerned with the mechanisms by which cells enhance the oxidation of LDL in the presence of transition metals; in particular, the regulation, pro- and anti-oxidant consequences, and mechanism of action of cellular thiol production are examined, and contrasted with thiol-independent oxidation of LDL in the presence of transition metals.  相似文献   

7.
Compounds 4a-j and 5 were synthesized by cyclocondensation of 3a-j and hydrazine and showed significant LDL-antioxidant activities in the TBARS assay, the lag time of conjugated diene production, the relative electrophoretic mobility (REM) of ox-LDL, the apoB-100 fragmentation, and the macrophage-mediated LDL oxidation. Among compounds 4a-j and 5, 4a was found to be the most active compound as an inhibitor of LDL oxidation and 4a (IC50 = 0.1 microM) was 6-fold more potent than probucol (IC50 = 0.6 microM) in the TBARS assay.  相似文献   

8.
The objective of this study was to examine the effect of oxLDL on prostacyclin (PGI2) generation by rat aortic segments and to see whether the lipid fraction of oxLDL or its components are responsible for that effect. We also tested if antioxidants have any protective role. LDL oxidized by copper was characterized by higher TBARS, conjugated diene, lysophosphatidylcholine (lyso PC), oxysterols and less polyunsaturated fatty acids (PUFA) than nLDL. Preincubation of aortas with oxLDL caused a significant inhibition of PGI2 generation compared to aortas preincubated with nLDL or buffer only. The percent inhibition was dependent on the concentration of oxLDL. Most of the inhibitory effect of oxLDL resided in its lipid moiety while the lipid fraction of nLDL, as well as native LDL had no effect. Preincubation of aortas with 10 microg/ml of 7-ketocholesterol the major oxysterol in oxLDL reduced the amount of PGI2 generated by aorta at all times tested; however that decrease did not reach a significant level. Aortas preincubated with 10 microg/ml of lyso PC showed a 21-36% inhibition of PGI2 generation which was comparable to the inhibition produced by preincubating the aortas with 50 microg protein/ml of oxLDL (containing about 7.5 microg lyso PC). This indicated that most of the inhibitory effect of oxLDL was due to its lyso PC. The small molecular weight fraction (< 10 kDa) with a high level of TBARS (TBARS solution) also significantly decreased the PGI2 generation by aorta. Addition of superoxide dismutase (SOD) + catalase or vitamin E simultaneously with oxLDL or TBARS solution in the preincubation medium did not reverse their inhibitory effects. This indicated that oxygen free radicals are not a contributing factor to the inhibitory effect of oxLDL but lyso PC and the lipid peroxides and probably other components already present within oxLDL are the important inhibitors.  相似文献   

9.
Tanshinone II-A inhibits low density lipoprotein oxidation in vitro   总被引:5,自引:0,他引:5  
Tanshinone II-A (TSII-A) is a major component of Salvia miltorrhiza Bunge which has long been used for preventing and ameliorating anginal pain in China. However the effect of TSII-A on low density lipoprotein (LDL) oxidation has not been studied. The present study was performed to investigate the effects of TSII-A on LDL oxidation using four oxidizing systems, including copper-, peroxyl radical- and peroxynitriteinitiated and macrophage-mediated LDL oxidation. LDL oxidation was measured in terms of formation of thiobarbituric acid-reactive substances (TBARS), relative electrophoretic mobility (REM) on agarose gel and lag time. In all four systems, TSII-A has apparent antioxidative effects against LDL oxidation, as evidenced by its dose-dependent inhibition of TBARS formation, prolongation of lag time and suppression of increased REM.

Regarding the mechanism underlying its antioxidative effect, TSII-A neither scavenged superoxide nor peroxynitrite. It also did not chelate copper. But it has mild peroxyl radical scavenging activity. The direct binding to LDL particles and conformational change of LDL structure by TSII-A were suggested, because it increased negative charge of LDL which was shown by increased REM on agarose gel. In conclusion, TSII-A is an effective antioxidant against LDL oxidation in vitro. The underlying mechanism appears to be related to its peroxyl radical scavenging and LDL binding activity.  相似文献   

10.
The aim of this study was to investigate the effects of genistein supplementation in a vitamin E-deficient diet on the genistein concentrations and the lipid oxidation of serum, liver and low-density lipoprotein (LDL) of hamsters. Thirty-six male hamsters were randomly divided into three groups and fed a vitamin E-deficient semisynthetic diet (AIN-76) containing different levels of genistein, i.e., G0 (control group, genistein-free diet), G50 (50 mg genistein/kg diet) and G200 (200 mg genistein/kg diet) for 5 weeks. The concentrations of genistein in serum and liver significantly increased with the increase of genistein supplementation. The vitamin E contents in LDL were higher in hamsters fed G50 or G200 diets than in hamsters fed genistein-free diet. Genistein supplementation to hamsters significantly reduced the propagation rate during conjugated diene formation of LDL oxidation, and the lag time of LDL oxidation in hamsters fed G200 diets was significantly lower than that of G0 diets. In addition, genistein supplementation significantly raised serum total antioxidant capacity and decreased the thiobarbituric acid-reactive substances (TBARS) of LDL and liver in hamsters. However, no significant differences in TBARS were found in serum, irrespective of genistein addition. On the other hand, the relative contents of polyunsaturated fatty acids in LDL were decreased after genistein supplementation. There was a negative correlation between lag time and P/S ratio, and a positive correlation between lag time and vitamin E contents. These data demonstrate that genistein supplementation markedly increased its concentrations in body tissues and reduced oxidative stress of lipid oxidation of serum, liver and LDL.  相似文献   

11.
Tanshinone II-A (TSII-A) is a major component of Salvia miltorrhiza Bunge which has long been used for preventing and ameliorating anginal pain in China. However the effect of TSII-A on low density lipoprotein (LDL) oxidation has not been studied. The present study was performed to investigate the effects of TSII-A on LDL oxidation using four oxidizing systems, including copper-, peroxyl radical- and peroxynitriteinitiated and macrophage-mediated LDL oxidation. LDL oxidation was measured in terms of formation of thiobarbituric acid-reactive substances (TBARS), relative electrophoretic mobility (REM) on agarose gel and lag time. In all four systems, TSII-A has apparent antioxidative effects against LDL oxidation, as evidenced by its dose-dependent inhibition of TBARS formation, prolongation of lag time and suppression of increased REM.

Regarding the mechanism underlying its antioxidative effect, TSII-A neither scavenged superoxide nor peroxynitrite. It also did not chelate copper. But it has mild peroxyl radical scavenging activity. The direct binding to LDL particles and conformational change of LDL structure by TSII-A were suggested, because it increased negative charge of LDL which was shown by increased REM on agarose gel. In conclusion, TSII-A is an effective antioxidant against LDL oxidation in vitro. The underlying mechanism appears to be related to its peroxyl radical scavenging and LDL binding activity.  相似文献   

12.
Much data has accumulated supporting a proatherogenic role for oxidized low density lipoprotein (Ox-LDL). Micronutrient antioxidants such as alpha-tocopherol, the principal lipid-soluble antioxidant, assume potential significance because levels can be manipulated by dietary measures without resulting in side effects. Co-incubation of LDL in vitro with alpha-tocopherol inhibits its oxidative modification. Hence the effect of dietary supplementation with alpha-tocopherol on the time course of copper-catalyzed oxidation of LDL was tested in a randomized placebo-controlled single-blind study. Two groups of 12 male subjects were given either placebo or alpha-tocopherol (800 IU/day) for a period of 12 weeks. Alpha-tocopherol therapy did not result in any side effects or exert an adverse effect on the plasma lipid and lipoprotein profile. While the lipid standardized alpha-tocopherol levels were similar at baseline, the supplemented group had 3.3-fold and 4.4-fold higher levels compared to placebo at 6 and 12 weeks, respectively. In the 15 subjects in whom both plasma and LDL alpha-tocopherol levels were quantitated, there was a significant correlation (r = 0.79, P less than 0.0001). At baseline there were no significant differences in the time course curves of thiobarbituric acid-reacting substances (TBARS) activity or conjugated diene formation between the alpha-tocopherol and placebo groups. However, at both 6 and 12 weeks the mean levels of TBARS activity and conjugated diene formation were lower in the alpha-tocopherol group; the most significant differences were manifest at the 3-h time point. Also at both 6 and 12 weeks the mean rate of oxidation was lower in the alpha-tocopherol group.2+_  相似文献   

13.
A new diarylbutane lignan, 2'-hydroxy dihydroguaiaretic acid (4), and a known 8-O-4'-type neolignan, machilin D (5), were isolated from the ethyl acetate extracts of the underground parts of Saururus chinensis. Compounds 4 and 5 exhibited low-density lipoprotein (LDL)-antioxidant activity in the thiobarbituric acid-reactive substances (TBARS) assay (4: IC(50)=3.3 microM and 5: IC(50)=3.8 microM), the lag time of conjugated diene production, the relative electrophoretic mobility (REM) of ox-LDL, the apoB-100 fragmentation on copper-mediated LDL oxidation and the macrophage-mediated LDL oxidation, and radical DPPH scavenging activity.  相似文献   

14.
Short peptides sequences were selected that showed binding selectivity towards healthy or oxidised (unhealthy) low density lipoprotein (LDL), respectively. These were investigated for application in atherosclerosis risk monitoring. Comparison was also made with the LDL receptor ligand repeat peptide (LR5). The peptides were immobilised on a gold surface plasmon resonance surface and LDL binding detected as a shift in the resonance. 3.7x10(7) (+/-5.6x10(6)) LDL/mm(2)/microg/ml solution LDL were bound on GlySerAspGlu-OH and 6.8x10(7) (+/-9.2x10(6)) LDL/mm(2)/microg/ml on GlyCystineSerAspGlu, compared with approximately 10(8) LDL/mm(2)/microg/ml on LR5. In this first group, binding of LDL decreased with oxidation level and a good correlation was found between LDL binding and residual amino groups on the apoprotein of the LDL following oxidation, or the change in relative electrophoretic mobility (REM) of LDL. The decrease in binding was 1.1x10(7) LDL particles/mm(2) per% oxidation for GlySerAspGlu-OH, 1.8x10(7) LDL particles/mm(2) per% oxidation for GlyCystineSerAspGlu and 2.4x10(7) LDL particles/mm(2) per% oxidation for LR5. A second group of three peptides were also selected showing increased binding with LDL oxidation: GlyCystineCysCys (1.5x10(7) LDL/mm(2) per microg/ml), GlyLysLysCys-SH (10(7) LDL/mm(2) per microg/ml) and GlyLysLys-OH (5.6x10(7) LDL/mm(2) per microg/ml). The latter gave a linear increase in LDL binding with oxidation level (1.2x10(7) LDL particles/mm(2) per% oxidation). LDL concentration is around 2-3 mg/ml in plasma compared with the low detection levels with this method (1-10 microg/ml), allowing a strategy to be developed requiring the minimum sample volume and diluting with physiological buffer prior to assay. By using a comparative reading between LDL adsorption on surfaces from the first and second group of peptides (e.g. GlyCystineSerAspGlu and GlyLysLys-OH, respectively), LDL oxidation could be determined without knowledge of LDL concentration. Higher binding was seen on GlyCystineSerAspGlu than GlyLysLys-OH below 30% LDL oxidation, whereas above 30% oxidation the binding on the latter surface was greater. Simple correlation of this form could provide good tests for atherosclerosis risk.  相似文献   

15.
Oxidative modification of LDL by vascular cells has been proposed as the mechanism by which LDL become atherogenic. The effect of ibuprofen on LDL modification by copper ions, monocytes and endothelial cells was studied by measuring lipid peroxidation products. Ibuprofen inhibited LDL oxidation in a dose-dependent manner over a concentration range of 0.1 to 2.0 mM. Ibuprofen (2 mM, 100 microg/ml LDL) reduced the amount of lipid peroxides formed during 2 and 6 h incubation in the presence of copper ions by 52 and 28%, respectively. Weak free radical scavenging activity of ibuprofen was observed in the DPPH test. The protective effect of ibuprofen was more marked when oxidation was induced by monocytes or endothelial cells. Ibuprofen (1 mM, 100 microg/ml LDL) reduced the amount of lipid peroxides generated in LDL during monocyte-mediated oxidation by 40%. HUVEC-mediated oxidation of LDL in the absence and presence of Cu2+ was reduced by 32 and 39%, respectively. More lipid peroxides appeared when endothelial cells were stimulated by IL-1beta or TNFalpha and the inhibitory effect of ibuprofen in this case was more pronounced. Ibuprofen (1 mM, 100 microg/ml LDL) reduced the amount of lipid peroxides formed during incubation of LDL with IL-1beta-stimulated HUVEC by 43%. The figures in the absence and presence of Cu2+ for HUVEC stimulated with TNFalpha were 56 and 59%, respectively. To assess the possibility that ibuprofen acts by lowering the production rate of reactive oxygen species, the intracellular concentration of H2O2 was measured. Ibuprofen (1 mM) reduced intracellular production of hydrogen peroxide in PMA-stimulated mononuclear cells by 69%. When HUVEC were stimulated by IL-1beta or TNFalpha the reduction was 62% and 66%, respectively.  相似文献   

16.
Oxidative modification of human low-density lipoprotein (LDL) renders it atherogenic. Previous studies demonstrated that plasma thiols promote oxidation of LDL by free ferric iron (Fe3+). The current study investigated effects of plasma thiols on oxidation of LDL by hemin, a physiological Fe3+-protoporphyrin IX complex thought to be capable of initiating LDL oxidation in vivo. In contrast to free Fe3+ which is incapable of oxidizing LDL in the absence of an exogenous reductant, hemin readily promoted LDL oxidation. During incubation of LDL (0.2 mg of protein/ml) with hemin (10 microM) at 37 degrees C for 6 h, thiobarbituric acid-reactive substances (TBARS), a marker of lipid oxidation, increased from 0.3 (+/-0.1) nmol/mg of LDL protein to a maximal concentration of 45.8 (+/-5.2) nmol/mg of LDL protein. Under the same experimental conditions, lipid-conjugated dienes, another marker of lipid oxidation, increased from non-detectable to near-maximal levels of 78-187 nmol/mg of LDL protein, and lipoprotein polyunsaturated fatty acyl-containing cholesteryl ester content decreased to 15-36% of that present in native (i.e. unoxidized) LDL. Continued incubation of LDL with hemin for up to 24 h resulted in no further significant alterations in lipoprotein levels of TBARS, lipid-conjugated dienes, and cholesteryl esters. In addition to these chemical modifications indicative of lipoprotein oxidation, agarose gel electrophoretic analysis indicated that exposure of LDL to hemin resulted in conversion of the lipoprotein to an atherogenic form as evidenced by its increased anodic electrophoretic mobility. Addition of physiological concentrations of plasma thiols (either cysteine, homocysteine or reduced glutathione; 1-100 microM, each) inhibited hemin-mediated oxidation of LDL. Thus, whereas the maximal TBARS concentration was achieved following 6 h of incubation of LDL with hemin alone, addition of thiol extended the time required to attain maximal TBARS concentration to > or = 12 h. Similar antioxidant effects of thiols on formation of lipid-conjugated dienes, loss of cholesteryl esters, and lipoprotein anodic electrophoretic mobility were also observed. However, all thiols were not equally effective at inhibiting hemin-dependent LDL oxidation. Thus, whereas reduced glutathione was most effective at inhibiting hemin-dependent LDL oxidation, an intermediate effect was observed for homocysteine, and cysteine was least effective. The inhibition of hemin-mediated LDL oxidation by plasma thiols reported here confirms a previous observation that, under certain conditions, thiols can function as antioxidants, but contrasts with the previously documented pro-oxidant effect of the same thiols on oxidation of LDL by free Fe3+. These contrasting effects of plasma thiols on hemin- and free Fe3+-mediated LDL oxidation indicate that, in vivo, the ability of thiols to function as either anti- or pro-oxidants during LDL oxidation may, at least in part, be determined by the type of oxidant stress to which the lipoprotein is exposed.  相似文献   

17.
《Free radical research》2013,47(5):267-276
Homocystinuria is an inborn error of methionine metabolism that is characterized by the premature development of arteriosclerosis. As one of the major factors in the pathogenesis of arteriosclerosis, modification of low-density lipoprotein (LDL) has received widespread attention by many investigators. In this study, to elucidate the relationship between elevated homocysteine levels and premature arteriosclerosis, we investigated the role of homocysteine in the iron-catalyzed oxidative modification of LDL. When LDL isolated from a healthy subject was incubated with homocysteine and ferric ion, a gradual decrease of polyunsaturated fatty acids (PUFA), formation of thiobarbituric acid-reactive substances (TBARS) and fluorescent substances, and the fragmentation of apoprotein B (apoB) were observed. The extent of oxidative modification was dependent on the concentration of homocysteine. Modification of LDL was suppressed until the remaining α-tocopherol concentration reached a critical level. When the α-tocopherol content of LDL was increased by 2.6-fold, both the formation of TBARS and the fragmentation of apoB were suppressed. These results suggest that homocysteine might promote iron-catalyzed oxidation of LDL and imply its role for the development of premature arteriosclerosis.  相似文献   

18.
Prevention of lipoprotein oxidation by natural compounds may prevent atherosclerosis via reducing early atherogenesis. In this study, we investigated for the first time the beneficial properties of methanolic extract of argania pericarp (MEAP) towards atherogenesis by protecting human low-density lipoprotein (LDL) against oxidation while promoting high-density lipoprotein (HDL)-mediated cholesterol efflux. By measuring the formation of malondialdehyde (MDA) and conjugated diene as well as the lag phase and the progression rate of lipid peroxidation, the MEAP was found to possess an inhibitory effect. In addition, MEAP reduced the rate of disappearance of alpha-tocopherol as well as the apoB electrophoretic mobility in a dose-dependent manner. These effects are related to the free radical scavenging and copper-chelating effects of MEAP. In terms of cell viability, MEAP has shown a cytotoxic effect (0-40 microg/mL). Incubation of 3H-cholesterol-loaded J774 macrophages with HDL in the presence of increasing concentrations of MEAP enhanced HDL-mediated cholesterol efflux independently of ABCA1 receptor pathways. Our findings suggest that argania seed pericarp provides a source of natural antioxidants that inhibit LDL oxidation and enhance cholesterol efflux and thus can prevent development of cardiovascular diseases.  相似文献   

19.
A chemiluminescence (CL) flash kinetics on the addition of Fe2+ ions into oxidized low density lipoprotein (LDL) suspension has been studied. LDL oxidation was carried out at 37°C without and in the presence of 5 or 50 μM of Cu.2+ It has been found that under certain experimental conditions (the addition of excess iron ions, more than 1 mM) the amplitude of CL flash depended almost linearly (1) on the concentration of oxidized LDL and (2) on the extent of LDL oxidation measured as diene conjugates (DC) and 2-thiobarbituric acid-reactive substance (TBARS) accumulation. The corresponding correlation coefficients were: for TBARS - 0.94 and for DC - 0.97, in the case of LDL autooxidation; 0.72 and 0.98, in the case of copper-induced LDL oxidation. A sensitivity of the CL method was shown to be significantly enhanced (by more than two orders) in the presence of CL sensitizer - 2, 3,5, 6-lH,4H-tetrahydro-9-(2' -benzoimidazolyl)-quinolizin-(9, 9a, 1 -gh)coumarin.  相似文献   

20.
Traoré M  Jialing H  Chunling X 《Biorheology》2003,40(1-3):389-394
Objective: To further establish a definite basic of the application value of sodium ferulate (SF) for prevention and cure of acute coronary heart disease, we examined the effects of SF on LDL oxidation and lipid accumulation in rabbit aortic smooth muscle cells induced by modified-LDL.Methods: LDL oxidation was carried out in the presence and absence of SF. Cultured rabbit aortic smooth muscle cells were used as the model. To investigate the effects of SF on intracellular lipid accumulation, cells were incubated with Ox-LDL and SF. The lipid content (cholesterol and triglycerides) of the cells were determined.Results: Intracellular cholesterol and triglycerides were significantly increased in cell-modified LDL group. The enhancements of above indexes were decreased after addition of SF (200 microg/ml). On the other hand, incubation of LDL with SF resulted in a significant decrease in TBARS activity and electrophoretic mobility.Conclusion: The results indicated that SF assume significance both in the protection of LDL against oxidation and inhibition of cell-modified LDL effects on intracellular lipid with the potential to prevent cell foamation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号