首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Polyethylene glycol-modified enzymes dissolved and had high enzymic activity in organic solvents. A trace amount of water was found to be necessary for the activity. It was reasoned that the amphipathic polymer covalently attached to enzymes kept water molecules around them. This was supported by findings that : (1) high enzymic activity was found in water- immiscible solvents, whereas activity was never observed in water-miscible solvents; (2) enzymic activity was inhibited by increasing the concentration of dimethyl sulfoxide in benzene; (3) activity of lipase was inhibited by a water-miscible alcohol substrate, but was steadily elevated by increasing the concentration of a water-immiscible alcohol substrate; (4) water was not absorbed from benzene solution containing a modified enzyme by molecular sieves, while it was easily absorbed in the presence of a water-miscible organic solvent, dimethyl sulfoxide.  相似文献   

2.
Bovine liver catalase with molecular weight of 248,000, which consists of four subunits, was modified with 2,4-bis(o-methoxypolyethylene glycol)-6-chloro-s-triazine(activated PEG2). The modified catalase became soluble in organic solvents such as benzene by increasing the degree of modification of amino groups in the enzyme with activated PEG2. The enzymic activity of the modified catalase in benzene, in which 42% of the total amino groups were coupled with the modifier, was unexpectedly high in comparison with the activity of non-modified catalase in aqueous system. The absorption spectrum of the modified catalase in benzene showed the characteristic pattern of a haem protein with Soret band at 405 nm. The temperature-activity profile of the modified catalase in benzene was clarified and its activation energy was estimated to be 1900 cal/mol.  相似文献   

3.
Chymotrypsin modified with polyethylene glycol was successfully used for peptide synthesis in organic solvents. The benzene-soluble modified enzyme readily catalyzed both aminolysis of N-benzoyl-L-tyrosine p-nitroanilide and synthesis of N-benzoyl-L-tyrosine butylamide in the presence of trace amounts of water. A quantitative reaction was obtained when either hydrophobic or bulky amides of L- as well as D-amino acids were used as acceptor nucleophiles, while almost no reaction occurred with free amino acids or ester derivatives. The acceptor nucleophile specificity of modified chymotrypsin as a catalyst in the formation of both amide and peptide bonds in organic solvents was quite comparable to that in aqueous solution as well as to that of the leaving group in hydrolysis reactions. By contrast, the substrate specificity of modified chymotrypsin in organic solvents was different from that in water since arginine and lysine esters were found to be as effective as aromatic amino acids to form the acyl-enzyme with subsequent synthesis of a peptide bond.  相似文献   

4.
The solvent dependency and substrate specificity of polyethylene glycol (PEG)-modified cholesterol esterase (CEH) catalyzing cholesterol ester synthesis in organic solvents were studied. When cholesterol and linoleic acid were used as the substrates, PEG-modified CEH synthesized cholesterol linoleate only in water-immiscible organic solvents. Among some solvents capable of solubilizing all of the reaction components (PEG-modified CEH, cholesterol, and linoleic acid), chloroform was most suitable for enzymatic cholesterol linoleate synthesis, and the synthetic activity for cholesterol linoleate decreased in the order chloroform, benzene, toluene, and cyclohexane. PEG-modified CEH synthesized various cholesterol esters with significant substrate specificity. The substrate specificity for cholesterol ester synthesis in benzene was analogous to that for cholesterol ester hydrolysis in aqueous solution.  相似文献   

5.
Summary Trypsin, chymotrypsin, papain, thermolysin and pepsin were modified with a polyethylene glycol derivative (PEG). Each PEG-protease became soluble and active in organic solvents and catalyzed peptide bond formation with their substrate specificity. Using five kinds of PEG-proteases, various kinds of tripeptides were synthesized by solid phase system in methanol or in dimethylformamide.Abbreviations Boc t-butyloxycarbonyl - Z benzyloxycarbonyl - Fmoc 9-fluorenylmethyloxycarbonyl - PAM 4-(oxymethyl)phenylacetoamidomethyl - HMP 4-(oxymethyl)phenoxymethyl.  相似文献   

6.
Summary Polyethylene glycol-modified thermolysin was found to efficiently catalyze peptide synthesis in organic solvents. As in aqueous media, the reaction occurred through a rapid equilibrium random bireactant mechanism. However, the substrate specificity of modified thermolysin was actually changed since hydrophilic as well as acidic amino acids were better carboxyl group donors than hydrophobic residues, contrary to what is observed in both the enzyme-catalyzed synthesis and hydrolysis of peptide bonds in water.  相似文献   

7.
Cholesterol esterase modified with polyethylene glycol was able to dissolve in some highly hydrophobic solvents such as benzene and toluene, and catalyze the synthesis of cholesterol linoleate with time dependency in the reverse of the usual reaction in aqueous solvents. Enzymatic cholesterol linoleate synthesis followed Michaelis-Menten kinetics which depended on the concentration of cholesterol and linoleic acid. When more than 20 mM of both substrates was used, the specific activity in this esterification was 200-250 nmol/min/mg protein. The apparent Km value for cholesterol and linoleic acid was 3.7 and 7.6 mM, respectively. The possibility of using such a modified enzyme for the synthesis of less stable cholesterol esters is discussed.  相似文献   

8.
Naturally occurring enzymes may be modified by covalently attaching hydrophobic groups that render the enzyme soluble and active in organic solvents, and have the potential to greatly expand applications of enzymatic catalysis. The reduction of elemental sulfur to hydrogen sulfide by a hydrogenase isolated from Pyrococcus furiosus has been investigated as a model system for organic biocatalysis. While the native hydrogenase catalyzed the reduction of sulfur to H(2)S in aqueous solution, no activity was observed when the aqueous solvent was replaced with anhydrous toluene. Hydrogenase modified with PEG p-nitrophenyl carbonate demonstrated its native biocatalytic ability in toluene when the reducing dye, benzyl viologen, was also present. Neither benzyl viologen nor PEG p-nitrophenyl carbonate alone demonstrated reducing capability. PEG modified cellulase and benzyl viologen were also incapable of reducing sulfur to H(2)S, indicating that the enzyme itself, and not the modification procedure, is responsible for the conversion in the nonpolar organic solvent. Sulfide production in toluene was tenfold higher than that produced in an aqueous system with equal enzyme activity, demonstrating the advantages of organic biocatalysis. Applications of bio-processing in nonaqueous media are expected to provide significant advances in the areas of fossil fuels, renewable feedstocks, organic synthesis, and environmental control technology. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
10.
Hemin, having two carboxyl groups, was coupled with alpha-(3-aminopropyl)-omega-methoxypoly(oxyethylene) through the acid-amide bond formed with carbodiimide. The modified hemin catalyzed the peroxidase reaction in 1,1,1-trichloroethane using benzoyl peroxide or peroxides in unsaturated fatty acids as the hydrogen acceptor and leuco crystal violet as the hydrogen donor. A basic study on quantitative microanalysis of the lipid peroxides was attempted.  相似文献   

11.
Lipase from Pseudomonas fragi 22.39B was modified with polyethylene glycol. The modified lipase (PEG-lipase) was soluble and active in organic solvents such as benzene and 1,1,1-trichloroethane. PEG-lipase catalyzed esterification of chiral secondary alcohols with fatty acids in benzene and exhibited preference for R isomers over S isomers. Km and Vmax values for each isomer of various alcohols were obtained by kinetic study of the esterification in benzene. PEG-lipase-catalyzed esterification leads to optical resolution of a racemic alcohol.  相似文献   

12.
Summary Papain modified with 2,4-bis(O-methoxypolyethylene glycol)-6-chloro-s-triazine (activated PEG2) was soluble in benzene and retained the enzymic activity. Acid-amide bond formation by the modified enzyme proceeded efficiently in benzene; N-benzoyl-L-alanine alkylamides were synthesized from N-benzoyl-L-alanine methyl ester and various alkylamines, and N-benzoyl-L-alaninyl(oligo)leucine ethyl ester was formed from N-benzoyl-L-alanine methyl ester and L-leucine ethyl ester.  相似文献   

13.
β- -Galactoside galactohydrolase (E.C. 3.2.1.23) was chemically modified with 1,1′-carbonyldiimidazole-activated polyethylene glycols (MW 2,000, 8,000, and 20,000). The modified β-galactosidases had over 50% of amino groups coupled to polyethylene glycol but retained over 50% of the original activity. The hydrophobically modified enzymes were soluble in chlorinated organic solvents in which transferase activity has been demonstrated. The transferase activity, its dependency on water content, and the thermostability of all three modified enzymes were compared.  相似文献   

14.
The activity and stability of horseradish (Amoracia rusticana) peroxidase (HRP) free in solution and immobilised onto silica microparticles was studied in the presence of organic co-solvents.

The effect of several hydrophilic organic solvents, namely dimethyl sulfoxide, dimethylformamide, dioxan, acetonitrile and tetrahydrofuran, in the activity and stability of free HRP was studied. From the solvents tested, DMSO led to the highest activities and stabilities. After 2 h of incubation at 35°C, the remaining activity of the enzyme in the presence of 30% of each solvent was less than 30%, with exception of DMSO for which the enzyme remained fully active.

In order to increase stability, HRP was covalently immobilised onto silica microparticles. The half-life of the enzyme in buffer at 50°C increased from 2 to 52 h when the enzyme was immobilised. The stability of both free and immobilised HRP was also studied at 50°C in aqueous mixtures of 3.5, 20, 35 and 50% (v/v) DMSO. Free HRP stability was not affected by the presence of 3.5 and 20% DMSO, but higher contents lead to a more pronounced deactivation. Immobilised HRP stability increased with DMSO content up to 20%, decreasing for higher contents. The enzyme half-life increased more than 300% when changing from buffer to 20% DMSO.

The deactivation of free HRP was modelled using the simple exponential decay, and the deactivation of immobilised HRP was described by a two-step inactivation model.  相似文献   


15.
 Lignin-degrading manganese (II) peroxidase (MnP) purified from the culture of a wood-rotting basidiomycete, Bjerkandera adusta, was used in the polymerization of guaiacol. MnP was found to catalyze polymerization of guaiacol in 50% aqueous acetone, dimethyl formamide, methanol, ethanol, dioxane, acetonitrile, ethylene glycol and methylcellosolve. Maximum yield of polyguaiacol was achieved in 50% aqueous acetone. The weight average molecular weight (M w) of the polymer was estimated to be 30 300 by gel permeation chromatography. However, matrix-assisted laser desorption ionization time of flight mass spectroscopy (MALDI-TOF-MS) analysis gave a more reliable M w of 1690. IR, 13C-NMR, MALDI-TOF-MS and pyrolysis GC-MS analyses showed the presence of C–C and C–O linkages and quinone structure in polyguaiacol. It was also indicated that polyguaiacol has a methoxy-phenyl group as the terminal moiety. This suggests that polyguaiacol is a branched polymer in which guaiacol units are cross-linked at the phenolic group. Thermal gravimetric and differential scanning calorimetric analyses were also carried out. MnP also catalyzed the polymerization of o-cresol, 2,6-dimethoxyphenol and other phenolic compounds and aromatic amines. M w of these polymers ranged from around 1000 to 1500. Received: 2 August 1999 / Received revision: 10 December 1999 / Accepted: 4 January 2000  相似文献   

16.
The enzymic activity of noncovalent complexes of alpha-chymotrypsin with polyethylene glycol and a block-copolymer of polyethylene oxide and polypropylene oxide (proxanol) was studied in aqueous-organic media. It was shown that complex formation activated the enzyme in media with a high content of the organic solvent, whereas in systems containing more than 50% water the enzymic activity of complexes was the same as that of the native enzyme. The activation in polyethylene glycol-containing complexes was greater than in complexes with proxanol of the same molecular mass.  相似文献   

17.
When seven different hydrolytic enzymes (four proteases and three lipases) were lyophilized from aqueous solution containing a ligand, N-Ac-L-Phe-NH(2), their catalytic activity in anhydrous solvents was far greater (one to two orders of magnitude) than that of the enzymes lyophilized without the ligand. This ligand-induced activation was expressed regardless of whether the substrate employed in organic solvents structurally resembled the ligand. Furthermore, nonligand lyoprotectants [sorbitol, other sugars, and poly(ethylene glycol)] also dramaticaliy enhanced enzymatic activity in anhydrous solvents when present in enzyme aqueous solution prior to lyophilization. The effects of the ligand and of the lyoprotectants were nonadditive, suggesting the same mechanism of action. Excipient activated and nonactivated enzymes exhibited identical activities in water. Also, addition of the excipients directly to suspensions of nonactivated enzymes in organic solvents had no appreciable effect on catalytic activity. These observations indicate that the mechanism of the excipient-induced activation is based on the ability of the excipients to alleviate reversible denaturation of enzymes upon lyophilization. Activity enhancement induced by the excipients is displayed even after their removal by washing enzymes with anhydrous solvents. Subtilisin Carlsberg, lyophilized with sorbitol, was found to be a much more efficient practical catalyst than its "regular" counterpart. (c) 1993 John Wiley & Sons, Inc.  相似文献   

18.
Both stability and catalytic activity of the HynSL Thiocapsa roseopersicina hydrogenase in the presence of different water-miscible organic solvents were investigated. For all organic solvents under study the substantial raise in hydrogenase catalytic activity was observed. The stimulating effect of acetone and acetonitrile on the reaction rate rose with the increase in solvent concentration up to 80%. At certain concentrations of acetonitrile and acetone (60–80%, v/v in buffer solution) the enzyme activity was improved even 4–5 times compared to pure aqueous buffer. Other solvents (aliphatic alcohols, dimethylsulfoxide and tetrahydrofuran) improved the enzyme activity at low concentrations and caused enzyme inactivation at intermediate concentrations. The long-term incubation of the hydrogenase with aliphatic alcohols, dimethylsulfoxide and tetrahydrofuran at intermediate concentrations of the latter caused enzyme inactivation. The reduced form of hydrogenase was found to be much more sensitive to action of these organic solvents than the enzyme being in oxidized state. The hydrogenase is rather stable at high concentrations of acetone or acetonitrile during long-term storage: its residual activity after incubation in these solvents upon air within 30 days was about 50%, and immobilized enzyme remained at the 100% of its activity during this period.  相似文献   

19.
Hydrolyses of maltose, maltotriose, and soluble starch catalyzed by glucoamylase (Asp. Niger) were carried out in the aqueous solutions of methanol, ethanol, ethylene glycol, and 1,4-dioxane at 40 degrees C and at the optimum pH in the respective solutions. By the kinetic analysis based on the subsite model, it was shown that the intrinsic rate constant, K(int), was electrostatically affected by the dielectric constant of the hydroorganic solutions. The affinity of the third subsite, A(3), which affects the apparent rate constant, K(0), was correlated with the xG(tr)'s of maltose and amino acid side chains.  相似文献   

20.
K. Ryu  Y. Kim 《Biotechnology letters》1997,19(10):1019-1022
A thermostable alkaline peroxidase was partially purified from rice hulls by precipitation in 70% (v/v) isopropanol, anion exchange chromatography on a DEAE cellulose column (eluted by 50 mM potassium phosphate, pH 6.0), and gel filtration on a Sephacryl S-200 column. The peroxidase (RHP) showed a maximum activity at a slightly alkaline condition, between pH 7 and 8, for the oxidation of guaiacol in the presence of 0.2 mM H O . The half life time for the inactivation of RHP at 68°C was 168 min nearly six times that of horseradish peroxidase (HRP) at the same temperature. Dioxane enhanced the activity of RHP but decreased that of HRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号