首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The expression of melanoma-associated antigens (MAA) being limited to normal melanocytes and melanomas, MAAs are ideal targets for immunotherapy and melanoma vaccines. As MAAs are derived from self, immune responses to these may be limited by thymic tolerance. The extent to which self-tolerance prevents efficient immune responses to MAAs remains unknown. The autoimmune regulator (AIRE) controls the expression of tissue-specific self-antigens in thymic epithelial cells (TECs). The level of antigens expressed in the TECs determines the fate of auto-reactive thymocytes. Deficiency in AIRE leads in both humans (APECED patients) and mice to enlarged autoreactive immune repertoires. Here we show increased IgG levels to melanoma cells in APECED patients correlating with autoimmune skin features. Similarly, the enlarged T cell repertoire in AIRE(-/-) mice enables them to mount anti-MAA and anti-melanoma responses as shown by increased anti-melanoma antibodies, and enhanced CD4(+) and MAA-specific CD8(+) T cell responses after melanoma challenge. We show that thymic expression of gp100 is under the control of AIRE, leading to increased gp100-specific CD8(+) T cell frequencies in AIRE(-/-) mice. TRP-2 (tyrosinase-related protein), on the other hand, is absent from TECs and consequently TRP-2 specific CD8(+) T cells were found in both AIRE(-/-) and AIRE(+/+) mice. This study emphasizes the importance of investigating thymic expression of self-antigens prior to their inclusion in vaccination and immunotherapy strategies.  相似文献   

3.
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), also known as autoimmune polyglandular syndrome Type I (APS1), is an autosomal recessive autoimmune disease caused by mutations in a gene designated as AIRE (autoimmune regulator). Here we have studied the expression of Aire in transfected cell lines and in adult mouse tissues. Our results show that Aire has a dual subcellular location and that it is expressed in multiple immunologically relevant tissues such as the thymus, spleen, lymph nodes, and bone marrow. In addition, Aire expression was detected in various other tissues such as kidney, testis, adrenal glands, liver, and ovary. These findings suggest that APECED protein might also have a function(s) outside the immune system.(J Histochem Cytochem 49:197-208, 2001)  相似文献   

4.
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a monogenic autoimmune disease that is caused by mutations in the AIRE gene. Murine studies have linked AIRE to thymocyte selection and peripheral deletional tolerance, but the pathogenesis of the human disease remains unclear. In this study, we show that APECED patients have elevated IL-7 levels and a drastically decreased expression of IL-7R on CD8(+) T cells. This is associated with increased proliferation and a decreased expression of the negative TCR regulator CD5 in the CD45RO(-) subset. The CD45RO(-) cells also display oligoclonal expansions, decreased expression of the lymph node homing factors CCR7 and CD62L, and increased expression of perforin, consistent with the accumulation of highly differentiated effector cells. The CD45RO(-)CCR7(+)CD8(+) population of cells with markers characteristic of naive phenotype is also skewed, as shown by decreased expression of CD5 and increased expression of perforin. The putative CD31(+) recent thymic emigrant population is likewise affected. These data are consistent with IL-7 dysregulation inducing a decreased threshold of TCR signaling and self-antigen-driven proliferation, probably in synergy with the failed thymic selection. The resultant loss of CD8(+) T cell homeostasis is likely to play a significant role in the pathogenesis of APECED. Our findings may also hold lessons for other diseases in which the IL-7-IL-7R pathway has emerged as a risk factor.  相似文献   

5.
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy is an autoimmune disorder caused by mutations in the autoimmune regulator gene AIRE. We examined the expression of Aire in different organs (thymus, spleen, and lymph nodes) in C57BL/6 mice, using a novel rat mAb, specific for murine Aire. Using flow cytometry, directly fluorochrome-labeled mAb revealed Aire expression in a rare thymic cellular subset that was CD45(-), expressed low levels of Ly51, and was high for MHC-II and EpCam. This subset also expressed a specific pattern of costimulatory molecules, including CD40, CD80, and PD-L1. Immunohistochemical analysis revealed that Aire(+) cells were specifically localized to the thymus or, more precisely, to the cortico-medulla junction and medulla, correlating with the site of negative selection. Although in agreement with previous studies, low levels of Aire mRNA was detected in all dendritic cell subtypes however lacZ staining, immunohistochemistry and flow cytometry failed to detect Aire protein. At a cellular level, Aire was expressed in perinuclear speckles within the nucleus. This report provides the first detailed analysis of Aire protein expression, highlighting the precise location at both the tissue and cellular level.  相似文献   

6.
7.
8.
9.
10.
11.
Chronic inflammatory demyelinating polyneuropathy is a debilitating autoimmune disease characterized by peripheral nerve demyelination and dysfunction. How the autoimmune response is initiated, identity of provoking Ags, and pathogenic effector mechanisms are not well defined. The autoimmune regulator (Aire) plays a critical role in central tolerance by promoting thymic expression of self-Ags and deletion of self-reactive T cells. In this study, we used mice with hypomorphic Aire function and two patients with Aire mutations to define how Aire deficiency results in spontaneous autoimmune peripheral neuropathy. Autoimmunity against peripheral nerves in both mice and humans targets myelin protein zero, an Ag for which expression is Aire-regulated in the thymus. Consistent with a defect in thymic tolerance, CD4(+) T cells are sufficient to transfer disease in mice and produce IFN-γ in infiltrated peripheral nerves. Our findings suggest that defective Aire-mediated central tolerance to myelin protein zero initiates an autoimmune Th1 effector response toward peripheral nerves.  相似文献   

12.
13.
14.
The autoimmune regulator gene Aire shows predominant expression in thymus and other immunologically relevant tissues, and is assigned the major function of programming autoreactive T-cell deletion. However, the expression of this gene in tissues outside the immune system raises a question about its possible function beyond the T-cell deletion dogma. We detected Aire in mouse testis, and the expression of AIRE protein was remarkably high in postmeiotic germ cells. Sequencing results indicate that testis expressed Aire variant 1a. AIRE could be detected in spermatozoa, with heavy localization on the principal acrosomal domains. Mouse oocytes stained negatively for AIRE before fertilization, but stained positively for AIRE 30?min after fertilization. In the zygote, the levels of AIRE correlated negatively with cyclin B2 levels. Goat testicular lysates spiked with recombinant human AIRE exhibited augmented cyclin B2 degradation in the presence of protease inhibitors, which was inhibited by MG-132, indicating the operation of proteasomal pathways. Thus, this study identifies a correlation between the presence of AIRE and proteasomal breakdown of cyclin B2, which leads us to speculate that cyclin B2 could be a target of AIRE's E3-ubiquitin ligase activity.  相似文献   

15.
Ectopic expression of peripherally restricted Ags by medullary thymic epithelial cells (mTECs) is associated with negative selection. Autoimmune regulator (AIRE) is considered to be the master regulator of these Ags. We show in this study that the ectopic expression of type II collagen (CII) in mTECs and the corresponding central tolerance to CII are AIRE independent but lymphotoxin dependent. The failure to properly express CII in mTECs of Lta(-/-) and Ltbr(-/-) mice leads to overt autoimmunity to CII and exquisite susceptibility to arthritis. These findings define the existence of additional pathways of ectopic peripheral Ag expression, parallel to and independent of AIRE, which may cover an extended spectrum of peripheral Ags in the thymus.  相似文献   

16.
17.
Anti-insulin autoimmunity is one of the primary forces in initiating and progressing β-cell destruction in type 1 diabetes. While insulin expression in thymic medullary epithelial cells has been shown to be essential for establishing β-cell central tolerance, the function of insulin expression in antigen-presenting cells (APCs) of hematopoietic lineage remains elusive. With a Cre-lox reporter approach, we labeled Aire-expressing cells with enhanced yellow fluorescent proteins, and found that insulin expression in the spleen was restricted predominantly to a population of Aire(+)CD11c(int)B220(+) dendritic cells (DCs). Targeted insulin deletion in APCs failed to induce anti-islet autoimmunity in B6 mice. In contrast, elevated levels of T cell infiltration into islets were observed in B6(g7) congenic mice when insulin was specifically deleted in their CD11c-expressing DCs (B6(g7)·CD11c-ΔIns mice). Thus, insulin expression in BM-derived, Aire(+) tolerogenic DCs may play an essential role to prevent the activation and expansion of insulin-reactive T cells in the periphery.  相似文献   

18.
19.
Self tolerance is dependent on regulatory T cells (Treg) which suppress effector T cells, avoiding autoimmunity. Functional and quantitative deficits of Treg have been reported in autoimmune diseases. A new therapeutic approach consisting in Treg adoptive transfer has proved to be efficient and safe in murine models. Two populations seem to be available for a clinical application: CD4(+)CD25(+)Foxp3(+) natural Treg derived from the thymus and induced regulatory T cells. First clinical trials have been applied to patients with autoimmune diseases. Classical treatments of autoimmune diseases are usually non-curative and require long-term administration. Treg cellular therapy may have a long-term effect and offers an alternative attractive approach.  相似文献   

20.
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) play a central role in cancer tolerance. However, mechanisms leading to their accumulation in cancer remain unknown. Although the thymus is the main site of Treg development, thymic contribution to Treg expansion in cancer has not been directly examined. Herein, we used two murine models of multiple myeloma (MM), 5T2 MM and 5T33 MM, to examine Treg accumulation in peripheral lymphoid organs, including spleen, lymph nodes, bone marrow, and blood, and to explore thymic Treg development during malignancy. We found that peripheral ratios of suppressive-functional Tregs increased in both models of MM-inflicted mice. We found that thymic ratios of Treg development in MM increased, in strong association with thymus atrophy and altered developmental processes in the thymus. The CD4(+)CD8(+) double-positive population, normally the largest thymocyte subset, is significantly decreased, whereas the CD4(-)CD8(-) double-negative population is increased. Administration of thymocytes from MM-inflicted mice compared with control thymocytes resulted in increased progression of the disease, and this effect was shown to be mediated by Tregs in the thymus of MM-inflicted mice. Our data suggest that increased ratios of Treg development in the thymus may contribute to disease progression in MM-inflicted mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号