首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoids influence post-natal mammary gland development by sequentially controlling cell proliferation, differentiation, and apoptosis. In the mammary gland, it has been demonstrated that glucocorticoid treatment inhibits epithelial apoptosis in post-lactating glands. In this study, our first goal was to identify new glucocorticoid target genes that could be involved in generating this effect. Expression profiling, by microarray analysis, revealed that expression of several cell-cycle control genes was altered by dexamethasone (DEX) treatment after lactation. Importantly, it was determined that not only the exogenous synthetic hormone, but also the endogenous glucocorticoids regulated the expression of these genes. Particularly, we found that the expression of cell cycle inhibitors p21CIP1, p18INK4c, and Atm was differentially regulated by glucocorticoids through the successive stages of mammary gland development. In undifferentiated cells, DEX treatment induced their expression and reduced cell proliferation, while in differentiated cells this hormone repressed expression of those cell cycle inhibitors and promoted survival. Therefore, differentiation status determined the effect of glucocorticoids on mammary cell fate. Particularly, we have determined that p21CIP1 inhibition would mediate the activity of these hormones in differentiated mammary cells because over-expression of this protein blocked DEX-induced apoptosis protection. Together, our data suggest that the multiple roles played by glucocorticoids in mammary gland development and function might be at least partially due to the alternative roles that these hormones play on the expression of cell cycle regulators.  相似文献   

2.
microRNA在小鼠乳腺不同发育时期差异表达谱及作用   总被引:1,自引:0,他引:1  
王春梅  李庆章 《遗传学报》2007,34(11):966-973
microRNA是一类大小约22个核苷酸的非编码RNA分子,是一种广泛存在的对基因表达进行微调的分子。microRNA可以通过与靶基因mRNA的特定位点结合,抑制该蛋白的合成或诱导该mRNA的降解,从而参与基因的表达调控。一般来源于染色体的非编码区域,由大约70个核苷酸大小的可形成发夹结构的前体经Dicer酶加工而来。这类小RNA在表达上具有组织和时间的特异性,是调节其他功能基因表达的重要调控分子,在生物的生长发育过程中发挥着重要作用。因此,虽然microRNA的研究仅有很短的历史,但已成为基因表达调控研究的热点领域。以中国昆明小鼠不同发育时期的乳腺组织为实验材料,应用芯片技术及荧光定量PCR技术,分析发育不同时期的乳腺组织microRNA差异表达图谱。本文研究发现microRNA在乳腺不同的发育时期表达图谱不同;与青春期、退化期比较,妊娠期、哺乳期有十余种microRNAs表达上调,20余种microRNAs表达下调;microRNAs在乳腺发育和泌乳周期中发挥重要的作用。  相似文献   

3.
4.
5.

Background

MicroRNA (miRNA) are negative regulators of gene expression, capable of exerting pronounced influences upon the translation and stability of mRNA. They are potential regulators of normal mammary gland development and of the maintenance of mammary epithelial progenitor cells. This study was undertaken to determine the role of miR-30b on the establishment of a functional mouse mammary gland. miR-30b is a member of the miR-30 family, composed of 6 miRNA that are highly conserved in vertebrates. It has been suggested to play a role in the differentiation of several cell types.

Methodology/Principal Findings

The expression of miR-30b was found to be regulated during mammary gland development. Transgenic mice overexpressing miR-30b in mammary epithelial cells were used to investigate its role. During lactation, mammary histological analysis of the transgenic mice showed a reduction in the size of alveolar lumen, a defect of the lipid droplets and a growth defect of pups fed by transgenic females. Moreover some mammary epithelial differentiated structures persisted during involution, suggesting a delay in the process. The genes whose expression was affected by the overexpression of miR-30b were characterized by microarray analysis.

Conclusion/Significance

Our data suggests that miR-30b is important for the biology of the mammary gland and demonstrates that the deregulation of only one miRNA could affect lactation and involution.  相似文献   

6.
7.
8.
9.
A cattle database of candidate genes and genetic markers for milk production and mastitis has been developed to provide an integrated research tool incorporating different types of information supporting a genomic approach to study lactation, udder development and health. The database contains 943 genes and genetic markers involved in mammary gland development and function, representing candidates for further functional studies. The candidate loci were drawn on a genetic map to reveal positional overlaps. For identification of candidate loci, data from seven different research approaches were exploited: (i) gene knockouts or transgenes in mice that result in specific phenotypes associated with mammary gland (143 loci); (ii) cattle QTL for milk production (344) and mastitis related traits (71); (iii) loci with sequence variations that show specific allele-phenotype interactions associated with milk production (24) or mastitis (10) in cattle; (iv) genes with expression profiles associated with milk production (207) or mastitis (107) in cattle or mouse; (v) cattle milk protein genes that exist in different genetic variants (9); (vi) miRNAs expressed in bovine mammary gland (32) and (vii) epigenetically regulated cattle genes associated with mammary gland function (1). Fourty-four genes found by multiple independent analyses were suggested as the most promising candidates and were further in silico analysed for expression levels in lactating mammary gland, genetic variability and top biological functions in functional networks. A miRNA target search for mammary gland expressed miRNAs identified 359 putative binding sites in 3'UTRs of candidate genes.  相似文献   

10.
11.
12.
The susceptibility of the mammary gland to carcinogenesis is influenced by its normal development, particularly during developmental stages such as puberty and pregnancy that are characterized by marked changes in proliferation and differentiation. Protein kinases are important regulators of proliferation and differentiation, as well as of neoplastic transformation, in a wide array of tissues, including the breast. Using a RT-PCR-based cloning strategy, we have identified 41 protein kinases that are expressed in breast cancer cell lines and in the murine mammary gland during development. The expression of each of these kinases was analyzed throughout postnatal mammary gland development as well as in a panel of mammary epithelial cell lines derived from distinct transgenic models of breast cancer. Although the majority of protein kinases isolated in this screen have no currently recognized role in mammary development, most kinases examined were found to exhibit developmental regulation. After kinases were clustered on the basis of similarities in their temporal expression profiles during mammary development, multiple distinct patterns of expression were observed. Analysis of these patterns revealed an ordered set of expression profiles in which successive waves of kinase expression occur during development. Interestingly, several protein kinases whose expression has previously been reported to be restricted to tissues other than the mammary gland were isolated in this screen and found to be expressed in the mammary gland. In aggregate, these findings suggest that the array of kinases participating in the regulation of normal mammary development is considerably broader than currently appreciated.  相似文献   

13.
14.
15.
The expression of extracellular proteinase inhibitor (Expi) gene was induced during the involution of mammary gland, when apoptosis occurs in this tissue. Transient transfection of Expi gene partially induced apoptosis of mammary epithelial HC11 cells. We developed the stable cell lines overexpressing Expi gene and found that overexpression of Expi accelerated apoptosis of mammary epithelial cells under serum starvation. To understand apoptosis pathway involved in the Expi overexpression, we examined the gene expression profile by using apoptosis gene array containing 243 genes. The subsequent confirmation of the altered gene expression by northern analysis demonstrated that overexpression of the Expi gene induced expression of several genes, which included B cell activating factor (BAFF), Bax, cytochrome c, caspase-9, caspase-3, caspase-6, and CIDE-A. From this study, we first demonstrate that BAFF is involved in mammary apoptosis. Furthermore, we have found that the Expi-accelerated apoptosis is mediated via BAFF receptor among three known BAFF receptors: BAFF receptor, tumor necrosis factor (TNF) receptor homologue TACI (transmembrane activator and CAML-interactor), and BCMA (another TNFR homologue, B cell maturation antigen). Our studies also demonstrate that the use of apoptosis array provides an efficient tool to identify apoptosis pathway involved in gene transfection.  相似文献   

16.
17.
18.
Notch genes play a critical role in mammary gland growth, development and tumorigenesis. In the present study, we have quantitatively determined the levels and mRNA expression patterns of the Notch receptor genes, their ligands and target genes in the postnatal mouse mammary gland. The steady state levels of Notch3 mRNA are the highest among receptor genes, Jagged1 and Dll3 mRNA levels are the highest among ligand genes and Hey2 mRNA levels are highest among expressed Hes/Hey target genes analyzed during different stages of postnatal mammary gland development. Using an immunohistochemical approach with antibodies specific for each Notch receptor, we show that Notch proteins are temporally regulated in mammary epithelial cells during normal mammary gland development in the FVB/N mouse. The loss of ovarian hormones is associated with changes in the levels of Notch receptor mRNAs (Notch2 higher and Notch3 lower) and ligand mRNAs (Dll1 and Dll4 are higher, whereas Dll3 and Jagged1 are lower) in the mammary gland of ovariectomized mice compared to intact mice. These data define expression of the Notch ligand/receptor system throughout development of the mouse mammary gland and help set the stage for genetic analysis of Notch in this context.  相似文献   

19.
Although apoptosis is important in determining cell fate and maintaining tissue homeostasis, the initiation and control of apoptotic cell death in epithelium is not well understood. Post-lactationai involution of the mammary gland provides both an important developmental process and a normal physiological setting for studying apoptosis of epithelium. We used a differential screening strategy, based on previous studies correlating morphology with gene expression and nucleic acid integrity during mammary gland involution, to isolate genes involved in the regulation and execution of apoptotic cell death in regressing mammary epithelium. This screening strategy yielded a large number of genes the expression of which is significantly altered during mammary gland involution. These include genes associated with cell death processes, tissue remodelling and mesenchymal differentiation. In addition, a number of novel genes have been isolated. We have used Northern analysis and in situ hybridisation to study the expression of a selection of these putative death-associated genes during post-lactational mouse mammary gland involution.  相似文献   

20.
Mammary gland development is controlled by several genes. Although miRNAs have been implicated in mammary gland function, the mechanism by which miR-486 regulates mammary gland development and lactation remains unclear. We investigated miR-486 expression in cow mammary gland using qRT-PCR and ISH and show that miR-486 expression was higher during the high-quality lactation period. We found that miR-486 targets phosphoinositide signaling in the cow mammary gland by directly downregulating PTEN gene expression and by altering the expression of downstream genes that are important for the function of the mammary gland, such as AKT, mTOR. We analyzed the effect of β-casein, lactose and triglyceride secretion in bovine mammary gland epithelial cells (BMECs) transfected by an inhibitor and by mimics of miR-486. Our results identify miR-486 as a downstream regulator of PTEN that is required for the development of the cow mammary gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号