首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Central control of bone remodeling by neuromedin U   总被引:4,自引:0,他引:4  
Bone remodeling, the function affected in osteoporosis, the most common of bone diseases, comprises two phases: bone formation by matrix-producing osteoblasts and bone resorption by osteoclasts. The demonstration that the anorexigenic hormone leptin inhibits bone formation through a hypothalamic relay suggests that other molecules that affect energy metabolism in the hypothalamus could also modulate bone mass. Neuromedin U (NMU) is an anorexigenic neuropeptide that acts independently of leptin through poorly defined mechanisms. Here we show that Nmu-deficient (Nmu-/-) mice have high bone mass owing to an increase in bone formation; this is more prominent in male mice than female mice. Physiological and cell-based assays indicate that NMU acts in the central nervous system, rather than directly on bone cells, to regulate bone remodeling. Notably, leptin- or sympathetic nervous system-mediated inhibition of bone formation was abolished in Nmu-/- mice, which show an altered bone expression of molecular clock genes (mediators of the inhibition of bone formation by leptin). Moreover, treatment of wild-type mice with a natural agonist for the NMU receptor decreased bone mass. Collectively, these results suggest that NMU may be the first central mediator of leptin-dependent regulation of bone mass identified to date. Given the existence of inhibitors and activators of NMU action, our results may influence the treatment of diseases involving low bone mass, such as osteoporosis.  相似文献   

2.
Leptin regulates bone formation via the sympathetic nervous system   总被引:70,自引:0,他引:70  
We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.  相似文献   

3.
Motyl KJ  Rosen CJ 《Biochimie》2012,94(10):2089-2096
Despite growing evidence for adipose tissue regulation of bone mass, the role of the adipokine leptin in bone remodeling remains controversial. The majority of in vitro studies suggest leptin enhances osteoblastic proliferation and differentiation while inhibiting adipogenic differentiation from marrow stromal cells. Alternatively, some evidence demonstrates either no effect or a pro-apoptotic action of leptin on stromal cells. Similarly, in vivo work has demonstrated both positive and negative effects of leptin on bone mass. Most of the literature supports the idea that leptin suppresses bone mass by acting in the brainstem to reduce serotonin-dependent sympathetic signaling from the ventromedial hypothalamus to bone. However, other studies have found partly or entirely contrasting actions of leptin. Recently one study found a significant effect of surgery alone with intracerebroventricular administration of leptin, a technique crucial for understanding centrally-mediated leptin regulation of bone. Thus, two mainstream hypotheses for the role of leptin on bone emerge: 1) direct regulation through increased osteoblast proliferation and differentiation and 2) indirect suppression of bone formation through a hypothalamic relay. At the present time, it remains unclear whether these effects are relevant in only extreme circumstances (i.e. models with complete deficiency) or play an important homeostatic role in the regulation of peak bone acquisition and skeletal remodeling. Ultimately, determining the actions of leptin on the skeleton will be critical for understanding how the obesity epidemic may be impacting the prevalence of osteoporosis.  相似文献   

4.
5.
Notch signaling is a key mechanism in the control of embryogenesis. However, its in vivo function during mesenchymal cell differentiation, and, specifically, in bone homeostasis, remains largely unknown. Here, we show that osteoblast-specific gain of Notch function causes severe osteosclerosis owing to increased proliferation of immature osteoblasts. Under these pathological conditions, Notch stimulates early osteoblastic proliferation by upregulating the genes encoding cyclin D, cyclin E and Sp7 (osterix). The intracellular domain of Notch1 also regulates terminal osteoblastic differentiation by directly binding Runx2 and repressing its transactivation function. In contrast, loss of all Notch signaling in osteoblasts, generated by deletion of the genes encoding presenilin-1 and presenilin-2 in bone, is associated with late-onset, age-related osteoporosis, which in turn results from increased osteoblast-dependent osteoclastic activity due to decreased osteoprotegerin mRNA expression in these cells. Together, these findings highlight the potential dimorphic effects of Notch signaling in bone homeostasis and may provide direction for novel therapeutic applications.  相似文献   

6.
7.
Control of bone formation by the serpentine receptor Frizzled-9   总被引:1,自引:0,他引:1  
Although Wnt signaling in osteoblasts is of critical importance for the regulation of bone remodeling, it is not yet known which specific Wnt receptors of the Frizzled family are functionally relevant in this process. In this paper, we show that Fzd9 is induced upon osteoblast differentiation and that Fzd9(-/-) mice display low bone mass caused by impaired bone formation. Our analysis of Fzd9(-/-) primary osteoblasts demonstrated defects in matrix mineralization in spite of normal expression of established differentiation markers. In contrast, we observed a reduced expression of chemokines and interferon-regulated genes in Fzd9(-/-) osteoblasts. We also identified the ubiquitin-like modifier Isg15 as one potential downstream mediator of Fzd9 in these cells. Importantly, our molecular analysis further revealed that canonical Wnt signaling is not impaired in the absence of Fzd9, thus explaining the absence of a bone resorption phenotype. Collectively, our results reveal a previously unknown function of Fzd9 in osteoblasts, a finding that may have therapeutic implications for bone loss disorders.  相似文献   

8.
Communication between sympathetic neurons and osteoblasts through the adrenergic receptor pathway has already been reported. To investigate whether the sympathetic neurons have a direct effect on osteoblast differentiation, an in vitro Transwell coculture system was established in which osteoblasts were cocultured with sympathetic neurons with no cell-to-cell contact. The expression of osteogenesis-related genes was upregulated in osteoblasts cocultured with sympathetic neurons. Meanwhile, bone morphogenetic protein (BMP) mRNA and protein expressions were detected in sympathetic neurons, and BMP secretion from sympathetic neurons was also confirmed. However, transfection with BMP-2 and/or BMP-6 siRNA in sympathetic neurons caused a down-regulation of osteogenesis-related genes in the cocultured osteoblasts. Sympathetic neurons promoted osteoblast differentiation through BMP signaling pathway, implying that the integrity of sympathetic neurons was important for optimal bone formation and remodeling.  相似文献   

9.
Adult bone mass is maintained through a balance of the activities of osteoblasts and osteoclasts. Although Notch signaling has been shown to maintain bone homeostasis by controlling the commitment, differentiation, and function of cells in both the osteoblast and osteoclast lineages, the precise mechanisms by which Notch performs such diverse and complex roles in bone physiology remain unclear. By using a transgenic approach that modified the expression of delta‐like 1 (DLL1) or Jagged1 (JAG1) in an osteoblast‐specific manner, we investigated the ligand‐specific effects of Notch signaling in bone homeostasis. This study demonstrated for the first time that the proper regulation of DLL1 expression, but not JAG1 expression, in osteoblasts is essential for the maintenance of bone remodeling. DLL1‐induced Notch signaling was responsible for the expansion of the bone‐forming cell pool by promoting the proliferation of committed but immature osteoblasts. However, DLL1‐Notch signaling inhibited further differentiation of the expanded osteoblasts to become fully matured functional osteoblasts, thereby substantially decreasing bone formation. Osteoblast‐specific expression of DLL1 did not alter the intrinsic differentiation ability of cells of the osteoclast lineage. However, maturational arrest of osteoblasts caused by the DLL1 transgene impaired the maturation and function of osteoclasts due to a failed osteoblast‐osteoclast coupling, resulting in severe suppression of bone metabolic turnover. Taken together, DLL1‐mediated Notch signaling is critical for proper bone remodeling as it regulates the differentiation and function of both osteoblasts and osteoclasts. Our study elucidates the importance of ligand‐specific activation of Notch signaling in the maintenance of bone homeostasis. J. Cell. Physiol. 232: 2569–2580, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.  相似文献   

10.
Endocrine regulation of energy metabolism by the skeleton   总被引:23,自引:0,他引:23  
The regulation of bone remodeling by an adipocyte-derived hormone implies that bone may exert a feedback control of energy homeostasis. To test this hypothesis we looked for genes expressed in osteoblasts, encoding signaling molecules and affecting energy metabolism. We show here that mice lacking the protein tyrosine phosphatase OST-PTP are hypoglycemic and are protected from obesity and glucose intolerance because of an increase in beta-cell proliferation, insulin secretion, and insulin sensitivity. In contrast, mice lacking the osteoblast-secreted molecule osteocalcin display decreased beta-cell proliferation, glucose intolerance, and insulin resistance. Removing one Osteocalcin allele from OST-PTP-deficient mice corrects their metabolic phenotype. Ex vivo, osteocalcin can stimulate CyclinD1 and Insulin expression in beta-cells and Adiponectin, an insulin-sensitizing adipokine, in adipocytes; in vivo osteocalcin can improve glucose tolerance. By revealing that the skeleton exerts an endocrine regulation of sugar homeostasis this study expands the biological importance of this organ and our understanding of energy metabolism.  相似文献   

11.
Changes in bone remodeling induced by pharmacological and genetic manipulation of β-adrenergic receptor (βAR) signaling in osteoblasts support a role of sympathetic nerves in the regulation of bone remodeling. However, the contribution of endogenous sympathetic outflow and nerve-derived norepinephrine (NE) to bone remodeling under pathophysiological conditions remains unclear. We show here that differentiated osteoblasts, like neurons, express the norepinephrine transporter (NET), exhibit specific NE uptake activity via NET and can catabolize, but not generate, NE. Pharmacological blockade of NE transport by reboxetine induced bone loss in WT mice. Similarly, lack of NE reuptake in norepinephrine transporter (Net)-deficient mice led to reduced bone formation and increased bone resorption, resulting in suboptimal peak bone mass and mechanical properties associated with low sympathetic outflow and high plasma NE levels. Last, daily sympathetic activation induced by mild chronic stress was unable to induce bone loss, unless NET activity was blocked. These findings indicate that the control of endogenous NE release and reuptake by presynaptic neurons and osteoblasts is an important component of the complex homeostatic machinery by which the sympathetic nervous system controls bone remodeling. These findings also suggest that drugs antagonizing NET activity, used for the treatment of hyperactivity disorders, may have deleterious effects on bone accrual.  相似文献   

12.
Mutations in fibroblast growth factor receptors (Fgfrs) 1-3 cause skeletal disease syndromes in humans. Although these Fgfrs are expressed at various stages of chondrocyte and osteoblast development, their function in specific skeletal cell types is poorly understood. Using conditional inactivation of Fgfr1 in osteo-chondrocyte progenitor cells and in differentiated osteoblasts, we provide evidence that FGFR1 signaling is important for different stages of osteoblast maturation. Examination of osteogenic markers showed that inactivation of FGFR1 in osteo-chondro-progenitor cells delayed osteoblast differentiation, but that inactivation of FGFR1 in differentiated osteoblasts accelerated differentiation. In vitro osteoblast cultures recapitulated the in vivo effect of FGFR1 on stage-specific osteoblast maturation. In immature osteoblasts, FGFR1 deficiency increased proliferation and delayed differentiation and matrix mineralization, whereas in differentiated osteoblasts, FGFR1 deficiency enhanced mineralization. Furthermore, FGFR1 deficiency in differentiated osteoblasts resulted in increased expression of Fgfr3, a molecule that regulates the activity of differentiated osteoblasts. Mice lacking Fgfr1, either in progenitor cells or in differentiated osteoblasts, showed increased bone mass as adults. These data demonstrate that signaling through FGFR1 in osteoblasts is necessary to maintain the balance between bone formation and remodeling through a direct effect on osteoblast maturation.  相似文献   

13.
14.
15.
16.
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) activate one single receptor (PTH1R) which mediates catabolic and anabolic actions in the bone. Activation of PTH1R modulates multiple intracellular signaling responses. We previously reported that PTH and PTHrP down-regulate pERK1/2 and cyclin D1 in differentiated osteoblasts. In this study we investigate the role of MAPK phosphatase-1 (MKP-1) in PTHrP regulation of ERK1/2 activity in relation to osteoblast proliferation, differentiation and bone formation. Here we show that PTHrP increases MKP-1 expression in differentiated osteoblastic MC3T3-E1 cells, primary cultures of differentiated bone marrow stromal cells (BMSCs) and calvarial osteoblasts. PTHrP had no effect on MKP-1 expression in proliferating osteoblastic cells. Overexpression of MKP-1 in MC-4 cells inhibited osteoblastic cell proliferation. Cell extracts from differentiated MC-4 cells treated with PTHrP inactivate/dephosphorylate pERK1/2 in vitro; immunodepletion of MKP-1 blocked the ability of the extract to dephosphorylate pERK1/2; these data indicate that MKP-1 is involved in PTHrP-induced pERK1/2 dephosphorylation in the differentiated osteoblastic cells. PTHrP regulation of MKP-1 expression is partially dependent on PKA and PKC pathways. Treatment of nude mice, bearing ectopic ossicles, with intermittent PTH for 3 weeks, up-regulated MKP-1 and osteocalcin, a bone formation marker, with an increase in bone formation. These data indicate that PTH and PTHrP increase MKP-1 expression in differentiated osteoblasts; and that MKP-1 induces growth arrest of osteoblasts, via inactivating pERK1/2 and down-regulating cyclin D1; and identify MKP-1 as a possible mediator of the anabolic actions of PTH1R in mature osteoblasts.  相似文献   

17.
de Crombrugghe B 《Cell》2005,122(5):651-653
The proteins encoded by clock genes regulate circadian variations of various cellular functions. In this issue of Cell, Fu, Karsenty, and colleagues (Fu et al., 2005) demonstrate that clock genes control the proliferation of osteoblasts, the cells that promote growth of bone. These findings indicate that the homeostatic regulation of bone mass is subject to circadian control.  相似文献   

18.
Circadian clock controls several physiological processes such as cell proliferation. Extravillous trophoblast proliferation is a tightly regulated function playing a fundamental role in maternal vessel remodeling. We recently demonstrated that clock genes Per2 and Dec1 as well as the clock-controlled genes Dbp and Vegf are rhythmically expressed in human extravillous trophoblast-derived HTR-8/SVneo cells. Analyzing the time course of HTR-8/SVneo cell proliferation, a circadian variation in cell number was found. Moreover, we showed a rhythmic expression of mRNAs for Wee1 and stathmin, two genes involved in cell cycle progression. We suggest that circadian clockwork may orchestrate the functionality of the several factors involved in the control of human trophoblast functions that are fundamental for a successfully pregnancy outcome.  相似文献   

19.
Accumulating evidence suggests that Wnt/β-catenin signaling plays a central role in controlling bone mass. We previously reported that constitutive activation of β-catenin (CA-β-catenin) in osteoblasts potentially has side effects on the bone growth and bone remodeling process, although it could increase bone mass. The present study aimed to observe the effects of osteoblastic CA-β-catenin on bone quality and to investigate possible mechanisms of these effects. It was found that CA-β-catenin mice exhibited lower mineralization levels and disorganized collagen in long bones as confirmed by von Kossa staining and sirius red staining, respectively. Also, bone strength decreased significantly in CA-β-catenin mice. Then the effect of CA-β-catenin on biological functions of osteoblasts were investigated and it was found that the expression levels of osteocalcin, a marker for the late differentiation of osteoblasts, decreased in CA-β-catenin mice, while the expression levels of osterix and alkaline phosphatase, two markers for the early differentiation of osteoblasts, increased in CA-β-catenin mice. Furthermore, higher proliferation rate were revealed in osteoblasts that were isolated from CA-β-catenin mice. The Real-time PCR and western blot examination found that the expression level of c-myc and cyclin D1, two G1 progression-related molecules, increased in osteoblasts that were isolated from the CA-β-catenin mice, and the expression levels of CDK14 and cyclin Y, two mitotic-related molecules that can accelerate cells entering into S and G2/M phases, increased in osteoblasts that were isolated from the CA-β-catenin mice. In summary, osteoblastic CA-β-catenin kept osteoblasts in high proliferative state and impaired the terminal osteoblast differentiation, and this led to changed bone structure and decreased bone strength.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号