首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Protein synthesis initiation factors in purified preparations and in crude lysates of HeLa cells were fractionated by two-dimensional polyacrylamide gel electrophoresis in order to characterize their molecular forms. Specific spots in the complex cytoplasmic protein gel pattern which corresponded to the initiation factor proteins were identified by co-migration of purified initiation factors with 35S-labeled cell lysates, partial proteolytic digestion mapping, and immunoblotting analysis using antisera or affinity-purified antibodies to the initiation factors. Spots identified as eukaryotic initiation factor (eIF) 2 alpha, eIF-2 beta, eIF-2 gamma, eIF-4A, and four eIF-3 proteins of less than 50,000 Da corresponded to moderately abundant lysate proteins. Minor isoelectric variant forms of eIF-2 beta, eIF-2 gamma, and eIF-4A were detected by immunoblot analysis of lysate proteins, suggesting either covalent modification of these factor proteins or contaminating antibodies. eIF-2 beta and eIF-4B were present in at least two isoelectric forms, confirming covalent modification of these proteins. The cellular levels of the initiation factor proteins were measured by excising and counting radioactivity in gel-resolved spots corresponding to factors in lysates labeled in vivo. The individual factor protein abundancies span nearly a 10-fold range, from 1.1 to 9.8 million molecules/cell. The factor to ribosome ratio for eIF-2 was 0.8, for the average eIF-3 protein about 0.6, and for eIF-4A it was significantly higher at 3.0.  相似文献   

2.
Heat shock at 45 degrees C virtually abolishes protein synthesis in HeLa cells, but return to 37 degrees C effects a complete recovery and the concomitant synthesis of heat shock-induced proteins. Heat shock induces polysome disaggregation, indicating initiation is principally inhibited. In vitro assays for initiation factor activities reveal heat shock inhibits eukaryotic initiation factor 2 (eIF-2), eIF-(3 + 4F), and eIF-4B. Immunoblot analyses show that eIF-2 alpha and eIF-2 beta become modified during heat shock, and eIF-4B variants disappear. Upon return to 37 degrees C, these alterations reverse. The modifications of eIF-2 alpha and eIF-4B are due to phosphorylation and dephosphorylation, respectively. Enzymatic activities induced by heat shock inhibit protein synthesis and modify initiation factors in a rabbit reticulocyte lysate. Initiation factor modifications may contribute to, or cause, protein synthesis inhibition.  相似文献   

3.
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha) impairs translation initiation by inhibiting the guanine nucleotide exchange factor for eIF-2, known as eIF-2B. In Saccharomyces cerevisiae, phosphorylation of eIF-2 alpha by the protein kinase GCN2 specifically stimulates translation of GCN4 mRNA in addition to reducing general protein synthesis. We isolated mutations in several unlinked genes that suppress the growth-inhibitory effect of eIF-2 alpha phosphorylation catalyzed by mutationally activated forms of GCN2. These suppressor mutations, affecting eIF-2 alpha and the essential subunits of eIF-2B encoded by GCD7 and GCD2, do not reduce the level of eIF-2 alpha phosphorylation in cells expressing the activated GCN2c kinase. Four GCD7 suppressors were shown to reduce the derepression of GCN4 translation in cells containing wild-type GCN2 under starvation conditions or in GCN2c strains. A fifth GCD7 allele, constructed in vitro by combining two of the GCD7 suppressors mutations, completely impaired the derepression of GCN4 translation, a phenotype characteristic of deletions in GCN1, GCN2, or GCN3. This double GCD7 mutation also completely suppressed the lethal effect of expressing the mammalian eIF-2 alpha kinase dsRNA-PK in yeast cells, showing that the translational machinery had been rendered completely insensitive to phosphorylated eIF-2. None of the GCD7 mutations had any detrimental effect on cell growth under nonstarvation conditions, suggesting that recycling of eIF-2 occurs efficiently in the suppressor strains. We propose that GCD7 and GCD2 play important roles in the regulatory interaction between eIF-2 and eIF-2B and that the suppressor mutations we isolated in these genes decrease the susceptibility of eIF-2B to the inhibitory effects of phosphorylated eIF-2 without impairing the essential catalytic function of eIF-2B in translation initiation.  相似文献   

4.
To understand how phosphorylation of eukaryotic translation initiation factor (eIF)-2 alpha in Saccharomyces cerevisiae stimulates GCN4 mRNA translation while at the same time inhibiting general translation initiation, we examined the effects of altering the gene dosage of initiator tRNA(Met), eIF-2, and the guanine nucleotide exchange factor for eIF-2, eIF-2B. Overexpression of all three subunits of eIF-2 or all five subunits of eIF-2B suppressed the effects of eIF-2 alpha hyperphosphorylation on both GCN4-specific and general translation initiation. Consistent with eIF-2 functioning in translation as part of a ternary complex composed of eIF-2, GTP, and Met-tRNA(iMet), reduced gene dosage of initiator tRNA(Met) mimicked phosphorylation of eIF-2 alpha and stimulated GCN4 translation. In addition, overexpression of a combination of eIF-2 and tRNA(iMet) suppressed the growth-inhibitory effects of eIF-2 hyperphosphorylation more effectively than an increase in the level of either component of the ternary complex alone. These results provide in vivo evidence that phosphorylation of eIF-2 alpha reduces the activities of both eIF-2 and eIF-2B and that the eIF-2.GTP. Met-tRNA(iMet) ternary complex is the principal component limiting translation in cells when eIF-2 alpha is phosphorylated on serine 51. Analysis of eIF-2 alpha phosphorylation in the eIF-2-overexpressing strain also provides in vivo evidence that phosphorylated eIF-2 acts as a competitive inhibitor of eIF-2B rather than forming an excessively stable inactive complex. Finally, our results demonstrate that the concentration of eIF-2-GTP. Met-tRNA(iMet) ternary complexes is the cardinal parameter determining the site of reinitiation on GCN4 mRNA and support the idea that reinitiation at GCN4 is inversely related to the concentration of ternary complexes in the cell.  相似文献   

5.
The efficiency of translation of alfalfa mosaic virus (AMV) RNA 4, barley alpha-amylase (B alpha A) mRNA, and two chimeric mRNAs, AMV 4-B alpha A and B alpha A-AMV 4 (in which the 5' leader sequences of the two mRNAs were interchanged), was measured in an S30 extract from wheat germ and a fractionated system from wheat germ in which translation could be made dependent upon initiation factor (eIF) 3, 4A, 4F, or 4G. In the S30 system, AMV RNA 4 and the chimeric mRNA AMV 4-B alpha A are translated much more efficiently than B alpha A mRNA and the chimeric mRNA B alpha A-AMV 4. When the S30 system was supplemented with high amounts of purified eIF-3, eIF-4A, eIF-4F, and eIF-4G, B alpha A and B alpha A-AMV 4 mRNAs were translated as efficiently as AMV RNA 4 and AMV 4-B alpha A mRNA. These findings indicated that the mRNAs containing the B alpha A leader sequence required higher amounts of one or more of the initiation factors (eIF-3, eIF-4A, eIF-4F, and eIF-4G) for efficient translation. Determination of the amounts of the initiation factors required for translation in the fractionated system showed that AMV RNA 4 required 2-4-fold lower amounts of eIF-3, eIF-4A, eIF-4F, and eIF-4G than did B alpha A mRNA. Replacement of the B alpha A leader sequence with that of AMV RNA 4 decreased the amounts of eIF-4A, eIF-4G, and eIF-3 required, but did not affect the amount of eIF-4F required. Replacement of the AMV RNA 4 leader sequence with that of B alpha A mRNA increased the amounts of eIF-4F, eIF-4G, and eIF-3 required, but did not affect the amount of eIF-4A required. These data strongly suggest that the amounts of the factors required are affected not only by the 5' leader itself but also by interactions between the 5' leader and a region(s) of the mRNA 3' to the initiation codon.  相似文献   

6.
Eukaryotic translation initiation factor 2 (eIF-2) comprises three non-identical subunits alpha, beta and gamma. In vitro, eIF-2 binds the initiator methionyl-tRNA in a GTP-dependent fashion. Based on similarities between eukaryotic eIF-2gamma proteins and eubacterial EF-Tu proteins, we previously proposed a major role for the gamma-subunit in binding guanine nucleotide and tRNA. We have tested this hypothesis by examining the biochemical activities of yeast eIF-2 purified from wild-type strains and strains harboring mutations in the eIF-2gamma structural gene (GCD11) predicted to alter ligand binding by eIF-2. The alteration of tyrosine 142 in yeast eIF-2gamma, corresponding to histidine 66 in Escherichia coli EF-Tu, dramatically reduced the affinity of eIF-2 for Met-tRNAi(Met) without affecting the k(off) value for guanine nucleotides. In contrast, non-lethal substitutions at a conserved lysine residue (K250) in the putative guanine ring-binding loop increased the off-rate for GDP, thereby mimicking the function of the guanine nucleotide exchange factor eIF-2B, without altering the apparent dissociation constant for Met-tRNAi(Met). For eIF-2[gamma-K250R], the increased off-rate also seen for GTP was masked by the presence of Met-tRNAi(Met) in vitro. In vivo, increasing the dose of the yeast initiator tRNA gene suppressed the slow-growth phenotype and reduced GCN4 expression in gcd11-K250R and gcd11-Y142H strains. These studies indicate that the gamma-subunit of eIF-2 does indeed provide EF-Tu-like function to the eIF-2 complex, and further suggest that the level of Met-tRNAi(Met) is critical for maintaining wild-type rates of initiation in vivo.  相似文献   

7.
8.
During growth in unreplenished medium, the fraction of active, polysomal ribosomes progressively decreases about 3-fold from 80-90% to only 20-40% due to a reduced rate of initiation. To assess whether the abundance of initiation factors could be involved in this repression of translational activity. HeLa cell cytoplasmic lysates were resolved by two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and spots corresponding to the initiation factor proteins were quantitated. The relative abundance of most of the initiation factor proteins only decreases by 10-40% and roughly parallels that of the ribosomes. Measurement of the rates of synthesis and turnover of the initiation factor proteins establishes that during periods of active growth, synthesis and degradation occur coordinately with total cell protein. As growth rate decreases, the synthesis of some initiation factor proteins, particularly eukaryotic initiation factor (eIF)-3 subunits, becomes depressed. Serum stimulation of serum-depleted cells recruits most inactive ribosomes and mRNAs into polysomes, but most initiation factor mRNAs are not selectively recruited. The principal exceptions are eIF-3p24 which exhibits 4-5 fold enhanced synthesis and eIF-3p44 and eIF-4A whose syntheses are moderately stimulated.  相似文献   

9.
In order to study the eukaryotic translation initiation mechanisms of "internal initiation," "re-initiation," and/or "coupled internal initiation," a series of model mRNAs have been constructed which contain two non-overlapping open reading frames (ORFs) that encode different lengths of rabbit alpha globin. These mRNAs, along with the bicistronic constructs TK/CAT and TK/P2CAT developed by Pelletier and Sonenberg (Pelletier, J., and Sonenberg, N. (1988) Nature 334, 320-325, 1988), were used to program an in vitro rabbit reticulocyte lysate translation system. Cap-dependent and cap-independent translation were distinguished by monitoring translation in the presence or absence of exogenously added cap analog (m7GTP). Messenger RNAs which translate both ORF1 and ORF2 by a cap-dependent mechanism, as well as mRNAs that translate ORF2 by a cap-independent mechanism while still translating ORF1 in a cap-dependent fashion have been obtained. These same alpha globin mRNAs differ by no more than 45 nucleotides in intercistronic length. Initiation factor addition studies were performed in this same in vitro translation system. Both eukaryotic initiation factor (eIF)-4F and, to a lesser extent, eIF-4B can stimulate translation of an internally located ORF independent of upstream ORF translation and in a manner not dependent on mRNA cap recognition. This indicates that the cap-recognition initiation factor, eIF-4F, and eIF-4B facilitate cap-independent and internal initiation of an open reading frame.  相似文献   

10.
Initiation factor eIF-4F, a multiprotein cap binding protein complex, was purified from HeLa cells by m7G affinity chromatography and independently by phosphocellulose column chromatography. The m7G affinity-purified sample contains three major proteins, p220, eIF-4A, and p28 (also known as CBP-I or eIF-4E). The abundancies of these proteins are roughly 2, 10, and 0.8 X 10(6) molecules/cell, respectively. Two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the eIF-4F samples shows that p28 comprises two isoelectric variants, one of which labels with phosphate and disappears when samples are treated with alkaline phosphatase. The 45,000-dalton protein in eIF-4F appears to be identical to eIF-4A. The p220 subunit rarely produces discrete spots on two-dimensional gel electrophoresis; in purified samples it usually forms 3 closely spaced streaks. eIF-4F fractionated by phosphocellulose chromatography separates into forms containing either phosphorylated or unphosphorylated p28. However, both fractions possess similar specific activities in in vitro translation assays for eIF-4F activity. The phosphorylation of p28 decreases upon heat shock when protein synthesis is repressed. The correlation of dephosphorylation of p28 with the inhibition of protein synthesis and the relatively low abundance of the eIF-4F complex suggest that eIF-4F plays a role in the translational control of mRNA binding. Limitations of the in vitro assay system may account for the failure to detect phosphorylation-dependent activity differences.  相似文献   

11.
《Seminars in Virology》1993,4(4):201-207
Regulation of gene expression frequently involves translational controls that operate at the level of the initiation phase. Initiation of protein synthesis in eukaryotes is promoted by greater than 10 initiation factors. Important among these are initiation factors eIF-2 and eIF-2B, which stimulate methionyl-tRNA binding to 40S ribosomal subunits, and eIF-4A, eIF-4B and eIF-4F, which stimulate mRNA binding. Many of the initiation factors are phosphorylated in vivo, and phosphorylation has been shown to regulate rates of global protein synthesis. Phosphorylation of eIF-2 on its α-subunit results in repression of translation by interfering with the recycling of the factor. Phosphorylation of eIF-4F on its α- and γ-subunits activates this limiting initiation factor and stimulates protein synthesis. Other initiation factor activities may also be regulated by phosphorylation, but these have not yet been characterized in detail. Regulating the translational activity of the cell by phosphorylation appears to be important in virus-infected cells and in the control of cell proliferation.  相似文献   

12.
Previous studies have demonstrated that the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha), encoded by the SUI2 gene in the yeast Saccharomyces cerevisiae, is phosphorylated at Ser-51 by the GCN2 kinase in response to general amino acid control. Here we describe that yeast eIF-2 alpha is a constitutively phosphorylated protein species that is multiply phosphorylated by a GCN2-independent mechanism. 32Pi labeling and isoelectric focusing analysis of a SUI2+ delta gcn2 strain identifies eIF-2 alpha as radiolabeled and a single isoelectric protein species. Treatment of SUI2+ delta gcn2 strain extracts with phosphatase results in the identification of three additional isoelectric forms of eIF-2 alpha that correspond to the stepwise removal of three phosphates from the protein. Mutational analysis of SUI2 coupled with biochemical analysis of eIF-2 alpha maps the sites to the carboxyl region of SUI2 that correspond to Ser residues at amino acid positions 292, 294, and 301 that compose consensus casein kinase II sequences. 32Pi labeling or isoelectric focusing analysis of eIF-2 alpha from conditional casein kinase II mutants indicated that phosphorylation of eIF-2 alpha is abolished or dephosphorylated forms of eIF-2 alpha are detected when these strains are grown at the restrictive growth conditions. Furthermore, yeast casein kinase II phosphorylates recombinant wild-type eIF-2 alpha protein in vitro but does not phosphorylate recombinant eIF-2 alpha that contains Ser-to-Ala mutations at all three consensus casein kinase II sequences. These data strongly support the conclusion that casein kinase II directly phosphorylates eIF-2 alpha at one or all of these Ser amino acids in vivo. Although substitution of SUI2 genes mutated at these sites for the wild-type gene have no obvious effect on cell growth, one test that we have used appears to demonstrate that the inability to phosphorylate these sites has a physiological consequence on eIF-2 function in S. cerevisiae. Haploid strains constructed to contain Ser-to-Ala mutations at the consensus casein kinase II sequences in SUI2 in combination with a mutated allele of either the GCN2, GCN3, or GCD7 gene have synthetic growth defects. These genetic data appear to indicate that the modifications that we describe at the carboxyl end of the eIF-2 alpha protein are required for optimal eIF-2 function in S. cerevisiae.  相似文献   

13.
Phosphorylation of the alpha subunit of the eucaryotic translation initiation factor (eIF-2 alpha) by the double-stranded RNA-activated inhibitor (DAI) kinase correlates with inhibition of translation initiation. The importance of eIF-2 alpha phosphorylation in regulating translation was studied by expression of specific mutants of eIF-2 alpha in COS-1 cells. DNA transfection of certain plasmids could activate DAI kinase and result in poor translation of plasmid-derived mRNAs. In these cases, translation of the plasmid-derived mRNAs was improved by the presence of DAI kinase inhibitors or by the presence of a nonphosphorylatable mutant (serine to alanine) of eIF-2 alpha. The improved translation mediated by expression of the nonphosphorylatable eIF-2 alpha mutant was specific to plasmid-derived mRNA and did not affect global mRNA translation. Expression of a serine-to-aspartic acid mutant eIF-2 alpha, created to mimic the phosphorylated serine, inhibited translation of the mRNAs derived from the transfected plasmid. These results substantiate the hypothesis that DAI kinase activation reduces translation initiation through phosphorylation of eIF-2 alpha and reinforce the importance of phosphorylation of eIF-2 alpha as a way to control initiation of translation in intact cells.  相似文献   

14.
P1798 murine lymphosarcoma cells cease to proliferate upon exposure to 10(-7) M dexamethasone and exhibit a dramatic inhibition of rRNA and ribosomal protein synthesis (O. Meyuhas, E. Thompson, Jr., and R. P. Perry, Mol. Cell Biol. 7:2691-2699, 1987). These workers demonstrated that ribosomal protein synthesis is regulated primarily at the level of translation, since dexamethasone did not alter mRNA levels but shifted the mRNAs from active polysomes into inactive messenger ribonucleoproteins. We have examined the effects of dexamethasone on the biosynthesis of initiation factor proteins in the same cell line. The relative protein synthesis rates of eIF-4A and eIF-2 alpha were inhibited by about 70% by the hormone, a reduction comparable to that for ribosomal proteins. The mRNA levels of eIF-4A, eIF-4D, and eIF-2 alpha also were reduced by 60 to 70%, indicating that synthesis rates are proportional to mRNA concentrations. Analysis of polysome profiles showed that the average number of ribosomes per initiation factor polysome was only slightly reduced by dexamethasone, and little or no mRNA was present in messenger ribonucleoproteins. The results indicate that initiation factor gene expression is coordinately regulated with ribosomal protein synthesis but is controlled primarily by modulating mRNA levels rather than mRNA efficiency.  相似文献   

15.
The eukaryotic translation initiation factor 4A (eIF-4A) possesses an in vitro helicase activity that allows the unwinding of double-stranded RNA. This activity is dependent on ATP hydrolysis and the presence of another translation initiation factor, eIF-4B. These two initiation factors are thought to unwind mRNA secondary structures in preparation for ribosome binding and initiation of translation. To further characterize the function of eIF-4A in cellular translation and its interaction with other elements of the translation machinery, we have isolated mutations in the TIF1 and TIF2 genes encoding eIF-4A in Saccharomyces cerevisiae. We show that three highly conserved domains of the D-E-A-D protein family, encoding eIF-4A and other RNA helicases, are essential for protein function. Only in rare cases could we make a conservative substitution without affecting cell growth. The mutants show a clear correlation between their growth and in vivo translation rates. One mutation that results in a temperature-sensitive phenotype reveals an immediate decrease in translation activity following a shift to the nonpermissive temperature. These in vivo results confirm previous in vitro data demonstrating an absolute dependence of translation on the TIF1 and TIF2 gene products.  相似文献   

16.
Overview: phosphorylation and translation control   总被引:3,自引:0,他引:3  
J W Hershey 《Enzyme》1990,44(1-4):17-27
Protein synthesis is controlled by the phosphorylation of proteins comprising the translational apparatus. At least 12 initiation factor polypeptides, 3 elongation factors and a ribosomal protein are implicated. Stimulation of translation correlates with enhanced phosphorylation of eIF-4F, eIF-4B, eIF-2B, eIF-3 and ribosomal protein S6, whereas inhibition correlates with phosphorylation of eEF-2 and the alpha-subunit of eIF-2. Strong evidence for regulatory roles exists for eIF-2, eIF-4F and eEF-2, whereas changes in other factor activities due to phosphorylation remain to be demonstrated. Regulation of the specific activity of the translational apparatus by phosphorylation appears to be a general mechanism for the control of rates of global protein synthesis, and may also play a role in modulating the translation of specific mRNAs.  相似文献   

17.
18.
Selective translation of influenza viral mRNAs occurs after influenza virus superinfection of cells infected with the VAI RNA-negative adenovirus mutant dl331 (M. G. Katze, Y.-T. Chen, and R. M. Krug, Cell 37:483-490, 1984). Cell extracts from these doubly infected cells catalyze the initiation of essentially only influenza viral protein synthesis, reproducing the in vivo situation. This selective translation is correlated with a 5- to 10-fold suppression of the dl331-induced kinase that phosphorylates the alpha subunit of eucaryotic initiation factor eIF-2. This strongly suggests that influenza virus encodes a gene product that, analogous to the adenoviral VAI RNA, prevents the shutdown of overall protein synthesis caused by an eIF-2 alpha kinase turned on by viral infection. Adenoviral mRNA translation was restored to the extract from the doubly infected cells by the addition of the guanine nucleotide exchange factor eIF-2B, which is responsible for the normal recycling of eIF-2 during protein synthesis. This indicates that the residual kinase in the doubly infected cells leads to a limitation in functional (nonsequestered) eIF-2B and hence functional (GTP-containing) eIF-2 and that under these conditions influenza viral mRNAs are selectively translated over adenoviral mRNAs. Addition of double-stranded RNA to the extracts from these cells restored the eIF-2 alpha kinase to a level approaching that seen in extracts from cells infected with dl331 alone and caused the inhibition of influenza viral mRNA translation. This suggests that the putative influenza viral gene product acts against the double-stranded RNA activation of the kinase and indicates that influenza viral mRNA translation is also linked to the level of functional eIF-2. Our results thus indicate that a limitation in functional eIF-2 which causes a nonspecific reduction in the rate of initiation of protein synthesis results in the preferential translation of the better mRNAs (influenza viral mRNAs) at the expense of the poorer mRNAs (adenoviral mRNAs).  相似文献   

19.
Eukaryotic protein synthesis initiation factor 2 (eIF-2) from rat liver has been resolved into two subfractions by anion-exchange chromatography on DEAE-cellulose. One of these contained all three components (eIF-2 alpha, eIF-2 beta, eIF-2 gamma) characteristic of mammalian eIF-2, whilst the other fraction contained only two. By a number of criteria these were shown to be eIF-2 alpha and eIF-2 gamma. The absence of eIF-2 beta from this fraction was not due to its proteolytic degradation during purification since it was unaffected by the inclusion of a range of proteinase inhibitors in the isolation media. The properties of eIF-2 containing or lacking eIF-2 beta have been directly compared. It was found that eIF-2 beta was not required for the binding of guanine nucleotides to eIF-2 or for formation of ternary initiation complexes with GTP and the initiator tRNA. eIF-2 lacking eIF-2 beta was able to form 40 S initiation complexes and the presence of eIF-2 beta was also unnecessary for the stimulation of eIF-2 activity by the recycling factor, eIF-2B. Some of these findings are at variance with previous reports in which eIF-2 beta was removed proteolytically. The role of eIF-2 beta in the overall physiological function of eIF-2 remains to be elucidated.  相似文献   

20.
T F Sarre 《Bio Systems》1989,22(4):311-325
In eukaryotic cells, protein biosynthesis is controlled at the level of polypeptide chain initiation. During the initiation process, eukaryotic initiation factor 2 (eIF-2) catalyzes the binding of Met-tRNAf and GTP to the 40S ribosomal subunit. In a later step, eIF-2 is released from the ribosomal initiation complex, most likely as an eIF-2.GDP complex, and another initiation factor termed eIF-2B is necessary to recycle eIF-2 by displacing GDP by GTP. In rabbit reticulocytes, inhibition of protein synthesis is accompanied by the phosphorylation of the alpha-subunit of eIF-2, a process that does not render eIF-2 inactive, but prevents it from being recycled by eIF-2B. First described in rabbit reticulocytes as inhibitors of translation, two distinct eIF-2 alpha kinases are known: the haemin-controlled kinase (termed HCI) and the double-stranded RNA-activated kinase (termed DAI). eIF-2 alpha phosphorylation appears to be a reversible control mechanism since corresponding phosphatases have been described. Recent reports indicate a correlation between eIF-2 alpha phosphorylation and the inhibition of protein synthesis in several mammalian cell types under a range of physiological conditions. In this review, the physical and functional features of the known eIF-2 alpha kinases are described with respect to their role in mammalian cells and the mode of activation by cellular signals. Furthermore, the possible impact of the eIF-2/eIF-2B ratio and of the subcellular compartmentation of these factors (and the eIF-2 alpha kinases) on mammalian protein synthesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号