首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SBgLR (Solanum tuberosum genomic lysine-rich) is a pollen-specific gene cloned from potato (Solanum tuberosum L.). The region from −269 to −9 (The A of translation start site “ATG” as +1) of the SBgLR promoter was identified as critical for gene specific expression in pollen grains. Sequence analysis indicates a palindromic sequence “TTTCTATTATAATAGAAA” in the −227 to −209 region, in which two pollen-specific motifs TTTCT and AGAAA surround a unique putative TATA box. Moreover, nine putative pollen-specific motifs are located in the region between the TATA box and ATG. We placed the −227 to −9 region (reserving the palindrome) and the −222 to −9 region (breaking the palindrome) downstream of the CaMV35S enhancer, respectively, to construct two fusion promoters. Histochemical assays in transgenic plants demonstrated that the region from −222 to −9 is necessary and sufficient for pollen-specific expression of the uidA gene. However, the region of −227 to −9 is incapable of driving GUS expression in pollen grains and parts of vegetative tissues. A series of 5′ deletions from −269 to −9 of SBgLR promoter were constructed. A transient expression assay indicated that the region from the −227 to −9 suppressed gfp gene expression in pollen, and a positive regulatory element was present in the region of −253 to −227. The function of the palindromic sequence as a repressor inhibiting gene expression in pollen was further confirmed by the mutated promoter, breaking the palindrome by substituting its 3′-flanking five base pairs, which resumes the reporter gene expression in mature pollen.  相似文献   

2.
3.
4.
5.
6.
7.
Prothoracicotropic hormone (PTTH) is one of key players in regulation of insect growth, molting, metamorphosis, diapause, and is expressed specifically in the two pairs of lateral PTTH-producing neurosecretory cells in the brain. Analysis of cis-regulatory elements of the PTTH promoter might elucidate the regulatory mechanism controlling PTTH expression. In this study, the PTTH gene promoter of Bombyx mori (Bom-PTTH) was cloned and sequenced. The cis-regulatory elements in Bom-PTTH gene promoter were predicted using Matinspector software, including myocyte-specific enhancer factor 2, pre-B-cell leukemia homeobox 1, TATA box, etc. Transient transfection assays using a series of fragments linked to the luciferase reporter gene indicated that the fragment spanning −110 to +33 bp of the Bom-PTTH promoter showed high ability to support reporter gene expression, but the region of +34 to +192 bp and −512 to −111 bp repressed the promoter activity in the BmN and Bm5 cell lines. Electrophoretic mobility shift assays demonstrated that the nuclear protein could specifically bind to the region spanning −124 to −6 bp of the Bom-PTTH promoter. Furthermore, we observed that the nuclear protein could specifically bind to the −59 to −30 bp region of the Bom-PTTH promoter. A classical TATA box, TATATAA, localized at positions −47 to −41 bp, which is a potential site for interaction with TATA box binding protein (TBP). Mutation of this TATA box resulted in no distinct binding band. Taken together, TATA box was involved in regulation of PTTH gene expression in B. mori.  相似文献   

8.
9.
NKX3.1 is a prostate-specific homeobox gene related strongly to prostate development and prostate cancer. However, little is known about the mechanism for regulation of NKX3.1 in prostate cancer. With RT-PCR and western blot, we found that NKX3.1 expression was enhanced by over-expression of Sp1 at both the mRNA and protein levels in prostate cancer LNCaP cells. To identify the Sp1-elements in the promoter region of NKX3.1, a 521 bp-promoter of human NKX3.1 gene containing three possible Sp1-elements was cloned into the upstream of the luciferase reporter gene in pGL3-basic plasmid. With deletion mutation analysis, plasmid construction, EMSA and oligonucleotide decoy technique, two Sp1-elements which located between +29 to +43 and −60 to −46 of NKX3.1 gene were identified and proven to be functional elements. It will be important to further study on the functions and the regulatory mechanisms of Sp1 element in NKX3.1 gene expression.  相似文献   

10.
11.
The 1,053-bp promoter of the oil palm metallothionein gene (so-called MSP1) and its 5′ deletions were fused to the GUS reporter gene, and analysed in transiently transformed oil palm tissues. The full length promoter showed sevenfold higher activity in the mesocarp than in leaves and 1.5-fold more activity than the CaMV35S promoter in the mesocarp. The 1,053-bp region containing the 5′ untranslated region (UTR) gave the highest activity in the mesocarp, while the 148-bp region was required for minimal promoter activity. Two positive regulatory regions were identified at nucleotides (nt) −953 to −619 and −420 to −256 regions. Fine-tune deletion of the −619 to −420 nt region led to the identification of a 21-bp negative regulatory sequence in the −598 to −577 nt region, which is involved in mesocarp-specific expression. Gel mobility shift assay revealed a strong interaction of the leaf nuclear extract with the 21-bp region. An AGTTAGG core-sequence within this region was identified as a novel negative regulatory element controlling fruit-specificity of the MSP1 promoter. Abscisic acid (ABA) and copper (Cu2+) induced the activity of the promoter and its 5′ deletions more effectively than methyl jasmonate (MeJa) and ethylene. In the mesocarp, the full length promoter showed stronger inducibility in response to ABA and Cu2+ than its 5′ deletions, while in leaves, the −420 nt fragment was the most inducible by ABA and Cu2+. These results suggest that the MSP1 promoter and its regulatory regions are potentially useful for engineering fruit-specific and inducible gene expression in oil palm.  相似文献   

12.
13.
14.
The Drosophila vitelline membrane protein gene VM32E is expressed according to a precise temporal and spatial program in the follicle cells. Results from germ line transformation experiments using different fragments of the −465/−39 VM32E region fused to the hsp/lacZ reporter gene revealed that the region −348/−39 is sufficient to confer the wild-type expression pattern. Within this segment, distinct cis-regulatory elements control VM32E expression in ventral and dorsal follicle cells. The region between −135/−113 is essential for expression of the VM32E gene in the ventral columnar follicle cells. Expression in the dorsal domain requires the two regions −348/−254 and −118/−39. Furthermore, the region −253/−119 appears to contain a negative element that represses gene activity in anterior centripetal cells. We suggest that the expression of the VM32E gene throughout the follicular epithelium is controlled by specific cis-regulatory elements acting in distinct spatial domains and following a precise developmental program. Received: 22 October 1996 / Accepted: 14 November 1996  相似文献   

15.
16.
17.
18.
The expression of nitrite reductase (NiR; EC 1.7.7.1), the second enzyme in the nitrate assimilatory pathway, is regulated by nitrate as well as by end-products of nitrate assimilation, namely, glutamine (Gln) and asparagine (Asn). Nitrate induces expression of the NiR gene. Previously, using deletion analysis of the spinach (Spinacia oleracea L.) NiR gene promoter in transgenic tobacco (Nicotiana tabacum L.) and in-vivo dimethyl sulfate footprinting, we had identified the region between −230 bp and −180 bp as being critical for nitrate inducibility of this gene. In the present study, we show that the region from +1 to +67, which forms part of its untranslated leader, is important for minimal induction in the presence of nitrate. Electrophoretic mobility shift assays reveal concentration-dependent and competitive binding of a factor in tobacco nuclear extracts to this region. In the presence of Gln or Asn, the expression of spinach NiR is repressed. This repression is observed with the full-length NiR promoter (−3100 bp) as well as with the shortest promoter (−230 bp) that gives nitrate induction, which includes the +67 bp leader sequence. The repressed expression of the gene is not the result of reduced nitrate accumulation in the presence of the nitrogen metabolites. Received: 2 December 1997 / Accepted: 20 January 1998  相似文献   

19.
In our preceding studies, we have identified microsatellite polymorphisms inside the PSMA6 gene and in its 5′ upstream region. Following the observed associations of microsatellite polymorphisms with non-insulin dependent diabetes mellitus and Graves’ disease, we extended the evaluation of PSMA6 genetic variations to cardiovascular disorders and non-insulin dependent diabetes mellitus. New polymorphisms in the promoter region and exon 6 of the gene were identified by direct sequencing of the promoter region and all seven exons of the gene in 30 individuals of the European descent. Two SNPs at positions −110 and −8 from the translation start, in the promoter region and 5′ UTR, respectively, were analyzed. Neither polymorphism was associated with the risk of myocardial infarction. No significant association of the polymorphisms with plasma lipid levels or BMI was observed. A borderline association of both polymorphisms with diastolic blood pressure was observed in the control group. Genotype −8CG was significantly more frequent in type 2 diabetes patients, and haplotype C−110/G−8, compared to C−110/G−8 was associated with a higher risk of NIDDM. The text was submitted by the authors in English.  相似文献   

20.
Lang Z  Zhou P  Yu J  Ao G  Zhao Q 《Planta》2008,227(2):387-396
SBgLR (Solanum tuberosum genomic lysine-rich) gene was isolated from a potato genomic library using SB401 (S. berthaultii 401) cDNA as probe. RT-PCR analysis of SBgLR gene expression profile and microscopic analysis of green fluorescent protein (GFP) expression in tobacco plants transformed with SBgLR promoter-GFP reporters indicate that SBgLR is a pollen-specific gene. A series of 5′deletions of SBgLR promoter were fused to the β-glucuronidase (GUS) gene and stably introduced into tobacco plants. Histochemical and quantitative assays of GUS expression in transgenic plants allowed us to localize an enhancer of SBgLR promoter to the region −345 to −269 relative to the translation start site. This 76 bp (−345 to −269) fragment enhanced GUS expression in leaves, stems and roots when fused to −90/+6 CaMV 35S minimal promoter. Deletion analysis showed that a cis-element, which can repress gene expression in root hairs, was located in the region −345 to −311. Further study indicated that the −269 to −9 region was sufficient to confer pollen-specific expression of GFP when fused to CaMV 35S enhancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Authors Zhihong Lang and Peng Zhou contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号