首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The external electric field strength required for electrical hemolysis of human red blood cells depends sensitively on the composition of the external medium. In isotonic NaCl und KCl solutions the onset of electrical hemolysis is observed at 4 kV per cm and 50% hemolysis at 6 kV per cm, whereas increasing concentrations of phosphate, sulphate, sucrose, inulin and EDTA shift the onset and the 50% hemolysis-value to higher field strengths. The most pronounced effect is observed for inulin and EDTA. In the presence of these substances the threshold value of the electric field strength is shifted to 14 kV per cm. This is in contrast to the dielectric breakdown voltage of human red blood cells which is unaltered by these substances and was measured to be 1 V corresponding in the electrolytical discharge chamber to an external electric field strength of 2 to 3 kV per cm. On the other hand, dielectric breakdown of bovine red blood cell membranes occurs in NaCl solution at 4 to 5 kV per cm and is coupled directly with hemoglobin release. The electrical hemolysis of cells of this species is unaffected by the above substances with exception of inulin. Inulin suppressed the electrical hemolysis up to 15 kV per cm. The data can be explained by the assumption that the reflection coefficients of the membranes of these two species to bivalent anions and uncharged molecules are field-dependent to a different extent. This explanation implies that electrical hemolysis is a secondary process of osmotic nature induced by the reversible permeability change of the membrane (dielectric breakdown) in response to an electric field. This view is supported by the observation that the mean volumes of ghost cells obtained by electrical hemolysis can be changed by changing the external phosphate concentration during hemolysis and resealing, or by subjecting the cells to a transient osmotic stress immediately after the electrical hemolysis step. An interesting finding is that the breakdown voltage, although constant throughout each normally distributed ghost size distribution, increases with increasing mean volume of the ghost populations.  相似文献   

2.
Dielectric breakdown of membranes of red blood cells was observed in high electric fields (approx. 10-3-10-4 V/cm) using an improved Coulter Counter with hydrodynamic focussing. In making measurements of the size distributions of red blood cells as a function of increasing electric field strength it was found that a sharp discontinuity occurred in the otherwise linear relation between the pulse heights in the Coulter Counter and the electric field strength due to dielectric breakdown of the membranes. Solution of Laplace's equation for the electric field generated at breakdown in the cell membranes yeilds a mean value of about 1.6 V. for the membrane potential of red blood cells. Due to the dielectric break-down, release of hemoglobin occurred. Mechanical rupture of the red blood cells by the hydrodynamic forces in the orifice of the Coulter Counter or thermal rupture could be excluded as hemolysing mechanisms. The leaky ghost cells resealed at 37 degrees C. as shown by incorporation of 131I-labeled albumin and repeated dielctric breakdown.  相似文献   

3.
M Krueger  F Thom 《Biophysical journal》1997,73(5):2653-2666
High-frequency electric fields can be used to induce deformation of red blood cells. In the temperature domain T = 0 degrees to -15 degrees C (supercooled suspension) and for 25 degrees C this paper examines for human erythrocytes (discocytes, young cell population suspended in a low ionic strength solution with conductivity sigma(25 degrees) = 154 microS/cm) in a sinusoidal electric field (nu = 1 MHz, E0 = 0-18 kV/cm) the following properties and effects as a function of field strength and temperature: 1) viscoelastic response, 2) (shear) deformation (steady-state value obtained from the viscoelastic response time), 3) stability (by experimentally observed breakdown of cell polarization and hemolysis), 4) electrical membrane breakdown and field-induced hemolysis (theoretical calculations for ellipsoidal particles), and 5) mechanical hemolysis. The items 2-4 were also examined for the frequency nu = 100 kHz and for a nonionic solution of very low conductivity (sigma(25 degrees) = 10 microS/cm) to support our interpretations of the results for 1 MHz. Below 0 degrees C with decreasing temperature the viscoelastic response time tau(res)(T) for the cells to reach steady-state deformation values d(infinity,E) increases and the deformation d(infinity,E)(T) decreases strongly. Both effects are especially high for low field strengths. The longest response time of approximately 30 s was obtained for -15 degrees C and small deformations. For 1 MHz the cells can be highly elongated up to 2.3 times their initial diameter a0 for 25 degrees and 0 degrees C, 2.1a0 for -10 degrees C and still 1.95a0 for -15 degrees C. For T > or = 0 degrees C the deformation is limited by hemolysis of the cells, which sets in for E0(lysis)(25 degrees) approximately 8 kV/cm and E0(lysis)(0 degrees) approximately 14 kV/cm. These values are approximately three times higher than the corresponding calculated critical field strengths for electrically induced pore formation. Nevertheless, the observed depolarization and hemolysis of the cells is provoked by electrical membrane breakdown rather than by mechanical forces due to the high deformation. For the nonionic solution, where no electrical breakdown is expected in the whole range for E0, the cells can indeed be deformed to even higher values with a low hemolytic rate. Below 0 degrees C we observe no hemolysis at all, not even for the frequency 100 kHz, where the cells hemolyze at 25 degrees C for the much lower field strength E0(lysis) approximately 2.5 kV/cm. Obviously, pore formation and growth are weak for subzero temperatures.  相似文献   

4.
Dielectric breakdown of membranes of red blood cells was observed in high electric fields (approx. 103–104 V/cm) using an improved Coulter Counter with hydrodynamic focussing. In making measurements of the size distributions of red blood cells as a function of increasing electric field strenght it was found that a sharp discontinuity occurred in the otherwise linear relation between the pulse heights in the Coulter Counter and the electric field strength due to dielectric breakdown of the membranes. Solution of Laplace's equation for the electric field generated at breakdown in the cell membranes yields a mean value of about 1.6 V for the membrane potential of red blood cells. Due to the dielectric break-down, release of hemoglobin occurred. Mechanical rupture of the red blood cells by the hydrodynamic forces in the orifice of the Coulter Counter or thermal rupture could be excluded as hemolysing mechanisms. The leaky ghost cells resealed at 37 °C as shown by incorporation of 131I-labeled albumin and repeated dielectric breakdown.  相似文献   

5.
A method is described for the preparation of haemoglobin free human erythrocyte ghosts in isotonic solutions using dielectric breakdown technique. In this single haemolytic procedure, almost complete removal of haemoglobin (? 0.1%) was achieved by subjecting the erythrocytes suspended in phosphate buffered, isotonic KCl solution at 0°C to three consecutive electrical field pulses of 16 kV/cm in the presence of 10 mM EDTA; EDTA was used to prevent electrical haemolysis. Haemolysis is induced by subsequent dilution with isotonic and isoionic solution to lower the EDTA concentration. Haemolysis is complete after 5 min; the cells are centrifuged, washed and resuspended in a solution of the same composition and osmolarity containing 4 mM MgCl2, but no EDTA. The resealing process, carried out at 37°C, was complete in about 1 h. Measurements of the size distribution of the ghost cells in the hydrodynamically focusing Coulter Counter at varying field strengths in the orifice revealed that the ghost population is nearly uniform. The mean (modal) volume of the ghost cells was 110–120 μm3 when suspended in phosphate buffered NaCl solution. The apparent breakdown voltage was about 1.3 V.  相似文献   

6.
The intracellular resistivity (conductivity) of cells can be easily calculated with high accuracy from electrical membrane breakdown measurements. The method is based on the determination of the size distribution of a cell suspension as a function of the electrical field strength in the orifice of a particle volume analyser (Coulter counter). The underestimation of the size distribution observed beyond the critical external field strength leading to membrane breakdown represents a direct access to the intracellular resistivity as shown by the theoretical analysis of the data. The potential and the accuracy of the method is demonstrated for red blood cells and for ghost cells prepared by electrical haemolysis. The average value of 180 omega X cm for the intracellular resistivity of intact red blood cells is consistent with the literature.  相似文献   

7.
The intracellular resistivity (conductivity) of cells can be easily calculated with high accuracy from electrical membrane breakdown measurements. The method is based on the determination of the size distribution of a cell suspension as a function of the electrical field strength in the orifice of a particle volume analyser (Coulter counter). The underestimation of the size distribution observed beyond the critical external field strength leading to membrane breakdown represents a direct access to the intracellular resistivity as shown by the theoretical analysis of the data. The potential and the accuracy of the method is demonstrated for red blood cells and for ghost cells prepared by electrical haemolysis. The average value of 180 Ω - cm for the intracellular resistivity of intact red blood cells is consistent with the literature.  相似文献   

8.
Dielectric Breakdown of Cell Membranes   总被引:23,自引:4,他引:19       下载免费PDF全文
With human and bovine red blood cells and Escherichia coli B, dielectric breakdown of cell membranes could be demonstrated using a Coulter Counter (AEG-Telefunken, Ulm, West Germany) with a hydrodynamic focusing orifice. In making measurements of the size distributions of red blood cells and bacteria versus increasing electric field strength and plotting the pulse heights versus the electric field strength, a sharp bend in the otherwise linear curve is observed due to the dielectric breakdown of the membranes. Solution of Laplace's equation for the electric field generated yields a value of about 1.6 V for the membrane potential at which dielectric breakdown occurs with modal volumes of red blood cells and bacteria. The same value is also calculated for red blood cells by applying the capacitor spring model of Crowley (1973. Biophys. J. 13:711). The corresponding electric field strength generated in the membrane at breakdown is of the order of 4 · 106 V/cm and, therefore, comparable with the breakdown voltages for bilayers of most oils. The critical detector voltage for breakdown depends on the volume of the cells. The volume-dependence predicted by Laplace theory with the assumption that the potential generated across the membrane is independent of volume, could be verified experimentally. Due to dielectric breakdown the red blood cells lose hemoglobin completely. This phenomenon was used to study dielectric breakdown of red blood cells in a homogeneous electric field between two flat platinum electrodes. The electric field was applied by discharging a high voltage storage capacitor via a spark gap. The calculated value of the membrane potential generated to produce dielectric breakdown in the homogeneous field is of the same order as found by means of the Coulter Counter. This indicates that mechanical rupture of the red blood cells by the hydrodynamic forces in the orifice of the Coulter Counter could also be excluded as a hemolysing mechanism. The detector voltage (or the electric field strength in the orifice) depends on the membrane composition (or the intrinsic membrane potential) as revealed by measuring the critical voltage in E. coli B harvested from the logarithmic and stationary growth phases. The critical detector voltage increased by about 30% for a given volume on reaching the stationary growth phase.  相似文献   

9.
Red cell osmotic hemolysis has traditionally been defined by the loss of hemoglobin, in response to reduced osmotic pressure, as measured spectroscopically. Previous work from this laboratory using resistive pulse spectroscopy (RPS) has shown that in a mixed population of hemolyzing cell, ghosts can be detected as being more deformable, and hence appearing distinctly smaller, than the remaining intact cells. Other researchers using similar methods have reported detection of ghosts as apparently smaller objects, resulting from their greater sensitivity to dielectric breakdown. We now confirm both of these results, and demonstrate by kinetic studies that changes which occur in the rheological and electrical properties of ghosts are independent phenomena. We include in our analysis the explicit calculation of ghost and intact spherocyte resistivity after dielectric breakdown. The two different characterizations for ghosts are integrated into a proposed model of osmotic hemolysis based on known red blood cell membrane and cytoplasmic properties. This work provides both a theoretical and a practical foundation for RPS-based measures of osmotic fragility, including a potential new clinical test, measures which provide very early detection of the ultimate fate of osmotically stressed red cells.  相似文献   

10.
Electrical stability of human erythrocyte membranes with different cholesterol content was studied. Breakdown in the cell membranes was generated by application of electric pulses with field strengths of 1.4-3.2 kV/cm. The share of perforated cells was registered by measuring hemolysis level. The red blood cells from patients with psoriasis and normal erythrocytes after incubation in the presence of liposomes were used as a model of cells with cholesterol-rich membranes. It was discovered that an increase of cholesterol content in the membranes moved the field-dependent curves to a higher field range. The obtained effect is attributed to the increase of the breakdown membrane potential. Application of high-pulse-electric-field technique for investigating the properties of cell membranes is discussed.  相似文献   

11.
Dielectric breakdown of intact erythrocytes and subsequent haemolysis in the presence of increasing concentrations of benzyl alcohol were investigated by means of an electrolytical discharge chamber and a hydrodynamic focusing Coulter Counter.Low concentrations of the drug stabilized human and bovine erythrocytes against haemolysis induced by dielectric breakdown of the cell membrane in isotonic solutions, while high concentrations caused lysis similar to hypotonic and mechanical haemolysis. The stabilizing effect of the drug on electrically induced haemolysis depends on the pulse length of the applied electric field. The critical dielectric breakdown voltage of the membranes of intact cells decreases progressively with increasing benzyl alcohol concentrations, at which the membrane is also more stabilized against electrical and osmotic haemolysis. Occasionally, an increase in the dielectric breakdown voltage is observed at drug concentrations at which lysis occurs. A similar dependence of the breakdown voltage on drug concentration was found for human erythrocyte ghost cells prepared by dielectric breakdown.The results are consistent with the electromechanical model suggested for the dielectric breakdown mechanism and with the assumption of Metcalfe, using NMR and ESR techniques, that the fluidity of the membrane increases with increasing benzyl alcohol concentration.  相似文献   

12.
The uptake of macromolecules by erythrocytes can be achieved with the electrical breakdown technique [2, 4]. In this technique the erythrocyte membranes are subjected to a high external electrical field pulse for a short period. Local, reversible breakdowns of the cell membrane occur above a critical field strength which lead to a time-dependent increase in the permeability of the membrane. By this means, human erythrocyte membranes can be made permeable to DNA, pharmaceutical compounds, and latex particles following an electrical field pulse [1, 3, 5]. Larger particles should also be taken up by erythrocytes using this method. Vienken et al. [5] demonstrated the entrapment of latex particles with a diameter of 0.091 micron in human erythrocyte ghosts, although this was shown with only a single electron micrograph which does not prove that the ghost membrane was intact. In our experiments in order to entrap latex particles with a diameter of 0.26 micron rat erythrocytes were subjected to an electrical field pulse of 12 kV/cm with a decay time of 60 microseconds. Experiments using the electron microscope show that after such an electrical field pulse the uptake of latex particles by rat erythrocytes follows the stomatocytotic pathway. We show further that using electron microscopic techniques, a single section cannot demonstrate the completed uptake of a latex particle by the erythrocyte.  相似文献   

13.
In this communication we reported the fusion of mitochondria of hepatocytes extracted from a rat liver. It was found that fusion occurred at an electric field of 1.56-1.8 kV/cm at room temperature. Further increase in the field strength (greater than 1.8 kV/cm) was accompanied by the breakdown of mitochondria.  相似文献   

14.
Human red blood cell ghosts were prepared by electrical haemolysis at 0 degrees C in isotonic solutions using a discharge chamber which was part of a high voltage circuit. The size distribution of the ghosts was normally distributed, the modal (=mean) volume was approx. 115 mum3, performing the electrical haemolysis in the following solution: 105 mM KCI, 20 mM NaCL, 4mM MgCl2, 7.6 mM Na2HPO4, 2.94 mM NaH2PO4, 10 mM glucose, pH 7.2. Resealing was carried out at o degrees C for 10 min (after the haemolytic step) and then for further 20 min at 37 degrees C. The mean volume of the ghost preparation could be changed by variation of the phosphate concentration in the above solution replacing a part of NaCl by phosphate (5 mM phosphate: 94 mum3, 15 mM phosphate: 135 mum3). The breakdown voltage of the ghost cell membranes measured with a hydrodynamic focusing Coulter Counter depends on the mean volume (94 mum3 = 1.04 V, 134 mum3 = 1.36 V). On the other hand, the breakdown voltage is constant throughout each size distribution pointing to an "electrically homogeneous" ghost preparation. The sensitiviity of the Coulter Counter to detect electrical inhomogeneities in the membranes of a ghost population is demonstrated by dielectric breakdown measurements of an apparently normally distributed ghost preparation containing two different "electrically homogeneous" ghost population i.e. with two different breakdown voltages. The ghost cells obtained by electrical haemolysis in the above solution containing 10mM phosphate were fairly impermeable to sucrose and behave like an ideal osometer. It is further demonstrated that ghost cells can be loaded with enzymes (e.g. urease) and drugs using this technique and that these loaded ghost cells can be used as bioactive capsules for clinical application.  相似文献   

15.
Electroinsertion is a novel technique of protein implantation in cell membranes using electrical pulses, of field strength between 1.3 kV/cm and 2.1 kV/cm and up to 1 ms duration. The full length recombinant CD4 receptor could thus be inserted in human and murine red blood cell (RBC) membranes. 100% of the RBC subjected to this procedure were shown to expose different CD4 epitopes after electroinsertion. An average of 5000 epitopes per cell has been detected by immunofluorescence assay using flow cytometry and whole cell ELISA. CD4 electroinserted in red blood cell membranes showed upon reaction with monoclonal antibody significant patching similar to that observed in T4 cells expressing CD4. Furthermore, the fluorescent enhancement coming from accumulation of immune complex phycoerythrin-antiphycoerythrin was similar for both native CD4 on T4 cells or CD4 electroinserted into erythrocyte membrane. Attempts to electroinsert proteins without a membrane spanning sequence have consistently failed, suggesting that adsorption is not responsible for the observed phenomena.  相似文献   

16.
Electric field induced transient pores in phospholipid bilayer vesicles   总被引:12,自引:0,他引:12  
J Teissie  T Y Tsong 《Biochemistry》1981,20(6):1548-1554
A study of the voltage induction of transient pores in phospholipid bilayer vesicles is reported. Unilamellar vesicles (dipalmitoylphosphatidylcholine), with a size distribution of 100 +/- 30 nm, were prepared by the method of Enoch & Strittmatter [Enoch, H., & Strittmatter, P. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 145]. The vesicles loaded with [14C]sucrose and suspended in a mixture of 150 mM NaCl and 272 mM sucrose (both are the isotonic solvent for erythrocytes) were exposed to an intense electric field in the range of 20--40 kV/cm, with a field decay time of 5--15 micro second. A transient leakage of sucrose label was detected when the field strength exceeded 30 kV/cm. After the field was removed, no slow leakage of the tracer molecules occurred during a 65-h incubation period at the room temperature (23 +/- 2 degrees C). The leakage is attributed to the field-induced transmembrane potential, but not other effects such as the Joule heating or the shock wave associated with the voltage discharge. When the potential exceeded a threshold value of 200 mV, corresponding to an applied field strength of 30 kV/cm, there was a dielectric breakdown of the bilayer structure. Pores which allowed passage of sucrose were formed, transiently. Experiments show that these pores were fully reversible, and no global and permanent damages to the vesicle bilayer were detected. The implication of this membrane potential triggered conducting state of lipid bilayers to biological functions of cells is discussed.  相似文献   

17.
The effect of the external high voltage electric field pulses on the suspension of rat peritoneal phagocytes has been investigated using chemiluminescent and turbodimetric methods. Single electric field pulses were found to activate macrophages, which was accompanied by a "flash" of chemiluminescence. Subthreshold electric field strength up to 0.8 kV/cm failed to alter macrophage activity. Maximum activation was observed at 2.2 kV/cm; with higher electric field intensity the effect diminished to zero. Drastic changes in light-scattering suspension properties at high electric field intensity indicate irreversible alterations of the barrier function of phagocyte membranes.  相似文献   

18.
Electric Field Pulses Can Induce Apoptosis   总被引:5,自引:0,他引:5  
Injection of electric field pulses of high intensity (kV/cm) and short duration (microsecond range) into a cell suspension results in a temporary increase of the membrane permeability due to a reversible electric breakdown of the cell membrane. Here we demonstrate that application of supercritical field pulses between 4.5 and 8.1 kV/cm strength and 40 μsec duration induce typical features of apoptosis in Jurkat T-lymphoblasts and in HL-60 cells including DNA fragmentation and cleavage of the poly(ADP ribose) polymerase. Apoptosis induction did not depend on the presence of any particular electrolyte in the extracellular medium. However, no apoptosis was observed in solutions without a minimum amount of salt. Apoptotic DNA fragmentation was prevented by the caspase inhibitor zVAD. Received: 16 December 1998/Revised: 24 February 1999  相似文献   

19.
Studies with the light microscope were carried out on mesophyll cell protoplasts of Avena sativa which had been made to undergo fusion by reversible electrical breakdown of the cell membrane. In order to establish close membrane contact between the cells, an important prerequisite for fusion, a method known as dielectrophoresis was used. In an inhomogeneous alternating electrical field the protoplasts adhere to the electrodes and to each other in the direction of the field lines. The cells which were thus brought into close contact with each other could be made to fuse by the application of a field pulse of high amplitude (about 750 V/cm) and short duration (20–50 μs). The field strength required for fusion exceeds the value necessary for the electrical breakdown of the cell membrane. Fusion took place within some minutes and led to a high yield of fused protoplasts. The fusion of cells being in the electric field occured in a synchronous manner. In some of the fusion experiments part of the protoplasts of A. sativa were stained with neutral red. When these cells were fused with unstained protoplasts, the vacuoles from the different cells within the fused aggregate could be shown to remain separate for quite some time.  相似文献   

20.
It was found that plasmid DNA (pUB 110) can be introduced into not only protoplasts but also intact cells of Bacillus subtilis by electric field pulses. The transformation of, B. subtilis using protoplasts results in an efficiency of 2.5 × 104 transformants per μg of DNA, with a single pulse of 50 jisec with an initial electric field strength of 7kV/cm. Even transformation of intact B. subtilis cells results in a maximum efficiency of 1.5 × 103 transformants per μg DNA, with a single pulse of 400 μsec with an initial electric field strength of 16kV/cm. The cell survival of protoplasts and intact cells was approximately 100% and 30%, respectively, under the conditions found to be optimal for the transformation process. Plasmid DNA isolated from pUB 110 containing transformants was indistinguishable from authentic preparations of pBU 110 on gel electrophoretic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号