共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《Fish & shellfish immunology》2014,36(1):52-60
Sulfated galactans (SG) were isolated from the red seaweed Gracilaria fisheri (G. fisheri). Chemical analysis revealed SG contains sulfate (12.7%) and total carbohydrate (42.2%) with an estimated molecular mass of 100 kDa. Structure analysis by NMR and FT-IR spectroscopy revealed that SG is a complex structure with a linear backbone of alternating 3-linked β-d-galactopyranose and 4-linked 3,6-anhydrogalactose units with partial 6-O-methylate-β-d-galactopyranose and with sulfation occurring on C4 of d-galactopyranose and C6 of l-galactopyranose units. SG treatment enhanced immune parameters including total haemocytes, phenoloxidase activity, superoxide anions and superoxide dismutase in shrimp Penaeus monodon. Shrimp fed with Artemia salina enriched with SG (100 and 200 μg ml−1) and inoculated with white spot syndrome virus (WSSV) showed a significantly lower mortality rate and lower viral VP 28 amplification and expression than control. The results suggest that SG from G. fisheri exhibits immune stimulatory and antiviral activities that could protect P. monodon from WSSV infection. 相似文献
4.
根据GenBank上WSSV囊膜蛋白基因vp19的序列,设计并合成引物,PCR扩增得到vp19基因并克隆到pGEM‐T载体中,经过BamHⅠ/HindⅢ酶切、连接并将vp19插入到pET32b表达载体中。用重组质粒pET32b-vp19转化大肠杆菌Origam(iDE3)pLysS,在IPTG诱导下,融合蛋白Trx-VP19以可溶性的形式得到表达,经SDS-PAGE和Western-blot检测显示其分子量与预期的大小相符合。目的蛋白经Ni2 柱纯化并定量后分别直接注射鳌虾和包被饲料投喂鳌虾。实验结果表明注射Trx-VP19可以提高鳌虾个体抗WSSV感染力的作用。 相似文献
5.
Sunil Kumar Sahu Kandasamy Kathiresan Reena Singh Poomalai Senthilraja 《Bioinformation》2012,8(18):897-900
White spot syndrome (WSS) is one of the most common and most disastrous diseases of shrimp worldwide. It causes up to 100%
mortality within 3 to 4 days in commercial shrimp farms, resulting in large economic losses to the shrimp farming industry. VP28
envelope protein of WSSV is reported to play a key role in the systemic infection in shrimps. Considering the most sombre issue of
viral disease in cultivated shrimp, the present study was undertaken to substantiate the inhibition potential of Avicennia marinaderived
phytochemicals against the WSSV envelope protein VP28. Seven A. marina-derived phytochemicals namely stigmasterol,
triterpenoid, betulin, lupeol, avicenol-A, betulinic acid and quercetin were docked against the WSSV protein VP28 by using Argus
lab molecular docking software. The chemical structures of the phytochemicals were retrieved from Pubchem database and
generated from SMILES notation. Similarly the protein structure of the envelope protein was obtained from protein data bank
(PDB-ID: 2ED6). Binding sites were predicted by using ligand explorer software. Among the phytochemicals screened,
stigmasterol, lupeol and betulin showed the best binding exhibiting the potential to block VP28 envelope protein of WSSV, which
could possibly inhibit the attachment of WSSV to the host species. Further experimental studies will provide a clear
understanding on the mode of action of these phytochemicals individually or synergistically against WSSV envelope protein and
can be used as an inhibitory drug to reduce white spot related severe complications in crustaceans. 相似文献
6.
根据GenBank上WSSV囊膜蛋白基因vp28的序列,设计并合成引物,PCR扩增得到vp28基因,成功构建重组表达载体pET22b-vp28并转化大肠杆菌BL21(DE3)。基因工程菌株37℃IPTG诱导,表达产物经Western-blot和SDS-PAGE检测显示有与预期大小32kDa相符合的目的蛋白。用Ni2 -柱纯化的目的蛋白分别直接注射螯虾和包被饲料投喂螯虾,实验结果表明vp28在大肠杆菌中的表达产物有显著提高虾体抗WSSV感染力的作用,而且注射效果更好。 相似文献
7.
不同温度对脊尾白虾胚胎发育与幼体变态存活的影响 总被引:5,自引:0,他引:5
选用实验室内人工控制交尾的脊尾白虾,研究了不同温度对脊尾白虾胚胎发育及幼体变态、存活的影响。结果表明,在盐度为31的条件下,脊尾白虾胚胎发育的生物学零度为12.18℃,有效积温为3828.27℃.h。在15.3—28.1℃范围内,胚胎发育时间随着温度升高而呈双曲线性缩短,而胚胎发育速度随着温度的升高而呈直线性加快,但当温度超过30℃时,胚胎无法正常完成发育。脊尾白虾幼体变态发育速度随着温度的升高而加快,18、20、22、24、26、28℃各实验组开始出现仔虾的时间依次为17、14、11、9、8和8 d,各组90%以上幼体变态为仔虾的时间依次为21、18、15、14、11和11 d。各实验组在幼体变态过程中存活率都呈明显的阶梯式下降趋势,且28℃组的存活率下降最快,但当存活幼体全部变为仔虾时,各实验组间的存活率并无显著性差异(P>0.05)。18℃组仔虾干质量明显高于其它各组(P<0.05),28℃组仔虾干质量最低,但与20、22、24、26℃组无显著性差异(P>0.05)。因此在脊尾白虾育苗中,幼体孵化温度不应低于12℃,最高不超过28℃为宜;幼体培育温度,建议控制在22—26℃为最佳。 相似文献
8.
9.
Syed Musthaq S Sudhakaran R Balasubramanian G Sahul Hameed AS 《Journal of invertebrate pathology》2006,93(2):75-80
The susceptibility of two species of lobsters, Panulirus homarus and Panulirus ornatus to white spot syndrome virus (WSSV) was tested by oral route and intramuscular injection. The results revealed that these lobsters were as highly susceptible as marine shrimp when the WSSV was administered intramuscularly. The WSSV caused 100% mortality in both Panulirus homarus and Panulirus ornatus, at 168 and 120 h, respectively, after intramuscular injection and failed to cause mortality when given orally. The presence of WSSV in moribund lobsters was confirmed by single-step and nested PCR, Western blot, histology, and bioassay test. It was found in eyestalk, gill, head muscle, tail muscle, hemolymph, appendages, and stomach. In lobsters with oral route infection, all tested organs except stomach and head muscle was negative for WSSV by nested PCR at 120 h post-inoculation. The stomach and head muscle was positive by nested PCR at 120 h p.i., but negative at 168 h p.i. Western blot analysis was negative in all the tested organs of both species of lobster at 120 h post-inoculation by oral route. 相似文献
10.
Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine 总被引:15,自引:0,他引:15
Although invertebrates lack a true adaptive immune response, the potential to vaccinate Penaeus monodon shrimp against white spot syndrome virus (WSSV) using the WSSV envelope proteins VP19 and VP28 was evaluated. Both structural WSSV proteins were N-terminally fused to the maltose binding protein (MBP) and purified after expression in bacteria. Shrimp were vaccinated by intramuscular injection of the purified WSSV proteins and challenged 2 and 25 days after vaccination to assess the onset and duration of protection. As controls, purified MBP- and mock-vaccinated shrimp were included. VP19-vaccinated shrimp showed a significantly better survival (p<0.05) as compared to the MBP-vaccinated control shrimp with a relative percent survival (RPS) of 33% and 57% at 2 and 25 days after vaccination, respectively. Also, the groups vaccinated with VP28 and a mixture of VP19 and VP28 showed a significantly better survival when challenged two days after vaccination (RPS of 44% and 33%, respectively), but not after 25 days. These results show that protection can be generated in shrimp against WSSV using its structural proteins as a subunit vaccine. This suggests that the shrimp immune system is able to specifically recognize and react to proteins. This study further shows that vaccination of shrimp may be possible despite the absence of a true adaptive immune system, opening the way to new strategies to control viral diseases in shrimp and other crustaceans. 相似文献
11.
Testicular cell culture of crab, Scylla serrata (Forskal) was used to study the effects of White spot syndrome virus (WSSV). We are showing the susceptibility of cell culture of crabs to WSSV. The proliferating cell culture of testes were maintained for more than 4 months in a medium prepared from L15 and crab saline supplemented with epidermal growth factor. The cell cultures inoculated with different concentrations of virus showed distinct cytopathic effects such as change in cell appearance, shrinkage and cell lysis. WSSV infection of cultured cells was confirmed by Nested PCR technique. The incorporation of viral DNA in cultured cells was shown by RAPD profile generated using 10-mer primers. The controls that were not exposed to WSSV did not show cytopathic effects. This work shows the usefulness of proliferating testicular cell culture for studying WSSV infection using molecular tools. Thus, this report gains significance as it opens new vistas for diagnostics and drugs for WSSV. 相似文献
12.
Ponprateep S Tharntada S Somboonwiwat K Tassanakajon A 《Fish & shellfish immunology》2012,32(1):26-34
Anti-lipopolysaccharide factors (ALFs) are antimicrobial peptides previously identified in various crustaceans. Out of five isoforms identified in Penaeus monodon, ALFPm3 is the best characterized, exhibits antibacterial and antifungal activities and can protect the shrimp from viral infections. Herein, the most recent identified ALFPm, called ALFPm6, is characterized for its potential role in the shrimp’s immunity. RNA interference-mediated gene silencing was used to study the function of ALFPm6 in comparison to ALFPm3. Knockdown of ALFPm3 gene led to rapid death with a cumulative shrimp mortality of 86% within 7 days, accompanied by a 12- and 50-fold higher bacterial count after 2 days in the haemolymph and hepatopancreas, respectively, compared to the control shrimp injected with GFP dsRNA. In contrast, gene silencing of ALFPm6 alone had no effect on the shrimp mortality, but led to a significant increase in the cumulative mortality and a faster mortality rate following Vibrio harveyi and white spot syndrome virus (WSSV) infections, respectively. These results support the roles of ALFPm6 and ALFPm3 in the protection of shrimp against microbial infections. 相似文献
13.
14.
Immortal cell lines have not yet been reported from Penaeus monodon, which delimits the prospects of investigating the associated viral pathogens especially white spot syndrome virus (WSSV). In this context, a method of developing primary hemocyte culture from this crustacean has been standardized by employing modified double strength Leibovitz-15 (L-15) growth medium supplemented with 2% glucose, MEM vitamins (1×), tryptose phosphate broth (2.95 g l−1), 20% FBS, N-phenylthiourea (0.2 mM), 0.06 μg ml−1 chloramphenicol, 100 μg ml−1 streptomycin and 100 IU ml−1 penicillin and hemolymph drawn from shrimp grown under a bio-secured recirculating aquaculture system (RAS). In this medium the hemocytes remained viable up to 8 days. 5-Bromo-2′-deoxyuridine (BrdU) labeling assay revealed its incorporation in 22 ± 7% of cells at 24 h. Susceptibility of the cells to WSSV was confirmed by immunofluoresence assay using a monoclonal antibody against 28 kDa envelope protein of WSSV. A convenient method for determining virus titer as MTT50/ml was standardized employing the primary hemocyte culture. Expression of viral genes and cellular immune genes were also investigated. The cell culture could be demonstrated for determining toxicity of a management chemical (benzalkonium chloride) by determining its IC50. The primary hemocyte culture could serve as a model for WSSV titration and viral and cellular immune related gene expression and also for investigations on cytotoxicity of aquaculture drugs and chemicals. 相似文献
15.
The nucleocapsid protein VP15 of white spot syndrome virus (WSSV) is a basic DNA-binding protein. Three canonical bipartite nuclear localization signals (NLSs), called NLS1 (aa 11-27), NLS2 (aa 33-49) and NLS3 (44-60), have been detected in this protein, using the ScanProsite computer program. To determine the nuclear localization sequence of VP15, the full-length open reading frame, or the sequence of one of the three NLSs, was fused to the green fluorescent protein (GFP) gene, and transiently expressed in insect Sf9 cells. Transfection with full-length VP15 resulted in GFP fluorescence being distributed exclusively in the nucleus. NLS 1 alone could also direct GFP to the nucleus, but less efficiently. Neither of the other two NLSs (NLS2 and 3) was functional when expressed alone, but exhibited similar activity to NLS1 when they were expressed as a fusion peptide. Furthermore, a mutated VP15, in which the two basic amino acids (11RR12) of NLSI were changed to two alanines (11AA12), caused GFP to be localized only in the cytoplasm of Sf9 cells. These results demonstrated that VP15, as a nuclear localization protein, needs cooperation between its three NLSs, and that the two residues (11RR12) of NLS1 play a key role in transporting the protein to the nucleus. 相似文献
16.
Kuan-Yu Chen Tai-Ching Hsu Po-Yu Huang Shih-Ting Kang Chu-Fang Lo Wei-Pang Huang Li-Li Chen 《Fish & shellfish immunology》2009,27(3):460-465
White spot syndrome virus (WSSV) can cause the most serious viral disease of shrimp and has a wide host range among crustaceans. Although researches show a lot about its genome and structure, information concerning the mechanism of how WSSV infects' cells is lacking. In this study, some experiments were applied to confirm the biological meaning of the protein–protein interaction between WSSV envelope protein, VP53A, and Penaeus monodon chitin-binding protein (PmCBP). Immunofluorescent study indicated that PmCBP is located on the cell surface of host cells. PmCBP amounts of about 34 kDa can be detected in both P. monodon and Litopenaeus vannamei tissues by Western blotting. In the in vivo neutralization experiment, both rVP53A and rPmCBP that were produced by Esherichia coli can promote resp. a 40% and 20% survival rate of the shrimp which were challenged by WSSV. Furthermore, a yeast-two-hybrid result revealed that PmCBP could interact with at least 11 WSSV envelope proteins. Those findings suggest that PmCBP may be involved in WSSV infection. 相似文献
17.
Ming Cong Linsheng Song Limei Qiu Bo Wang Huan Zhang Lei Zhang 《Journal of invertebrate pathology》2009,100(2):120-122
A more rapid and powerful response against repeated exposure of same pathogen in vertebrates is usually considered as the reflection of immunological memory, but it is not well understood in invertebrates. In the present study, the temporal expression profiles of Chlamys farreri peptidoglycan recognition protein-S1 (CfPGRP-S1) gene after two challenges of Listonella anguillarum were examined to evaluate priming response in scallops. The up-regulation of CfPGRP-S1 mRNA occurred 3 h earlier, and the expression level was significant higher (P < 0.05), after the second challenge than that after the first challenge. The preliminary results provided new insights into invertebrate immunological memory, and they also would be helpful to develop strategies for disease control. 相似文献
18.
19.
Yunji Xiu Jia Feng Weiqiang Lu Dandan Liu Ting Wu Huanxi Zhu Peng Liu Wenjie Li Qian Ren Wei Gu Qingguo Meng Wen Wang 《Cell stress & chaperones》2014,19(6):949-961
The 70-kDa family of heat-shock proteins (Hsp70) plays an important role in the host immunity, which is widely expressed in eukaryotic cells as a major chaperone protein. In the present study, the full-length complementary DNA (cDNA) of a second cognate cytosolic Hsp70 family member (MnHsc70-2) was cloned and characterized from Macrobrachium nipponense, which is an economically and nutritionally important crustacean. The cDNA was 2,717 bp, containing an open reading frame (ORF) of 1,950 bp, which encodes a protein of 649 amino acids with a theoretical molecular weight of 71.1 kDa and an isoelectric point of 5.27. Sequence alignment showed that the MnHsc70-2 shared 75–97 % identity with other heat-shock proteins. Compared to the previously identified cognate Hsp70 (MnHsc70-1) in M. nipponense, MnHsc70-2 showed quite different expression profiles under unstressed conditions in all tested tissues, including the hemocytes, heart, hepatopancreas, gill, intestine, nerve, and muscle. The phylogenetic analysis demonstrated that MnHsc70-2 showed the closest relationship with MnHsc70-1. Heat-inducibility assays showed that two isolated messenger RNAs (mRNAs) displayed different expression profiles in both the hepatopancreas and gill tissues. MnHsc70-1 mRNA expression level decreased at first and then increased to the normal level, whereas MnHsc70-2 mRNA level increased at first and then decreased. The expressions of two MnHsc70s showed substantial obvious heat-inducible regulation in both the hepatopancreas and gill. Under bacterial challenge by Aeromonas hydrophila, both MnHsc70-1 and MnHsc70-2 mRNA level was up-regulated moderately. The results suggested that two cognate Hsc70s may play essential functions in mediating responses to heat-shock and bacterial challenge. 相似文献