首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most benthic invertebrates have complex life cycles with planktonic larvae that return to the substratum to settle and metamorphose into a benthic stage. Although naturally produced chemical cues have long been thought to be important for the settlement or metamorphosis of invertebrate larvae, few ecologically relevant chemical cues have been clearly identified. The marine echinoid Holopneustes purpurascens has a complex life cycle, with a planktonic, nonfeeding dispersive larva that metamorphoses into a benthic stage that lives in the canopy of subtidal benthic algae such as the red alga Delisea pulchra and the kelp Ecklonia radiata. Recently recruited juveniles are found primarily on D. pulchra, and we hypothesized that this was in response to a chemical cue produced by this alga. Competent larvae metamorphosed in the presence of D. pulchra, or seawater surrounding this alga, but not in response to the presence of E. radiata or its extracts. A cue for metamorphosis was isolated and characterized from D. pulchra and found to be a water-soluble complex of the sugar floridoside and isethionic acid in a 1:1 molar ratio. The floridoside-isethionic acid complex also triggered settlement in H. purpurascens; however, this response was less specific than metamorphosis and was reversible. Larvae of H. purpurascens also metamorphosed in the presence of several other species of red, but not brown or green, algae from their habitat. Floridoside is found only in red algae, suggesting that the floridoside-isethionic acid complex may be acting as a cue for metamorphosis in other red algae as well as in D. pulchra.  相似文献   

2.
Human activities, including overfishing and species introductions, have had a dramatic impact on benthic communities in the Gulf of Maine within the past two decades. Prior to the 1970s, the climax community in the shallow subtidal was composed of Laminaria spp. kelp beds with an understory of arborescent red algae. In the 1980s, a population explosion of the green sea urchin, Strongylocentrotus droebachiensis, created an alternate community state, urchin barrens. Recently, a new community has been observed in former urchin barrens and kelp beds. This assemblage is principally composed of the introduced species: Codium fragile subsp. tomentosoides (green alga), Membranipora membranacea (bryozoan), Diplosoma listerianum (tunicate), Bonnemaisonia hamifera (red alga) and the opportunistic species Mytilus edulis (mussel) and Desmarestia aculeata (brown alga). In addition to changes in relative abundance, many of these species have greatly expanded their distribution and habitat selection. A model detailing mechanisms for the transition of the traditional kelp bed and urchin barren communities to others is presented and implications for this new community are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
New records of marine benthic algae from New South Wales, eastern Australia   总被引:2,自引:0,他引:2  
Twenty‐four species of marine macroalgae are recorded from the mainland coast of New South Wales for the first time. One species, Laurencia platyclada Boergesen, represents a new record for Australia and the Pacific Ocean. Included in these new records is the introduced, invasive and cold‐tolerant strain of the green alga Caulerpa taxifolia, which was formerly known only as native, non‐invasive populations from Lord Howe Island. Based on published accounts, the composition of the marine benthic algae for the state of New South Wales now stands at 131 green, 140 brown and 449 red macroalgae. This baseline information adds significantly to our knowledge of the overall marine biodiversity of the state, as well as to the phycogeography of the southwestern Pacific region.  相似文献   

4.
As marine sessile organisms, seaweeds must respond efficiently to biotic and abiotic challenges in their natural environment to reduce the fitness consequences of wounds and oxidative stress. This study explores the early steps of the defense responses of a large marine brown alga (the tangle kelp Laminaria digitata) and investigates its ability to transmit a warning message to neighboring conspecifics. We compared the early responses to elicitation with oligoguluronates in laboratory-grown and harvested wild individuals of L. digitata. We followed the release of H2O2 and the concomitant production of volatile organic compounds. We also monitored the kinetics of expression of defense-related genes following the oxidative burst. Laboratory-grown algae were transplanted in kelp habitats to further evaluate their responses to elicitation after a transient immersion in natural seawater. In addition, a novel conditioning procedure was established to mimic field conditions in the laboratory. Our experiments showed that L. digitata integrates waterborne cues present in the kelp bed and/or released from elicited neighboring plants. Indeed, the exposure to elicited conspecifics changes the patterns of oxidative burst and volatile emissions and potentiates this kelp for faster induction of genes specifically regulated in response to oligoguluronates. Thus, waterborne signals shape the elicitor-induced responses of kelps through a yet unknown mechanism reminiscent of priming in land plants.  相似文献   

5.
The role of green sea urchin Strongylocentrotus droebachiensis as a source of fecal particulate organic matter (POM) for the benthic nearshore ecosystems has been studied over a 3.5-month period. Three macroalgae were tested as food sources: Alaria esculenta, Laminaria longicruris and Ulvaria obscura. Urchins were fed ad libitum with either a single alga species or a mixture of all three algae. Consumption and defecation rates were determined as well as the feces/alga ratio in term of biomass and biochemical composition. Consumption rate increased exponentially with urchin size and also varied with alga species. In the single alga trial, consumption rate was higher for both brown algae (Laminaria and Alaria) compared to Ulvaria. Urchins feeding on the mixture of algae maintained their total ingestion rate (sum of the three algae) at the same level to those feeding on a single alga diet. The mixed algae trial showed that urchins clearly preferred Laminaria (72% of total ingestion) over Alaria (22%) and Ulvaria (6%). The defecation rate was tightly correlated with the food consumption rate and thus increased with urchin size. On average, 75% of the ingested algal biomass was released as fecal POM. The percentage of food defecated changed with alga species, with the highest value for Alaria (81%) and the lowest for Laminaria (67%). The percentage of food defecated by urchins feeding on the mixture of algae was generally comparable to those feeding on single alga diet. Biochemical composition (in soluble carbohydrates, proteins and lipids) of urchin fecal POM reflected that of the algae content. From 40% to 80% of macronutrients in algal food persisted in fecal matter. This proportion varied with the alga species and macronutrient considered. This study shows that the green sea urchin plays a significant role in the production of POM within nearshore benthic ecosystems, and it is a potentially nutritious food source for detritivores.  相似文献   

6.
Four species of brown algae, Sphacelaria arctica, S. plumosa, Desmarestia aculeata , and midribs of a Fucus species have been found in Holocene and interstadial deposits in Greenland. The green alga Chlorochytrium dermatocolax and the red alga Audoui-nella cfr. microscopica are reported for the first time in such deposits. All species are present in the extant flora of marine, benthic algae from Greenland. They are very well preserved and can be identified to species level.  相似文献   

7.
Molecular biotechnology of marine algae in China   总被引:1,自引:0,他引:1  
Qin  Song  Jiang  Peng  Tseng  Cheng-Kui 《Hydrobiologia》2004,512(1-3):21-26
Molecular biotechnology of marine algae is referred to as the biotechnology on the identification, modification, production and utilization of marine algal molecules. It involves not only the manipulation of macromolecules such as DNA, RNA and proteins, but also deals with low molecular weight compounds such as secondary metabolites. In the last decade, molecular systematic researches to investigate the relationship and to examine the evolutionary divergence among Chinese marine algae have been carried out by Chinese scientists. For example, RAPD has been widely used in several laboratories to elucidate genetic variations of the reds, such as Porphyra, Gracilaria, Grateloupia and the greens such as Ulva and Enteromorpha. Some important data have been obtained. The study on molecular genetic markers for strain improvement is now in progress. In 1990s, genetic engineering of economic seaweeds such as Laminaria, Undaria, Porphyra, Gracilaria and Grateloupia has been studied in China. For Laminaria japonica, the successfully cultivated kelp in China, a model transformation system has been set up based on the application of plant genetic techniques and knowledge of the algal life history. Progress has been made recently in incorporating a vaccine gene into kelp genome. Evidence has been provided showing the expression of gene products as detectable vaccines. In the present paper, the progress of molecular biotechnological studies of marine algae in China, especially researches on elucidating and manipulating nucleic acids of marine algae, are reviewed.  相似文献   

8.
《Acta Oecologica》2007,31(3):243-250
Mussels are important ecosystem engineers in marine benthic systems because they aggregate into beds, thus modifying the nature and complexity of the substrate. In this study, we evaluated the contribution of mussels (Brachidontes rodriguezii, Mytilus edulis platensis, and Perna perna) to the benthic species richness of intertidal and shallow subtidal communities at Cerro Verde (Uruguay). We compared the richness of macro-benthic species between mussel-engineered patches and patches without mussels but dominated by algae or barnacles at a landscape scale (all samples), between tidal levels, and between sites distributed along a wave exposition gradient. Overall, we found a net increase in species richness in samples with mussels (35 species), in contrast to samples where mussels were naturally absent or scarce (27 species). The positive trend of the effect did not depend upon tidal level or wave exposition, but its magnitude varied between sites. Within sites, a significant positive effect was detected only at the protected site. Within the mussel-engineered patches, the richness of all macro-faunal groups (total, sessile and mobile) was positively correlated with mussel abundance. This evidence indicates that the mussel beds studied here were important in maintaining species richness at the landscape-level, and highlights that beds of shelled bivalves should not be neglected as conservation targets in marine benthic environments.  相似文献   

9.
The marine benthic algal flora of Clare Island, off County Mayo, western shore of Ireland, was investigated; collections of intertidal and subtidal marine algae were made at 16 sites along the eastern and southern shores in the years 1990, 1993 and 2000–2002. The data and observations obtained were compared with the results of a similar survey conducted by Arthur Disbrowe Cotton in 1910–1911. Considering the results of the original survey and the new survey together, the marine algal flora of the island currently totals 293 species; 224 species were recorded by Cotton in the original survey, whereas 223 species were identified in the present study. Most species are common to the original and the new list and the main differences are easily explainable; the new survey used SCUBA diving, which allowed the collection of several subtidal species not collected in 1910, and Cotton reported several microscopic green and brown algae, usually difficult to recognise in the field, which were not rediscovered. The most remarkable differences consist in the current presence of some large intertidal brown algae (Bifurcaria bifurcata, Cystoseira foeniculacea and Cystoseira nodicaulis) that were not reported in the survey of 1910. Two algae, Codium fragile subsp. tomentosoides and Asparagopsis armata, were introduced in Europe after the original survey. At present, the benthic algal assemblages of Clare Island still have basically the same structure and distribution as in 1910 and, if compared with other coastal areas of Europe, the intertidal marine environment of Clare Island appears remarkably well conserved.  相似文献   

10.
Quaternary glacial–interglacial cycles create lasting biogeographic, demographic and genetic effects on ecosystems, yet the ecological effects of ice ages on benthic marine communities are unknown. We analysed long-term datasets to develop a niche-based model of southern Californian giant kelp (Macrocystis pyrifera) forest distribution as a function of oceanography and geomorphology, and synthesized palaeo-oceanographic records to show that late Quaternary climate change probably drove high millennial variability in the distribution and productivity of this foundation species. Our predictions suggest that kelp forest biomass increased up to threefold from the glacial maximum to the mid-Holocene, then rapidly declined by 40–70 per cent to present levels. The peak in kelp forest productivity would have coincided with the earliest coastal archaeological sites in the New World. Similar late Quaternary changes in kelp forest distribution and productivity probably occurred in coastal upwelling systems along active continental margins worldwide, which would have resulted in complex shifts in the relative productivity of terrestrial and marine components of coastal ecosystems.  相似文献   

11.
Abstract. Settlement is an important process in the biphasic life histories of many marine invertebrates. Little is known regarding the fine-scale behavioral mechanisms for finding and attaching to a suitable substratum, particularly under conditions that may impose a potential challenge, such as flow. In this study, we examined the settlement behavior of cyphonautes larvae of the bryozoan, Membranipora membranacea, in response to two different algal substrata. Larvae showed a strong preference for settling on the kelp Nereocystis luetkeana over the red alga Mazzaella splendens. We then tested whether the behavioral mechanisms used by larvae to attach to these algae differed when presented with the challenge of flowing water during settlement. We found that larvae exhibited different behaviors on the two species of algae in flowing water. Larvae were more often observed in direct contact with the preferred alga (N. luetkeana) exhibiting fine-scale active search behaviors. On the less preferred alga (M. splendens), larvae were less frequently observed in direct contact with the alga, and appeared to be exhibiting broad-scale passive search behaviors along the surface of the blade. Our results suggest that cyphonautes larvae alter their behavior in response to their preferred settlement habitat.  相似文献   

12.
The composition, distribution and seasonal variation of the benthic marine algae in the northern Bohai Sea coast were studied. 119 species of benthic marine algae were found in the northern Bohai Sea coast. They belong respectively to Cyanophyta, Thodophyta, Phaeophyta and Chlorophyta. The study showed that the marine algae flora of the northern Bohai Sea coast belongs to warm temperate in nature with considerable subtropical composition. There were 57 species of economic algae in the northern Bohai Sea coast and 7 newly recorded species.  相似文献   

13.
Algae colonize the gelatinous egg masses of marine invertebrates. This study demonstrates a symbiotic relationship between marine algae and the invertebrate embryos in gelatinous egg masses found in Indian River Lagoon, FL, USA. The benefits to the embryos in this association differ among host species investigated. The embryos of the polychaete Axiothella mucosa graze on the diatom assemblage in their egg masses and the fitness of the crawl-away juveniles is improved by this food source. The tenuous egg masses of the polychaete Arenicola cristata and the mollusk Haminoea succinea are negatively buoyant when spawned and become buoyant when symbiotic algae are present. In addition to increased dispersal of their lecithotrophic larvae, the potential of the egg masses of A. cristata and H. succinea to float may reduce predation on the embryos by benthic predators such as the gastropod Nassarius vibex. Photosynthetically derived oxygen from the algae may benefit the embryos of the opisthobranch Haminoea elegans by increasing oxygen supply when crawl-away juveniles emerge from the egg mass. However, when mostly earlier stage larvae are hatched from egg masses of H. elegans, the additional oxygen supplied by the algae does not provide a substantial advantage. Algae were absent in the gelatinous egg mass core of only one of the five species examined, Haminoea antillarum. H. antillarum has both a short embryonic development time and denser egg mass gel than the other four species tested. What is not understood is whether invertebrate egg masses are an opportunistic space for algae to colonize or whether only a few microalgal species can exploit the gelatinous substrate.  相似文献   

14.
Synchroma grande (Synchromophyceae, Heterokontophyta) is a marine amoeboid alga, which was isolated from a benthic habitat. This species has sessile cell stages (amoeboid cells with lorica and cysts) and non‐sessile cell stages (migrating and floating amoebae) during its life cycle. The different cell types and their transitions within the life cycle are described, as are their putative functions. Cell proliferation was observed only in cells attached to the substrate but not in free‐floating or migrating cells. We also characterised the phagotrophy of the meroplasmodium in comparison to other amoeboid algae and the formation of the lorica. The functional adaptations of S. grande during its life cycle were compared to the cell stages of other amoeboid algae of the red and green chloroplast lineages. S. grande was found to be highly adapted to the benthic habitat. One sexual and two asexual reproductive strategies (haplo‐diploid life cycle) support the ability of this species to achieve rapid diversification and high adaptivity in its natural habitat.  相似文献   

15.
Kelp forests dominate temperate and polar rocky coastlines and represent critical marine habitats because they support elevated rates of primary and secondary production and high biodiversity. A major threat to the stability of these ecosystems is the proliferation of non-native species, such as the Japanese kelp Undaria pinnatifida (‘Wakame’), which has recently colonised natural habitats in the UK. We quantified the abundance and biomass of U. pinnatifida on a natural rocky reef habitat over 10 months to make comparisons with three native canopy-forming brown algae (Laminaria ochroleuca, Saccharina latissima, and Saccorhiza polyschides). We also examined the biogenic habitat structure provided by, and epibiotic assemblages associated with, U. pinnatifida in comparison to native macroalgae. Surveys conducted within the Plymouth Sound Special Area of Conservation indicated that U. pinnatifida is now a dominant and conspicuous member of kelp-dominated communities on natural substrata. Crucially, U. pinnatifida supported a structurally dissimilar and less diverse epibiotic assemblage than the native perennial kelp species. However, U. pinnatifida-associated assemblages were similar to those associated with Saccorhiza polyschides, which has a similar life history and growth strategy. Our results suggest that a shift towards U. pinnatifida dominated reefs could result in impoverished epibiotic assemblages and lower local biodiversity, although this could be offset, to some extent, by the climate-driven proliferation of L. ochroleuca at the poleward range edge, which provides complex biogenic habitat and harbours relatively high biodiversity. Clearly, greater understanding of the long-term dynamics and competitive interactions between these habitat-forming species is needed to accurately predict future biodiversity patterns.  相似文献   

16.
In the sublittoral kelp forests of New South Wales, dictyotalean turfing algae dominate the substratum in areas where kelp canopies have been removed by storms. The effects of the presence of these algae on the recruitment of kelp plants and the subsequent structure of the benthic community were determined. Areas of turfing algae in clearings were experimentally cleared of turf at a time of dense kelp settlement, and areas of the kelp canopy were also removed. These treatments were compared with unmanipulated areas of turf in clearings and areas under the kelp canopy. The number of kelp recruits in each replicate plot was recorded throughout time as were the abundances of most of the macroscopic and microscopic species living on the substratum. Kelp was found to recruit very quickly to areas of substratum which had the overlying kelp canopy removed, but few recruits appeared under the natural canopy, or in areas with turfing algae, or in clearings where turfing algae had been removed. The results showed that whilst the presence of a natural kelp canopy and/or turfing algae inhibited the recruitment of kelps, removal of turfing species from clearings did not facilitate kelp recruitment. This indicated that the presence of turf did not solely inhibit kelp recruitment, but some lingering influence of turf seems to affect the substratum in clearings such that kelp cannot recruit to such areas. Turfing species returned and dominated the substratum in clearings where turf had been removed. After an initial decline, encrusting species increased in abundances in clearings where kelp recruited as these recruits developed a canopy. Turf and encrusting species remained great in cover in the respective control treatments. The results are discussed in terms of alternate stable states within this community. Such concepts are concluded to be dependent upon the spatial and temporal scales of one's investigation.  相似文献   

17.
We present the results of an intensive sampling program carried out from 2000 to 2007 along both coasts of Costa Rica, Central America. The presence of 44 species of benthic marine algae is reported for the first time for Costa Rica. Most of the new records are Rhodophyta (27 spp.), followed by Chlorophyta (15 spp.), and Heterokontophyta, Phaeophycea (2 spp.). Overall, the currently known marine flora of Costa Rica is comprised of 446 benthic marine algae and 24 Cyanobacteria. This species number is an under estimation, and will increase when species of benthic marine algae from taxonomic groups where only limited information is available (e.g., microfilamentous benthic marine algae, Cyanobacteria) are included. The Caribbean coast harbors considerably more benthic marine algae (318 spp.) than the Pacific coast (190 spp.); such a trend has been observed in all neighboring countries. Compared to other Central American countries, Costa Rica has the highest number of reported benthic marine algae; however, Panama may have a similarly high diversity after unpublished results from a Rhodophyta survey (Wysor, unpublished) are included. Sixty-two species have been found along both the Pacific and Caribbean coasts of Costa Rica; we discuss this result in relation to the emergence of the Central American Isthmus.  相似文献   

18.
Samples of the brown alga Caulocystis cephalornithos, from five locations in southern and southeastern Tasmania, were investigated for comparison of their acetogenin content. In contrast with previously studied brown algae, including mainland Australian collections of C. cephalornithos, Tasmanian collections of C. cephalornithos were found to contain unusually high levels of tridec-1-ene, a hydrocarbon not previously reported from a marine alga. The novel metabolite (E)-nonadec-3-en-2-one was also isolated. Compounds previously described from this alga were present, together with a suite of homologues not previously observed in this species. The compounds present suggested that the alkyl chain of the orsellinic acid derivatives was present prior to cyclisation. Large variations in relative metabolite content were observed both within and between collection sites.  相似文献   

19.

Aim

In marine ecosystems, habitat‐forming species (HFS) such as reef‐building corals and canopy‐forming macroalgae alter local environmental conditions and can promote biodiversity by providing biogenic living space for a vast array of associated organisms. We examined community‐level impacts of observed climate‐driven shifts in the relative abundances of two superficially similar HFS, the warm‐water kelp Laminaria ochroleuca and the cool‐water kelp Laminaria hyperborea.

Location

Western English Channel, north‐east Atlantic

Methods

We compared algal and invertebrate assemblages associated with kelp stipes and holdfasts, across multiple sites and sampling events. Significant differences were recorded in the structure of assemblages between the host kelp species at each site and event.

Results

Assemblages associated with stipes of the cool‐water HFS were, on average, >12 times more diverse and supported >3600 times more biomass compared with the warm‐water HFS. Holdfast assemblages also differed significantly between species, although to a lesser extent than those associated with stipes. Overall, assemblages associated with the warm‐water HFS were markedly impoverished and comprised far fewer rare or unique taxa.

Main conclusions

While previous research has shown how climate‐driven loss of HFS can cause biodiversity loss, our study demonstrates that climate‐driven substitutions of HFS can also lead to impoverished assemblages. The indirect effects of climate change remain poorly resolved, but shifts in the distributions and abundances of HFS may invoke widespread ecological change, especially in marine ecosystems where facilitative interactions are particularly strong.  相似文献   

20.
The effects of invasive species on native fauna are understudied, even though their consequences should be taken into consideration for the proper conservation and management of marine systems. Furthermore, bioinvasions may have greater consequences if they affect key structural species with slow dynamics such as marine sponges. We propose that reproductive output could be used as a potential early warning signal to detect possible future changes in population trends of long-lived species (i.e. sponges) as a result of biological invasions. The aim of this study was to investigate the effects of invasive algal (Womersleyella setacea) overgrowth on sponge reproduction by comparing the presence of reproductive elements (spermatic cysts, oocytes, embryos, and larvae) in sponges covered by a thick carpet of the invasive algae and in sponges dwelling in the same habitat but without the invasive algae. Three variables were calculated to assess the impact of the invasive alga on sponge reproduction: the reproductive effort, the proportion of individuals in reproduction, and the size of the reproductive structures. We studied eight sponge species representing the main components of the deep rocky reefs of the area. Our results showed that W. setacea had a strong negative effect on sponge reproduction in six out of eight sponge species studied, with lower and even nil reproductive structures on the sponges subjected to the algal overgrowth. Thus, considering that sexual reproduction is necessary for the persistence of most sponge populations, a significant and constant reduction of the reproductive effort may compromise their viability and affect future trends in these benthic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号