首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromatography on columns of immobilized Cibacron Blue (Blue Dextran--agarose) can be used as a major step in the purification of quinonoid dihydropterin reductase. The reductase has been isolated from fractions of beef kidney by selective binding to the immobilized Cibacron in the presence of tetrahydropterin. The binding of the reductase to Blue Dextran and its specific elution from columns of Blue Dextran--agarose indicate that the reductase possesses the dinucleotide (NAD+) binding domain. The results of kinetic experiments give validity to both our affinity chromatography of the reductase and to an ordered mechanism for the formation of tetrahydropterin. Chromatography on Blue Dextran--agarose has been used to show that folate or amethopterin can compete with Cibacron Blue for the dinucleotide domain of the reductase. The p-aminobenzoyl-glutamate moiety of the folates competes with Cibacron Blue for the NADH site of the reductase. A stable binary complex of dihydropterin reductase with NADH has been detected by gel electrophoresis.  相似文献   

2.
The interaction of the immobilized triazine dye Cibacron Blue 3G-A with rat, rabbit, sheep, goat, bovine and human serum albumins was studied by affinity gel electrophoresis. Dissociation constants were estimated in each instance and showed human serum albumin to have a significantly higher affinity for the dye than did albumin from any other species. Pretreatment of the defatted proteins with bilirubin (3 mol of bilirubin/mol of protein) did not increase the dissociation constants of the serum albumins, whereas pretreatment with palmitate (7 mol of palmitate/mol of protein) increased the dissociation constant in all cases: 3-fold for human serum albumin, 15-fold for other serum albumins. Increasing the bilirubin/albumin ratio (to 7:1) did not affect the dissociation constant of the albumins studied. Decreasing the palmitate/albumin ratio decreased the dissociation constant for human serum albumin, but did not affect those of bovine and rat albumins. Altering the chain length of the presaturating fatty acid dramatically changed the dissociation constant of both human and bovine serum albumins. Butyrate, hexanoate, octanoate and decanoate did not significantly influence the dissociation constants of bovine and human serum albumins for Cibacron Blue, whereas laurate, myristate and palmitate greatly increased the dissociation constant. These data are discussed in relationship to the behaviour of albumins during dye--agarose column chromatography. In Addendum the effect of nucleotide presaturation on the interaction between Bacillus stearothermophilus 6-phosphogluconate dehydrogenase and the immobilized triazine dyes Cibacron Blue 3G-A and Procion Red HE-3B was examined, and the implications for dye--ligand chromatography are discussed.  相似文献   

3.
A comparative study of the ligand-binding properties of human serum albumin was performed by the technique of affinity chromatography with the protein attached to immobilized Cibacron Blue F3GA (Blue Sepharose), or covalently immobilized on Sepharose. The binding strength of octanoate, decanoate and dodecanoate is much weaker when human serum albumin is attached to immobilized Cibacron Blue, indicating that the binding sites for fatty acids are involved in the attachment of human serum albumin to immobilized Cibacron Blue. The results revealed additional alterations of the ligand binding when human serum albumin was attached to immobilized Cibacron Blue, involving sites outside of the binding domains of fatty acids. Thus the stereoselective binding of L-tryptophan was abolished, and the resolution of the warfarin enantiomers was impaired. However, the binding strength of warfarin and salicylic acid was rather close to the values observed with human serum albumin covalently immobilized on Sepharose. It is suggested that the availability of the binding sites for L-tryptophan, warfarin and salicylic acid is partially blocked by the complex between albumin and the dye without direct participation in the complex-formation. An alternative interpretation involves an allosteric mechanism brought about by complex-formation between serum albumin and the immobilized Cibacron Blue.  相似文献   

4.
The binding of NADH and NAD+ to the human liver cytoplasmic, E1, and mitochondrial, E2, isozymes at pH 7.0 and 25 degrees C was studied by the NADH fluorescence enhancement technique, the sedimentation technique, and steady-state kinetics. The binding of radiolabeled [14C]NADH and [14C]NAD+ to the E1 isozyme when measured by the sedimentation technique yielded linear Scatchard plots with a dissociation constant of 17.6 microM for NADH and 21.4 microM for NAD+ and a stoichiometry of ca. two coenzyme molecules bound per enzyme tetramer. The dissociation constant, 19.2 microM, for NADH as competitive inhibitor was found from steady-state kinetics. With the mitochondrial E2 isozyme, the NADH fluorescence enhancement technique showed only one, high-affinity binding site (KD = 0.5 microM). When the sedimentation technique and radiolabeled coenzymes were used, the binding studies showed nonlinear Scatchard plots. A minimum of two binding sites with lower affinity was indicated for NADH (KD = 3-6 microM and KD = 25-30 microM) and also for NAD+ (KD = 5-7 microM and KD = 15-30 microM). A fourth binding site with the lowest affinity (KD = 184 microM for NADH and KD = 102 microM for NAD+) was observed from the steady-state kinetics. The dissociation constant for NAD+, determined by the competition with NADH via fluorescence titration, was found to be 116 microM. The number of binding sites found by the fluorescence titration (n = 1 for NADH) differs from that found by the sedimentation technique (n = 1.8-2.2 for NADH and n = 1.2-1.6 for NAD+).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Selective recovery of lactate dehydrogenase using affinity foam   总被引:3,自引:0,他引:3  
Selective isolation of lactate dehydrogenase (LDH) from porcine muscle extract was studied using foam generated from the vigorous stirring of a non-ionic surfactant, Triton X-114 derivatized with Cibacron blue. The cloud point of the surfactant-dye conjugate was higher than that of the native Triton X-114, and also the foam prepared from the affinity surfactant was more rigid taking a longer time to collapse. The equilibrium dissociation constant between pure LDH and surfactant-dye conjugate was 5.0 microM as compared to the value of 2.2 microM for the enzyme and free dye as measured by differential spectroscopy. The isolation procedure involved mixing of the porcine muscle extract with the affinity foam, separating and collapsing the foam, and warming the solution formed to 37 degrees C to yield the surfactant-dye phase and an aqueous phase containing the enzyme. The effect of surfactant concentration and protein load on enzyme recovery and purification was investigated. Under optimal conditions, LDH was quantitatively recovered with high purification factor in a very short time. Both recovery and purification were higher when foam prepared from an equivalent mixture of surfactant-dye conjugate and unmodified surfactant was used. The selectivity of interaction between LDH and detergent-dye conjugate was confirmed by lowered recovery when NADH was included during the binding step.  相似文献   

6.
Cibacron Blue, a widely used ligand for affinity chromatography, is a potent inhibitor of NAD(P)H:(quinone-acceptor) oxidoreductase (EC 1.6.99.2) (quinone reductase). This property has been exploited to purify quinone reductase, to identify its nucleotide-binding site, and to obtain diffraction-grade crystals of this enzyme [Prochaska, H. J. (1988) Arch. Biochem. Biophys. 267, 529-538; Ysern, X., & Prochaska, H. J. (1989) J. Biol. Chem. 264, 7765-7767]. To define the structural region(s) of the dye responsible for its inhibitory potency, Cibacron Blue was synthesized and the dye, its synthetic intermediates, and some analogues of these intermediates were crystallized as novel trialkylamine or choline salts. These compounds were characterized by proton NMR and mass spectrometry, and their inhibitory potencies were measured. Only two of the four ring systems of the Cibacron Blue molecule are required for potent inhibition. Acid Blue 25 [1-amino-4-(phenylamino)anthraquinone-2-sulfonic acid] is an inhibitor (Ki = 22 nM) almost as potent as Cibacron Blue (Ki = 6.2 nM). However, removal of any of the three substituents on the anthraquinone ring of Acid Blue 25 markedly reduced inhibitory potency. These results are consistent with the proposal that Cibacron Blue is primarily a mimic for the ADP fragment of mono- and dinucleotides. The difference absorption spectrum of the Acid Blue 25-quinone reductase complex was very different from that of the complex with Cibacron Blue. In contrast to other compounds tested, Procion Blue M-3GS, the electrophilic dichlorotriazine precursor of Cibacron Blue, was an irreversible inhibitor of quinone reductase (KD = 16 nM, k3 = 0.03 min-1), and the inactivation was blocked by Cibacron Blue, a monochlorotriazine.  相似文献   

7.
Kenneth W. Joy 《Phytochemistry》1973,12(5):1031-1040
-Glutamate dehydrogenase (GDH) was found in soluble and particulate (mitochondrial) fractions of pea roots. The activity of NADH-dependent GDH in fresh mitochondrial extract was increased about 10-fold by addition of zinc, manganese or calcium, but high concentrations of zinc were inhibitory. During storage, GDH activity of the mitochondrial extract slowly increased. The NADH activity was inhibited by citrate and other chelating agents. NADH-dependent reductive amination was also inhibited by glutamate, the product of the reaction; by contrast NADPH dependent activity was relatively unaffected by zinc, chelating agents or glutamate. Sensitivity (of NADH-GDH) to glutamate was lost on purification, but was restored when the enzyme was immobilized by binding to an insoluble support (AE cellulose). Glutamate appears to change the affinity of the enzyme for 2-oxoglutarate.  相似文献   

8.
Bivalent metal ions, particularly Zn2+ and other members of the first-row transition series, promote irreversible inactivation of yeast hexokinase by Cibacron Blue F3G-A at a site competitive with both ATP and D-glucose. Difference spectroscopy indicates that the protein-dye dissociation constant is decreased from 250 micrometers in the absence of metal ions to less than 100 micrometers in the presence of appropriate concentrations of metal ions, with specificity displayed in the sequence of Zn2+ greater than Cu2+ greater than Ni2+ greater than Mn2+. Quantitative inactivation of yeast hexokinase leads to the incorporation of approx. 1 mol of Cibacron Blue F3G-A/mol of subunit of mol. wt. 51 000 in both the presence and the absence of metal ion. These results suggest the formation of a highly specific ternary complex involving enzyme, dye and metal ion at the active-site region of the enzyme, and correlate well with the known effects of metal ions in promoting the binding of hexokinase to immobilized Cibacron Blue F3G-A.  相似文献   

9.
Human estrogenic 17beta-hydroxysteroid dehydrogenase (17beta-HSD1) plays a crucial role in the last step of the synthesis of estrogens. A detailed kinetic study demonstrated that the enzyme shows about 240 fold higher specificity towards estrone reduction than estradiol oxidation at physiological pH using tri-phosphate cofactors. The kcat/Km values are 96 +/- 10 and 0.4 +/- 0.1 s-1 (microM)-1 respectively for the above two reactions. However, it has been shown that this difference is closely linked to the use of NADPH and NADP cofactors. A binding study using equilibrium dialysis indicated similar KD (equilibrium dissociation constant) of 11 +/- 1 and 4.7 +/- 0.9 microM for estrone and estradiol, respectively. The binding affinity of 17beta-HSD1 to estrone was significantly increased with a KD of 1.6 +/- 0.2 microM in the presence of NADP, the latter used as an analogue of the NADPH. The results of binding studies agree with the steady-state kinetics, which showed that the Km of estrone is 12-fold lower when using NADPH as a cofactor than when using NADH. These results strongly suggest that the cofactor plays a crucial role in the stimulation of the specificity for estrogen reduction.  相似文献   

10.
Bovine serum albumin appears to improve the specificity of Cibacron Blue F3GA in affinity chromatography of enzymes which interact with nucleotides. The action of bovine serum albumin may rest in its ability to selectively mask affinity sites in the dye, which are not specific for the nucleotide-binding region of the enzyme, while not seriously impairing binding nor its elution by nucleotides. Thus, the elution of Chlorella nitrate reductase from a Blue Sepharose chromatographic column by its coenzyme, NADH, fails, unless the column is first treated with bovine serum albumin. Such treatment also improves the recovery of some other nucleotide-binding enzymes tested.  相似文献   

11.
The method of spectral titration has been applied to binding equilibria between proteins and soluble immobilized ligands and evaluated using the interaction between Cibacron blue-dextran conjugates and lysozyme. The method is both simple and rapid and provides a convenient screening technique for characterization of soluble adsorbents designed for use in aqueous two-phase affinity extraction or as liquid-phase models for affinity chromatography systems. The results indicate that regardless of ligand density a constant 28% of the total coupled dye is available for high-affinity protein binding at saturation. The dissociation constant for the dye-protein interaction, however, decreases with dye loading. The potential for kinetic investigations has been demonstrated using a stopped-flow apparatus. The results indicate that a simple rate equation is inadequate to describe the data for lysozyme binding to dye-dextran conjugates. A modified model, which better describes the data, was developed by including a second rate limiting process, the transition from stacked to unstacked dye ligands on the dextran backbone. This effect could have practical significance for protein binding kinetics in affinity chromatography, especially in high-performance liquid affinity chromatography applications where mass transfer is rapid. (c) 1992 John Wiley & Sons, Inc.  相似文献   

12.
Kinetics of binding of LPS to recombinant CD14, TLR4, and MD-2 proteins   总被引:2,自引:0,他引:2  
TLR4 together with CD14 and MD-2 forms a pattern recognition receptor that plays an initiating role in the innate immune response to Gram-negative bacteria. Here, we employed the surface plasmon resonance technique to investigate the kinetics of binding of LPS to recombinant CD14, MD-2 and TLR4 proteins produced in insect cells. The dissociation constants (KD) of LPS for immobilized CD14 and MD-2 were 8.7 microM, and 2.3 microM, respectively. The association rate constant (Kon) of LPS for MD-2 was 5.61 x 10(3) M-1S-1, and the dissociation rate constant (Koff) was 1.28 10 2 S 1, revealing slow association and fast dissociation with an affinity constant KD of 2.33 x 10-6 M at 25 degreesC. These affinities are consistent with the current view that CD14 conveys LPS to the TLR4/MD-2 complex.  相似文献   

13.
The selective interaction of serum proteins with immobilized Cibacron Blue and the binding properties of the dye anilinonaphthalenesulphonate has been used to separate albumin and lipoproteins by affinity chromatography. The novel binding of anilinonaphthalenesulphonate to lipoproteins from the sera of lamprey, fish and mammals provides a simple procedure for the isolation of these plasma proteins, and permit preparation of specific antisera, tools particularly relevant for evolutionary and clinical studies.  相似文献   

14.
Cytosolic NAD(P)H:(quinone-acceptor) oxidoreductase (EC 1.6.99.2) is a widely distributed, FAD-containing enzyme that catalyzes the obligatory two-electron reduction of quinones. Cibacron Blue is an inhibitor of this enzyme comparable in potency to dicoumarol. Pure quinone reductase was obtained from the livers of Sudan II (1-[2,4-dimethylphenylazo]-2-naphthol)-treated rats in a single step by Cibacron Blue-agarose chromatography. Cibacron Blue is a competitive inhibitor with respect to NADH (Ki = 170 nM) and is a noncompetitive inhibitor with respect to menadione (Ki = 540 nM). Addition of Cibacron Blue to quinone reductase resulted in a decrease and red shift of the enzyme-bound FAD peak at 450 nm. The titration of the absorbance changes for both FAD and Cibacron Blue could be fitted to curves describing an equilibrium binding equation with a KD of 300 nM and one binding site per enzyme subunit. Furthermore, the Cibacron Blue difference spectrum that resulted from binding to quinone reductase was abolished by dicoumarol. Significant amino acid homology between quinone reductase and the nucleotide binding regions of enzymes that bind to Cibacron Blue was found. These data indicate that Cibacron Blue is a useful ligand for the purification of quinone reductase and a new probe for its NAD(P)H binding site. Conditions for crystallizing rat liver quinone reductase are also described.  相似文献   

15.
Lactate dehydrogenase (LDH) [EC 1.1.1.27] in a crude extract (40-80% ammonium sulfate fraction) of bovine brain was adsorbed on an immobilized colchicine column and specifically eluted by addition of 1 mM NADH. The purity and subunit composition of the pooled LDH were estimated by two-dimensional gel electrophoresis. With an increase of NaCl concentration from 0 to 2.0 M, ligand saturation of LDH on immobilized colchicine increased from 6.8 to 14%, whereas that on immobilized Cibacron blue F3GA decreased from 2.1 to 0%. In the presence of high NaCl concentration, immobilized colchicine enabled both large- and small-scale purification of LDH by affinity chromatography and resulted in a yield of 117 mg from 1 kg of bovine brain in the presence of 2.5 M NaCl or higher recoveries of 54-96% from various tissues of one rat in the presence of 1.0 M NaCl. These results indicate that immobilized colchicine is an excellent adsorbent for the isolation and purification of LDH by affinity chromatography and has a high LDH-adsorbing capacity dependent upon a high NaCl concentration. Kinetic studies revealed that colchicine apparently competed with cofactor NAD for the active site of LDH and the Ki values of colchicine decreased with an increase of NaCl concentration. The chemical specificity of the colchicine-binding site of LDH was studied by the use of colchicine analogues and it is concluded that both the tropolone moiety (C-ring) and the amido bond in a side chain of colchicine structure are essential to the colchicine-LDH interaction.  相似文献   

16.
Fluorescence studies on both the emission of aldolase and NADH bound to the enzyme were carried out. Aldolase was found to bind four molecules of NADH with KD = 6.0 +/- 0.3 microM. KD values for NADPH and NAD+ were 41 +/- 4 microM and 140 +/- 30 microM, respectively. The affinity to NADH was comparable with that of some NAD-dependent dehydrogenases, and was not affected by the substrate or the inhibitor.  相似文献   

17.
The effects of nickel ions on reductive amination and oxidative deamination activities of bovine liver glutamate dehydrogenase (GDH) were examined kinetically by UV spectroscopy, at 27 degrees C, using 50 mM Tris, pH 7.8, containing 0.1 M NaCl. Kinetic analysis of the data obtained by varying NADH concentration indicated strong inhibition, presumably due to binding of the coenzyme to the regulatory site. In contrast, almost no inhibition was observed in the forward reaction. The fact that nickel ions have the capacity to enhance binding of NADH to the enzyme was confirmed by an electrochemical method using a modified glassy carbon electrode. Use of NADPH instead of NADH showed only a weak substrate inhibition, presumably related to lower affinity of NADPH for binding to the regulatory site. Lineweaver-Burk plots with respect to alpha-ketoglutarate and ammonium ions indicated substrate and competitive inhibition patterns in the presence of nickel ions, respectively. ADP at 0.2 mM concentration protected inhibition caused by nickel. These observations are explained in terms of formation of a nickel-NADH complex with a higher affinity for binding to the regulatory site in GDH, as compared with the situation where nickel is not present. Such effects may be important for regulation of GDH and other NADH-utilizing enzymes.  相似文献   

18.
The role of phospholipid in the binding of coenzyme, NAD(H), to 3-hydroxybutyrate dehydrogenase, a lipid-requiring membrane enzyme, has been studied with the ultrafiltration binding method, which we optimized to quantitate weak ligand binding (KD in the range 10-100 microM). 3-Hydroxybutyrate dehydrogenase has a specific requirement of phosphatidylcholine (PC) for optimal function and is a tetramer quantitated both for the apodehydrogenase, which is devoid of phospholipid, and for the enzyme reconstituted into phospholipid vesicles in either the presence or absence of PC. We find that (i) the stoichiometry for NADH and NAD binding is 0.5 mol/mol of enzyme monomer (2 mol/mol of tetramer); (ii) the dissociation constant for NADH binding is essentially the same for the enzyme reconstituted into the mixture of mitochondrial phospholipids (MPL) (KD = 15 +/- 3 microM) or into dioleoyl-PC (KD = 12 +/- 3 microM); (iii) the binding of NAD+ to the enzyme-MPL complex is more than an order of magnitude weaker than NADH binding (KD approximately 200 microM versus 15 microM) but can be enhanced by formation of a ternary complex with either 2-methylmalonate (apparent KD = 1.1 +/- 0.2 microM) or sulfite to form the NAD-SO3- adduct (KD = 0.5 +/- 0.1 microM); (iv) the binding stoichiometry for NADH is the same (0.5 mol/mol) for binary (NADH alone) and ternary complexes (NADH plus monomethyl malonate); (v) binding of NAD+ and NADH together totals 0.5 mol of NAD(H)/mol of enzyme monomer, i.e., two nucleotide binding sites per enzyme tetramer; and (vi) the binding of nucleotide to the enzyme reconstituted with phospholipid devoid of PC is weak, being detected only for the NAD+ plus 2-methylmalonate ternary complex (apparent KD approximately 50 microM or approximately 50-fold weaker binding than that for the same complex in the presence of PC). The binding of NADH by equilibrium dialysis or of spin-labeled analogues of NAD+ by EPR spectroscopy gave complementary results, indicating that the ultrafiltration studies approximated equilibrium conditions. In addition to specific binding of NAD(H) to 3-hydroxybutyrate dehydrogenase, we find significant binding of NAD(H) to phospholipid vesicles. An important new finding is that the nucleotide binding site is present in 3-hydroxybutyrate dehydrogenase in the absence of activating phospholipid since (a) NAD+, as the ternary complex with 2-methylmalonate, binds to the enzyme reconstituted with phospholipid devoid of PC and (b) the apodehydrogenase, devoid of phospholipid, binds NADH or NAD-SO3- weakly (half-maximal binding at approximately 75 microM NAD-SO3- and somewhat weaker binding for NADH).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The application of copolymerized agarose-polyacrylamide gels as the support for immobilized Cibacron Blue F3G A is demonstrated for the analytical electrophoresis of proteins possessing an affinity for this dye. Bovine serum albumin was used as a model protein to develop this technique. The optimal conditions for preparing matrices are described. These conditions produce gels with suitable mechanical strength and which allow rapid electrophoresis of proteins. The dye-agarose-polyacrylamide gels permit the determination of dissociation constants. The ease of preparation of these matrices recommends them for a variety of quantitative analytical investigations.  相似文献   

20.
The elution profiles of several variants of the Gc protein have been studied after chromatography on immobilized Cibacron Blue 3-GA. The allele products belonging to the Gcl type were retarded and eluted with a Ve/Vo at 1.5, as previously reported for the Gcl-1 phenotype [Chapuis-Cellier, Gianazza & Arnaud (1982) Biochim. Biophys. Acta 709, 353-357]. The allele products belonging to the Gc2 type were further retarded (Ve/Vo at 2.6), and both Gcl and Gc2 allele products were clearly separated in heterozygous individuals. This observation allows the isolation and purification of Gc variants in heterozygous individuals which carry the combination Gcl variant-Gc2, Gcl-Gc2 variant, or Gcl variant-Gc2 variant. In contrast, the corresponding holoproteins did not bind to the gel and were eluted in the void volume. This suggests that the interaction of Gc with immobilized Cibacron Blue 3-GA involves the binding site of the protein for 25-hydroxycholecalciferol and that the dye behaves as a 'pseudoligand' for the protein. In addition, our data suggest that the different elution profiles of the variants could reflect a different affinity of the gene products for the dye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号