首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new series of 1,3-dioxane-2-carboxylic acid derivatives was synthesized and evaluated for agonist activity at human peroxisome proliferator-activated receptor (PPAR) subtypes. Structure-activity relationship studies led to the identification of 2-methyl-c-5-[4-(5-methyl-2-phenyl-1,3-oxazol-4-yl)butyl]-1,3-dioxane-r-2-carboxylic acid 4b as a potent PPARalpha agonist with high subtype selectivity at human receptor subtypes. This compound exhibited a substantial hypolipidemic effect in type 2 diabetic KK-A(y) mice.  相似文献   

2.
PPAR: a mediator of peroxisome proliferator action   总被引:6,自引:0,他引:6  
Stephen Green 《Mutation research》1995,333(1-2):101-109
  相似文献   

3.
A few novel 1,3-dioxane carboxylic acid derivatives were designed and synthesized to aid in the characterization of PPAR alpha/gamma dual agonists. Structural requirements for PPARalpha/gamma dual agonism of 1,3-dioxane carboxylic acid derivatives included the structural similarity with potent glitazones in fibric acid chemotype. The compounds with this pharmacophore and substituted oxazole as a lipophilic heterocyclic tail were synthesized and evaluated for their in vitro PPAR agonistic potential and in vivo hypoglycemic and hypolipidemic efficacy in animal models. Lead compound 2-methyl-c-5-[4-(5-methyl-2-(4-methylphenyl)-oxazol-4-ylmethoxy)-benzyl]-1,3-dioxane-r-2-carboxylic acid 13b exhibited potent hypoglycemic, hypolipidemic and insulin sensitizing effects in db/db mice and Zucker fa/fa rats.  相似文献   

4.
Catalase activity and peroxisomal and mitochondrial palmitate oxidation have been investigated in cardiac and skeletal muscle from rats fed clofibrate, ciprofibrate or nafenopin in an unrefined diet for different periods of time. Nafenopin was also added to either a high carbohydrate (70% of kilocalories from glucose) or high fat (70% of kilocalories from lard) diet and fed to rats for either 1 or 3 weeks. Catalase activity was elevated in all muscles from rats fed the hypolipidemic drugs. The response of catalase activity in muscle to clofibrate was dose-dependent. The response time of catalase activity was different in individual muscles. Peroxisomal palmitate oxidation was elevated in the heart and soleus muscle from rats fed nafenopin in either the high-carbohydrate or the high-fat diet. There was no change in peroxisomal palmitate oxidation in psoas or extensor digitorum longus muscle from rats fed the drugs. Mitochondrial palmitate oxidation was only slightly increased by nafenopin in the heart and soleus muscles after 3 weeks of nafenopin feeding. The results suggest that the cardiac muscle, like the liver, responds to hypolipidemic drug treatment with an increase in peroxisomal fat oxidation. The skeletal muscle response is less specific and that tissue may not contribute to the hypolipidemic effect of the drugs. The findings also suggest that these drugs do not induce peroxisome proliferation in skeletal muscle.  相似文献   

5.
Summary— Genetically obese Zucker (fa/fa) rats were used as an experimental model to study the effects of hypolipidemic agents on peroxisome proliferation; comparison was made with Zucker lean phenotype (Fa/?) and Sprague-Dawley strain/phenotype. The pharmacokinetics of a single administration of ciprofibrate (1 or 3 mg/kg), appeared to be similar in all strains/phenotypes. After a 2-week oral administration at the same dosages, there were dosage-related increases in hepatocellular peroxisomal yield and in the hepatic enzymes' cyanide-insensitive acyl-CoA oxidase and catalase. The peroxisomal yield was less increased in Zucker than in Sprague-Dawley rats, while the enzyme activities were similarly increased. Although the absolute specific activity of microsomal ω-lauryl hydroxylase (cytochrome P4504A1) was lower in Zucker rats, it was increased more in this strain than in Sprague-Dawley rats in response to drug exposure. The hypolipidemic effect (cholesterol and triglyceride reduction) was more pronounced in Zucker obese rats. Based on biochemical and morphological results, no major differences between strains/phenotypes in terms of peroxisome proliferation were observed following a 2-week administration of ciprofibrate.  相似文献   

6.
We investigated the hypolipidemic effects of Goami-3 rice (GR; Oryza sativa L. cv. Goami-3), a newly developed strain with high levels of amylose and fibers. Diet-induced obese mice were fed three types of isocaloric diets for 8 weeks: a high-fat diet, a high-fat diet with GR or control rice (CR; O. sativa L. cv. Ilpumbyeo). Mice fed GR exhibited a significant reduction in body fat (–23%), total cholesterol (–20%) and triglyceride concentrations (–30%) compared to mice fed CR. The mice fed GR showed induction of peroxisome proliferator-activated receptor (PPAR)-α and inhibition of γ expressions in the liver and adipose tissue. The reduced adiposity of mice fed GC was supported by changes in the expression of genes related to lipid accumulation and hydrolysis in adipose tissues and the plasma concentrations of insulin, adiponectin and leptin. Principal components analysis with gas chromatography–time-of-flight mass spectrometry-based metabolomic data revealed that the average level of specific plasma metabolites in the GR group was statistically different from that in the other groups after 4 weeks. These metabolites included propionic acid, valine, leucine and proline. Based on partial least-squares analysis, the plasma concentrations of valine were inversely correlated with the high-density lipoprotein (HDL) to non-HDL and HDL to total cholesterol ratios. In conclusion, GR feeding for 8 weeks significantly improved dyslipidemia and adiposity in diet-induced obese mice by regulating gene expression of PPARs and its target genes. Key plasma metabolites (including valine) were significantly altered by the hypolipidemic effects of GR.  相似文献   

7.
The mitogenic effect of Nafenopin, a hypolipidemic hepatic peroxisome proliferator, in mouse liver has been studied in acute and chronically treated mice. After 1, 6 and 32 weeks of treatment, the total hepatic DNA was increased 1.5-2.0-fold over controls. Mitotic and labeling indices were also increased 3-4 fold after 5 days, 6 weeks and 32 weeks of treatment. The increased mitotic activity in nafenopin fed animals was not associated with liver cell necrosis. The nafenopin induced hepatomegaly therefore appears to arise from a combination of cell proliferation, as well as, cellular hypertrophy, which is associated with peroxisome proliferation.  相似文献   

8.
为考察铁皮石斛多糖对高脂饮食小鼠肠黏膜屏障的影响,采用水提醇沉法提取铁皮石斛多糖,联合高脂饲料给予小鼠8周后观察肠黏膜结构及肠黏膜菌群的变化。结果显示高脂饮食显著破坏了肠黏膜结构,表现为肠黏膜萎缩,上皮细胞脱落并伴有炎性渗出,Corynebacterium_1及Staphylococcus等与感染及炎症相关的菌属大量增殖。铁皮石斛多糖对肠黏膜结构有较好的保护作用,并可减少Corynebacterium_1的丰度,同时提高肠黏膜共生菌Candidatus_Arthromitus的丰度,促进了Muribaculaceae、Bacteroides、Lachnospiraceae_NK4A136_group等碳水化合物代谢、短链脂肪酸产生相关菌的增殖。研究表明铁皮石斛多糖对肠黏膜屏障的保护作用或与其维持肠黏膜结构完整,调节肠黏膜菌群组成及促进碳水化合物代谢,生成短链脂肪酸有关。  相似文献   

9.
为考察铁皮石斛多糖对高脂饮食小鼠肠黏膜屏障的影响,采用水提醇沉法提取铁皮石斛多糖,联合高脂饲料给予小鼠8周后观察肠黏膜结构及肠黏膜菌群的变化。结果显示高脂饮食显著破坏了肠黏膜结构,表现为肠黏膜萎缩,上皮细胞脱落并伴有炎性渗出,Corynebacterium_1及Staphylococcus等与感染及炎症相关的菌属大量增殖。铁皮石斛多糖对肠黏膜结构有较好的保护作用,并可减少Corynebacterium_1的丰度,同时提高肠黏膜共生菌Candidatus_Arthromitus的丰度,促进了Muribaculaceae、Bacteroides、Lachnospiraceae_NK4A136_group等碳水化合物代谢、短链脂肪酸产生相关菌的增殖。研究表明铁皮石斛多糖对肠黏膜屏障的保护作用或与其维持肠黏膜结构完整,调节肠黏膜菌群组成及促进碳水化合物代谢,生成短链脂肪酸有关。  相似文献   

10.
A series of substituted 5-[4-[2-(6,7-dimethyl-1,2,3,4-tetrahydro-2-oxo-4-quinoxalinyl)ethoxy]phenyl]methylene]thiazolidine-2,4-diones were synthesized and their euglycemic and hypolipidemic activities were investigated in Wistar male rats. Based on the in vivo data in rats, compound 4a was identified as a potent euglycemic and hypolipidemic agent.  相似文献   

11.
Lowering of plasma triglyceride levels by hypolipidemic agents is caused by a shift in the liver cellular metabolism, which become poised toward peroxisome proliferator-activated receptor (PPAR) alpha-regulated fatty acid catabolism in mitochondria. After dietary treatment of rats with the hypolipidemic, modified fatty acid, tetradecylthioacetic acid (TTA), the energy state parameters of the liver were altered at the tissue, cell, and mitochondrial levels. Thus, the hepatic phosphate potential, energy charge, and respiratory control coefficients were lowered, whereas rates of oxygen uptake, oxidation of pyridine nucleotide redox pairs, beta-oxidation, and ketogenesis were elevated. Moderate uncoupling of mitochondria from TTA-treated rats was confirmed, as the proton electrochemical potential (Delta(p)) was 15% lower than controls. The change affected the Delta(Psi) component only, leaving the (Delta)pH component unaltered, suggesting that TTA causes induction of electrogenic ion transport rather than electrophoretic fatty acid activity. TTA treatment induced expression of hepatic uncoupling protein 2 (UCP-2) in rats as well as in wild type and PPARalpha-deficient mice, accompanied by a decreased double bond index of the mitochondrial membrane lipids. However, changes of mitochondrial fatty acid composition did not seem to be related to the effects on mitochondrial energy conductance. As TTA activates PPARdelta, we discuss how this subtype might compensate for deficiency of PPARalpha. The overall changes recorded were moderate, making it likely that liver metabolism can maintain its function within the confines of its physiological regulatory framework where challenged by a hypolipemic agent such as TTA, as well as others.  相似文献   

12.
Nafenopin (2-methyl-2[p-(1,2,3,4-tetrahydro-1-naphthyl)phenoxy]-propionic acid; Su-13437), a potent hypolipidemic compound, was administered in varying concentrations in ground Purina Chow to male and female rats, wild type (Csa strain) mice and acatalasemic (Csb strain) mice to determine the hepatic microbody proliferative and catalase-inducing effects. In all groups of animals, administration of nafenopin at dietary levels of 0.125% and 0.25% produced a significant and sustained increase in the number of peroxisomes. The hepatic microbody proliferation in both male and female rats and wild type Csa strain mice treated with nafenopin was of the same magnitude and was associated with a two-fold increase in catalase activity and in the concentration of catalase protein. The increase in microbody population in acatalasemic mice, although not accompanied by increase in catalase activity, was associated with a twofold increase in the amount of catalase protein. The absence of sex difference in microbody proliferative response in nafenopin-treated rats and wild type mice is of particular significance, since ethyl-α-p-chlorophenoxyisobutyrate (CPIB)-induced microbody proliferation and increase in catalase activity occurred only in males. Nafenopin can, therefore, be used as an inducer of microbody proliferation and of catalase synthesis in both sexes of rats and mice. The serum glycerol-glycerides were markedly lowered in all the animals given nafenopin, which paralleled the increase in liver catalase. All the above effects of nafenopin were fully reversed when the drug was withdrawn from the diet of male rats. During reversal, several microbody nucleoids were seen free in the hyaloplasm or in the dilated endoplasmic reticulum channels resulting from a rapid reduction in microbody matrix proteins after the withdrawal of nafenopin from the diet. Because of microbody proliferation and catalase induction with increasing number of hypolipidemic compounds, additional studies are necessary to determine the interrelationships of microbody proliferation, catalase induction, and hypolipidemia.  相似文献   

13.
The metabolic syndrome and the hepatic fatty acid drainage hypothesis   总被引:4,自引:0,他引:4  
Much data indicates that lowering of plasma triglyceride levels by hypolipidemic agents is caused by a shift in the liver metabolism towards activation of peroxisome proliferator activated receptor (PPAR)alpha-regulated fatty acid catabolism in mitochondria. Feeding rats with lipid lowering agents leads to hypolipidemia, possibly by increased channeling of fatty acids to mitochondrial fatty acid oxidation at the expense of triglyceride synthesis. Our hypothesis is that increased hepatic fatty acid oxidation and ketogenesis drain fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects on fat mass accumulation and improved peripheral insulin sensitivity. To investigate this theory we employ modified fatty acids that change the plasma profile from atherogenic to cardioprotective. One of these novel agents, tetradecylthioacetic acid (TTA), is of particular interest due to its beneficial effects on lipid transport and utilization. These hypolipidemic effects are associated with increased fatty acid oxidation and altered energy state parameters of the liver. Experiments in PPAR alpha-null mice have demonstrated that the effects hypolipidemic of TTA cannot be explained by altered PPAR alpha regulation alone. TTA also activates the other PPARs (e.g., PPAR delta) and this might compensate for deficiency of PPAR alpha. Altogether, TTA-mediated clearance of blood triglycerides may result from a lowered level of apo C-III, with a subsequently induction of hepatic lipoprotein lipase activity and (re)uptake of fatty acids from very low density lipoprotein (VLDL). This is associated with an increased hepatic capacity for fatty acid oxidation, causing drainage of fatty acids from the blood stream. This can ultimately be linked to hypolipidemia, anti-adiposity, and improved insulin sensitivity.  相似文献   

14.
Three compounds capsaicin, curcumin and ferulic acid showing hypolipidemic activity have been tested in adult Wistar rats fed high fat diets. Capsaicin (0.20 mg%) fed to female rats along with a 30% saturated fat diet lowered the rate of weight gain, liver and serum triglycerides. In male rats it lowered only the liver and serum total and very low density and low density lipoprotein triglycerides whether fed continuously for 13 or 8 weeks after interchanging the control and test diets from the 5th week onwards. Capsaicin fed to female rats in 30% mixed fat diet increased the rate of weight gain, lowered liver and serum triglycerides, lowered adipose tissue lipoprotein lipase, elevated the hormone sensitive lipase and serum free fatty acids. Capsaicin in 30% saturated fat diet lowered both the enzyme activities to a much lesser extent. Curcumin and ferulic acid (both at 25 mg%) in 30% saturated fat diet tended to lower the rate of weight gain, liver total lipids and serum triglycerides. It is of significance that a common dietary compound ‘capsaicin’ in the range of human intake triggers lipid lowering action in rats fed high fat diets. This paper was presented at the 55th Annual Meeting of the Society of Biological Chemists (India) held at Trivandrum during December 15–17th, 1986.  相似文献   

15.
A series of bis[3-(4'-substituted phenyl)prop-2-ene]disulfides were prepared and their hypolipidemic activities were examined in hypercholesterolemic Wistar rats. Introduction of an electron withdrawing group to the phenyl ring in the parent compound led to the identification of compound 8 as a potent and efficacious hypolipidemic agent.  相似文献   

16.
Previous work in this laboratory indicated that sulfur-substituted fatty acid analogues, 1.10-bis(carboxymethylthio)decane and alkylthioacetic acid, both non-beta-oxidizable compounds, and the beta-oxidizable alkylthiopropionic acid (1) caused, to different extents, dose-related hepatomegaly and proliferation of peroxisomes and enhanced peroxisomal fatty acid beta-oxidation. In the present study, treatment of normolipidemic rats with alkylthioacetic acid resulted in a dose- and time-dependent decrease in serum cholesterol and serum and liver triglycerides to an extent comparable to that of the 3-thiadicarboxylic acid. At hypolipidemic doses, alkylthioacetic acid caused no hepatomegaly, did not significantly alter peroxisome morphology, and only marginally affected peroxisomal beta-oxidation activity. Only at the highest, nonpharmacological doses of alkylthioacetic acid were these hepatic parameters increased, although to a lesser extent than by the 3-thiadicarboxylic acid. Hence, on the basis of dose- and time-related studies of the two compounds, data indicate that the hypotriglyceridemia and hypocholesterolemia were dissociated from induction of peroxisomal beta-oxidation and peroxisome proliferation. Palmitic acid and hexadecanedioic acid, both beta-oxidizable fatty acids, only marginally affected the serum and liver parameters. The beta-oxidizable fatty acid analogue, alkylthiopropionic acid lowered the serum triglycerides in normolipidemic rats. In contrast to the 3-thiadicarboxylic acid and alkylthioacetic acid, alkylthiopropionic acid treatment at hypolipidemic doses caused accumulation of triglycerides in the liver.  相似文献   

17.
RMI 14, 514 ([5-tetradecycloxy]-2-furancarboxylic acid) represents a new class of hypolipidemic agents which cause unusual ultrastructural changes in liver of male rats and in selected peroxisomal enzymes in liver and kidney of both sexes. Among the principal ultrastructural changes in peroxisomes of male rat liver were (a) cavitation and compartmentalization of the matrix, often giving the appearance of a peroxisome-within-a-peroxisome, and (b) narrow, dense extensions of canaliculi or cisterns from the periphery of the peroxisome, forming partial circlets or surrounding irregular areas of cytoplasm. The unusual enzyme responses were (a) elevation of catalase activity in liver and kidney in female rats, (b) increased activity of three hydrogen peroxide-producing oxidases (urate oxidase, L-alpha-hydroxy acid oxidase, and D-amino acid oxidase) in the liver of both sexes, and (c) elevation of activity of the last two oxidases in male kidney. The peculiar ultrastructural changes in liver peroxisomes combined with the responses of selected peroxisomal enzymes represent unusual modulations or adaptations of these organelles to a hypolipidemic agent, the effects of which have not been reported extensively.  相似文献   

18.
Fibrates are hypolipidemic drugs that activate the peroxisome proliferator-activated receptors. Since fibrates may also increase energy expenditure, we investigated whether fenofibrate (FF) had this effect in diet-induced obese rats. A 2-month administration of a high-fat palatable diet to adult rats increased body weight by 25% and white adipose mass by 163% compared with a standard diet. These effects were prevented by FF, both when administered for the 2 months of high-fat feeding and when given for only the second month. Consequently, FF-treated rats had a final body weight and white adipose tissue mass similar to untreated animals on the standard diet. FF also increased resting metabolic rate, hepatic peroxisomal and mitochondrial palmitoyl-dependent oxygen uptake and mRNA levels of acyl-CoA oxidase and lipoprotein lipase. Finally, FF lowered mRNA levels of uncoupling protein-2 and did not affect mitochondrial respiration in skeletal muscle. Therefore, FF seems to act as a weight-stabilizer mainly through its effect on liver metabolism.  相似文献   

19.
We investigated the hypolipidemic effects of young persimmon fruit (YP) on apolipoprotein E-deficient C57BL/6.KOR-ApoEshl mice. These mice exhibited higher plasma cholesterols, except for high-density lipoprotein (HDL), and lower plasma HDL cholesterol than C57BL/6.Cr mice that had the same genetic background as the C57BL/6.KOR-ApoEshl mice. Male C57BL/6.KOR-ApoEshl mice (n=5) were fed a diet supplemented with dry YP, Hachiya-kaki, at a concentration of 5% (w/w) for 10 weeks. YP treatment significantly lowered plasma chylomicron, very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) cholesterols, and triglyceride, and this response was accompanied by an elevation of fecal bile acid excretion. In the liver, sterol regulatory element binding protein-2 gene expression was significantly higher in mice fed YP, while the mRNA and protein levels of the LDL receptor did not change. These results indicate that acceleration of fecal bile acid excretion is a major mechanism of the hypolipidemic effect induced by YP in C57BL/6.KOR-ApoEshl mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号