首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polarized expansion of root hair cells in Arabidopsis thaliana is improperly controlled in root hair-defective rhd4-1 mutant plants, resulting in root hairs that are shorter and randomly form bulges along their length. Using time-lapse fluorescence microscopy in rhd4-1 root hairs, we analyzed membrane dynamics after labeling with RabA4b, a marker for polarized membrane trafficking in root hairs. This revealed stochastic loss and recovery of the RabA4b compartment in the tips of growing root hairs, consistent with a role for the RHD4 protein in regulation of polarized membrane trafficking in these cells. The wild-type RHD4 gene was identified by map-based cloning and was found to encode a Sac1p-like phosphoinositide phosphatase. RHD4 displayed a preference for phosphatidylinositol-4-phosphate [PI(4)P] in vitro, and rhd4-1 roots accumulated higher levels of PI(4)P in vivo. In wild-type root hairs, PI(4)P accumulated primarily in a tip-localized plasma membrane domain, but in rhd4-1 mutants, significant levels of PI(4)P were detected associated with internal membranes. A fluorescent RHD4 fusion protein localized to membranes at the tips of growing root hairs. We propose that RHD4 is selectively recruited to RabA4b-labeled membranes that are involved in polarized expansion of root hair cells and that, in conjunction with the phosphoinositide kinase PI-4Kbeta1, RHD4 regulates the accumulation of PI(4)P on membrane compartments at the tips of growing root hairs.  相似文献   

2.
The RabA4b GTPase labels a novel, trans-Golgi network compartment displaying a developmentally regulated polar distribution in growing Arabidopsis thaliana root hair cells. GTP bound RabA4b selectively recruits the plant phosphatidylinositol 4-OH kinase, PI-4Kbeta1, but not members of other PI-4K families. PI-4Kbeta1 colocalizes with RabA4b on tip-localized membranes in growing root hairs, and mutant plants in which both the PI-4Kbeta1 and -4Kbeta2 genes are disrupted display aberrant root hair morphologies. PI-4Kbeta1 interacts with RabA4b through a novel homology domain, specific to eukaryotic type IIIbeta PI-4Ks, and PI-4Kbeta1 also interacts with a Ca2+ sensor, AtCBL1, through its NH2 terminus. We propose that RabA4b recruitment of PI-4Kbeta1 results in Ca2+-dependent generation of PI-4P on this compartment, providing a link between Ca2+ and PI-4,5P2-dependent signals during the polarized secretion of cell wall components in tip-growing root hair cells.  相似文献   

3.

Background and Aims

Root hairs are responsible for water and nutrient uptake from the soil and their growth is responsive to biotic and abiotic changes in their environment. Root hair expansion is a polarized process requiring secretory and endosomal pathways that deliver and recycle plasma membrane and cell wall material to the growing root hair tip. In this paper, the role of VTI13 (AT3G29100), a member of the VTI vesicular soluble NSF attachment receptor (SNARE) gene family in Arabidopsis thaliana, in root hair growth is described.

Methods

Genetic analysis and complementation of the vti13 root hair phenotypes of Arabidopsis thaliana were first used to assess the role of VTI13 in root hair growth. Transgenic lines expressing a green fluorescent protein (GFP)–VTI13 construct were used to characterize the intracellular localization of VTI13 in root hairs using confocal microscopy and immunotransmission electron microscopy.

Key Results

VTI13 was characterized and genetic analysis used to show that its function is required for root hair growth. Expression of a GFP–VTI13 fusion in the vti13 mutant background was shown to complement the vti13 root hair phenotype. GFP–VTI13 localized to both the vacuole membrane and a mobile endosomal compartment. The function of VTI13 was also required for the localization of SYP41 to the trans-Golgi network. Immunohistochemical analysis indicated that cell wall organization is altered in vti13 root hairs and root epidermal cells.

Conclusions

These results show that VTI13 plays a unique role in endosomal trafficking pathways associated with the vacuole within root hairs and is essential for the maintenance of cell wall organization and root hair growth in arabidopsis.  相似文献   

4.
Phosphatidylinositol (PtdIns) transfer proteins (PITPs) regulate signaling interfaces between lipid metabolism and membrane trafficking. Herein, we demonstrate that AtSfh1p, a member of a large and uncharacterized Arabidopsis thaliana Sec14p-nodulin domain family, is a PITP that regulates a specific stage in root hair development. AtSfh1p localizes along the root hair plasma membrane and is enriched in discrete plasma membrane domains and in the root hair tip cytoplasm. This localization pattern recapitulates that visualized for PtdIns(4,5)P2 in developing root hairs. Gene ablation experiments show AtSfh1p nullizygosity compromises polarized root hair expansion in a manner that coincides with loss of tip-directed PtdIns(4,5)P2, dispersal of secretory vesicles from the tip cytoplasm, loss of the tip f-actin network, and manifest disorganization of the root hair microtubule cytoskeleton. Derangement of tip-directed Ca2+ gradients is also apparent and results from isotropic influx of Ca2+ from the extracellular milieu. We propose AtSfh1p regulates intracellular and plasma membrane phosphoinositide polarity landmarks that focus membrane trafficking, Ca2+ signaling, and cytoskeleton functions to the growing root hair apex. We further suggest that Sec14p-nodulin domain proteins represent a family of regulators of polarized membrane growth in plants.  相似文献   

5.
Membrane trafficking to the plasma membrane (PM) is a highlyorganized process which enables plant cells to build up theirbodies. SNARE (soluble N-ethylmaleimide-sensitive factor attachmentprotein receptor) genes, which encode the proteins involvedin membrane trafficking, are much more abundant in the Arabidopsisgenome than in that of any other eukaryote. We have previouslyshown that a large number of SNARE molecules in the Arabidopsiscell are localized predominantly on the PM. In the present study,in order to elucidate the physiological function of each PM-localizedSNARE, we analyzed the spatiotemporal expression profiling ofnine SYP1s that are resident in the PM of Arabidopsis, and usedthe information thus acquired to generate transgenic Arabidopsisplants expressing green fluorescent protein-fused Qa-SNAREsunder control of their authentic promoters. Among the nine SYP1s,only SYP132 is expressed ubiquitously in all tissues throughoutplant development. The expression patterns of the other SYP1s,in contrast, are tissue specific, and all different from oneanother. A particularly noteworthy example is SYP123, whichis predominantly expressed in root hair cells during root development,and shows a focal accumulation pattern at the tip region ofroot hairs. These results suggest that SYP132 is involved inconstitutive membrane trafficking to the PM throughout plantdevelopment, while the other SYP1s are involved in membranetrafficking events such as root formation or tip growth of roothair, with some redundancy.  相似文献   

6.
Plants contain a novel unique subfamily of Rho GTPases, vital components of cellular signalling networks. Here we report a general role for some members of this family in polarized plant growth processes. We show that Arabidopsis AtRop4 and AtRop6 encode functional GTPases with similar intrinsic GTP hydrolysis rates. We localized AtRop proteins in root meristem cells to the cross-wall and cell plate membranes. Polar localization of AtRops in trichoblasts specifies the growth sites for emerging root hairs. These sites were visible before budding and elongation of the Arabidopsis root hair when AtRops accumulated at their tips. Expression of constitutively active AtRop4 and AtRop6 mutant proteins in root hairs of transgenic Arabidopsis plants abolished polarized growth and delocalized the tip-focused Ca2+ gradient. Polar localization of AtRops was inhibited by brefeldin A, but not by other drugs such as latrunculin B, cytochalasin D or caffeine. Our results demonstrate a general function of AtRop GTPases in tip growth and in polar diffuse growth.  相似文献   

7.
Blancaflor EB  Hou G  Chapman KD 《Planta》2003,217(2):206-217
N-Acylethanolamines (NAEs) are prevalent in desiccated seeds of various plant species, and their levels decline substantially during seed imbibition and germination. Here, seeds of Arabidopsis thaliana (L.) Heynh. were germinated in, and seedlings maintained on, micromolar concentrations of N-lauroylethanolamine (NAE 12:0). NAE 12:0 inhibited root elongation, increased radial swelling of root tips, and reduced root hair numbers in a highly selective and concentration-dependent manner. These effects were reversible when seedlings were transferred to NAE-free medium. Older seedlings (14 days old) acclimated to exogenous NAE by increased formation of lateral roots, and generally, these lateral roots did not exhibit the severe symptoms observed in primary roots. Cells of NAE-treated primary roots were swollen and irregular in shape, and in many cases showed evidence, at the light- and electron-microscope levels, of improper cell wall formation. Microtubule arrangement was disrupted in severely distorted cells close to the root tip, and endoplasmic reticulum (ER)-localized green fluorescent protein (mGFP5-ER) was more abundant, aggregated and distributed differently in NAE-treated root cells, suggesting disruption of proper cell division, endomembrane organization and vesicle trafficking. These results suggest that NAE 12:0 likely influences normal cell expansion in roots by interfering with intracellular membrane trafficking to and/or from the cell surface. The rapid metabolism of NAEs during seed imbibition/germination may be a mechanism to remove this endogenous class of lipid mediators to allow for synchronized membrane reorganization associated with cell expansion.  相似文献   

8.
Protection against microbial pathogens involves the activation of cellular immune responses in eukaryotes, and this cellular immunity likely involves changes in subcellular membrane trafficking. In eukaryotes, members of the Rab GTPase family of small monomeric regulatory GTPases play prominent roles in the regulation of membrane trafficking. We previously showed that RabA4B is recruited to vesicles that emerge from trans-Golgi network (TGN) compartments and regulates polarized membrane trafficking in plant cells. As part of this regulation, RabA4B recruits the closely related phosphatidylinositol 4-kinase (PI4K) PI4Kβ1 and PI4Kβ2 lipid kinases. Here, we identify a second Arabidopsis thaliana RabA4B-interacting protein, PLANT U-BOX13 (PUB13), which has recently been identified to play important roles in salicylic acid (SA)-mediated defense signaling. We show that PUB13 interacts with RabA4B through N-terminal domains and with phosphatidylinositol 4-phosphate (PI-4P) through a C-terminal armadillo domain. Furthermore, we demonstrate that a functional fluorescent PUB13 fusion protein (YFP-PUB13) localizes to TGN and Golgi compartments and that PUB13, PI4Kβ1, and PI4Kβ2 are negative regulators of SA-mediated induction of pathogenesis-related gene expression. Taken together, these results highlight a role for RabA4B and PI-4P in SA-dependent defense responses.  相似文献   

9.
In legumes, rhizobia attach to root hair tips and secrete nodulation factor to activate rhizobial infection and nodule organogenesis. Endosymbiotic rhizobia enter nodule primordia via a specialized transcellular compartment known as the infection thread (IT). The IT elongates by polar tip growth, following the path of the migrating nucleus along and within the root hair cell. Rho-family ROP GTPases are known to regulate the polarized growth of cells, but their role in regulating polarized IT growth is poorly understood. Here, we show that LjSPK1, a DOCK family guanine nucleotide exchange factor (GEF), interacts with three type I ROP GTPases. Genetic analyses showed that these three ROP GTPases are involved in root hair development, but only LjROP6 is required for IT formation after rhizobia inoculation. Misdirected ITs formed in the root hairs of Ljspk1 and Ljrop6 mutants. We show that LjSPK1 functions as a GEF that activates LjROP6. LjROP6 enhanced the plasma membrane localization LjSPK1 in Nicotiana benthamiana leaf cells and Lotus japonicus root hairs, and LjSPK1 and LjROP6 interact at the plasma membrane. Taken together, these results shed light on how the LjROP6-LjSPK1 module mediates the polarized growth of ITs in L. japonicus.  相似文献   

10.
The trans Golgi network (TGN) of plant cells sorts and packages Golgi products into secretory (SV) and clathrin-coated (CCV) vesicles. We have analyzed of TGN cisternae in Arabidopsis root meristem cells by cell fractionation and electron microscopy/tomography to establish reliable criteria for identifying TGN cisternae in plant cells, and to define their functional attributes. Transformation of a trans Golgi cisterna into a Golgi-associated TGN cisterna begins with cisternal peeling, the formation of SV buds outside the plane of the cisterna and a 30-35% reduction in cisternal membrane area. Free TGN compartments are defined as cisternae that have detached from the Golgi to become independent organelles. Golgi-associated and free TGN compartments, but not trans Golgi cisternae, bind anti-RabA4b and anti-phosphatidylinositol-4 kinase (PI-4K) antibodies. RabA4b and PI-4Kβ1 localize to budding SVs in the TGN and to SVs en route to the cell surface. SV and CCV release occurs simultaneously via cisternal fragmentation, which typically yields ~30 vesicles and one to four residual cisternal fragments. Early endosomal markers, VHA-a1-green fluorescent protein (GFP) and SYP61-cyan fluorescent protein (CFP), colocalized with RabA4b in TGN cisternae, suggesting that the secretory and endocytic pathways converge at the TGN. pi4k1/pi4k2 knockout mutant plants produce SVs with highly variable sizes indicating that PI-4Kβ1/2 regulates SV size.  相似文献   

11.
Constitutive endocytic recycling is a crucial mechanism allowing regulation of the activity of proteins at the plasma membrane and for rapid changes in their localization, as demonstrated in plants for PIN-FORMED (PIN) proteins, the auxin transporters. To identify novel molecular components of endocytic recycling, mainly exocytosis, we designed a PIN1-green fluorescent protein fluorescence imaging-based forward genetic screen for Arabidopsis thaliana mutants that showed increased intracellular accumulation of cargos in response to the trafficking inhibitor brefeldin A (BFA). We identified bex5 (for BFA-visualized exocytic trafficking defective), a novel dominant mutant carrying a missense mutation that disrupts a conserved sequence motif of the small GTPase, RAS GENES FROM RAT BRAINA1b. bex5 displays defects such as enhanced protein accumulation in abnormal BFA compartments, aberrant endosomes, and defective exocytosis and transcytosis. BEX5/RabA1b localizes to trans-Golgi network/early endosomes (TGN/EE) and acts on distinct trafficking processes like those regulated by GTP exchange factors on ADP-ribosylation factors GNOM-LIKE1 and HOPM INTERACTOR7/BFA-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1, which regulate trafficking at the Golgi apparatus and TGN/EE, respectively. All together, this study identifies Arabidopsis BEX5/RabA1b as a novel regulator of protein trafficking from a TGN/EE compartment to the plasma membrane.  相似文献   

12.
Structural sterols are abundant in the plasma membrane of root apex cells in Arabidopsis thaliana. They specifically accumulate in trichoblasts during the prebulging and bulge stages and show a polar accumulation in the tip during root hair elongation but are distributed evenly in mature root hairs. Thus, structural sterols may serve as a marker for root hair initiation and growth. In addition, they may predict branching events in mutants with branching root hairs. Structural sterols were detected using the sterol complexing fluorochrome filipin. Application of filipin caused a rapid, concentration-dependent decrease in tip growth. Filipin-complexed sterols accumulated in globular structures that fused to larger FM4-64–positive aggregates in the tip, so-called filipin-induced apical compartments, which were closely associated with the plasma membrane. The plasma membrane appeared malformed and the cytoarchitecture of the tip zone was affected. Trans-Golgi network/early endosomal compartments containing molecular markers, such as small Rab GTPase RabA1d and SNARE Wave line 13 (VTI12), locally accumulated in these filipin-induced apical compartments, while late endosomes, endoplasmic reticulum, mitochondria, plastids, and cytosol were excluded from them. These data suggest that the local distribution and apical accumulation of structural sterols may regulate vesicular trafficking and plasma membrane properties during both initiation and tip growth of root hairs in Arabidopsis.  相似文献   

13.
Allen A  Snyder AK  Preuss M  Nielsen EE  Shah DM  Smith TJ 《Planta》2008,227(2):331-339
Plant defensins are small, highly stable, cysteine-rich antimicrobial proteins that are thought to constitute an important component of plant defense against fungal pathogens. There are a number of such defensins expressed in various plant tissues with differing antifungal activity and spectrum. Relatively little is known about the modes of action and biological roles of these proteins. Our previous work on a virally encoded fungal toxin, KP4, from Ustilago maydis and subsequently with the plant defensin, MsDef1, from Medicago sativa demonstrated that some of these proteins specifically blocked calcium channels in both fungi and animals. The results presented here demonstrate that KP4 and three plant defensins, MsDef1, MtDef2, and RsAFP2, all inhibit root growth in germinating Arabidopsis seeds at low micromolar concentrations. We have previously demonstrated that a fusion protein composed of Rab GTPase (RabA4b) and enhanced yellow fluorescent protein (EYFP) is dependent upon calcium gradients for localization to the tips of the growing root hairs in Arabidopsis thaliana. Using this tip-localized fusion protein, we demonstrate that all four proteins rapidly depolarize the growing root hair and block growth in a reversible manner. This inhibitory activity on root and root hair is not directly correlated with the antifungal activity of these proteins and suggests that plants apparently express targets for these antifungal proteins. The data presented here suggest that plant defensins may have roles in regulating plant growth and development. A. Allen and A.K. Snyder contributed equally.  相似文献   

14.
A member of the cellulose synthase-like (subfamily D) gene family of Arabidopsis, AtCSLD3, has been identified by T-DNA tagging. The analysis of the corresponding mutant, csld3-1, showed that the AtCSLD3 gene plays a role in root hair growth in plants. Root hairs grow in phases: First a bulge is formed and then the root hair elongates by polarized growth, the so-called "tip growth." In the mutant, root hairs were initiated at the correct position and grew into a bulge, but their elongation was severely reduced. The tips of the csld3-1 root hairs easily leaked cytoplasm, indicating that the tensile strength of the cell wall had changed at the site of the tip. Based on the mutant phenotype and the functional conservation between CSLD3 and the genuine cellulose synthase proteins, we hypothesized that the CSLD3 protein is essential for the synthesis of polymers for the fast-growing primary cell wall at the root hair tip. The distinct mutant phenotype and the ubiquitous expression pattern indicate that the CSLD3 gene product is only limiting at the zone of the root hair tip, suggesting particular physical properties of the cell wall at this specific site of the root hair cell.  相似文献   

15.
Mitogen-activated protein kinases (MAPKs) are involved in stress signaling to the actin cytoskeleton in yeast and animals. We have analyzed the function of the stress-activated alfalfa MAP kinase SIMK in root hairs. In epidermal cells, SIMK is predominantly nuclear. During root hair formation, SIMK was activated and redistributed from the nucleus into growing tips of root hairs possessing dense F-actin meshworks. Actin depolymerization by latrunculin B resulted in SIMK relocation to the nucleus. Conversely, upon actin stabilization with jasplakinolide, SIMK co-localized with thick actin cables in the cytoplasm. Importantly, latrunculin B and jasplakinolide were both found to activate SIMK in a root-derived cell culture. Loss of tip-focused SIMK and actin was induced by the MAPK kinase inhibitor UO 126 and resulted in aberrant root hairs. UO 126 inhibited targeted vesicle trafficking and polarized growth of root hairs. In contrast, overexpression of gain-of-function SIMK induced rapid tip growth of root hairs and could bypass growth inhibition by UO 126. These data indicate that SIMK plays a crucial role in root hair tip growth.  相似文献   

16.
Root hairs are single cells specialized in the absorption of water and nutrients from the soil. Growing root hairs require intensive cell-wall changes to accommodate cell expansion at the apical end by a process known as tip or polarized growth. We have recently shown that cell wall glycoproteins such as extensins (EXTs) are essential components of the cell wall during polarized growth. Proline hydroxylation, an early posttranslational modification of cell wall EXTs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs. Biochemical inhibition or genetic disruption of specific P4Hs resulted in the blockage of polarized growth in root hairs. Our results demonstrate that correct hydroxylation and also further O-glycosylation on EXTs are essential for cell-wall self-assembly and, hence, root hair elongation. The changes that O-glycosylated cell-wall proteins like EXTs undergo during cell growth represent a starting point to unravel the entire biochemical pathway involved in plant development.Key words: cell wall, O-glycoproteins, extensins, proline hydroxylation, polarized growth, root hairs, P4H  相似文献   

17.
In tip-growing plant cells such as pollen tubes and root hairs, surface expansion is confined to the cell apex. Vesicles containing pectic cell wall material are delivered to this apical region to provide the material necessarily to build the expanding cell wall. Quantification of wall expansion reveals that the surface expansion rates are not highest at the pole but instead in an annular region around the pole. These findings raise the question of the precise localization of exocytosis events in these cells. Recently, we used spatio-temporal image correlation spectroscopy (STICS) in combination with high temporal resolution confocal imaging to characterize the intracellular movement of vesicles in growing pollen tubes. These observations, together with the analysis of FRAP (fluorescence recovery after photobleaching) experiments, indicate that exocytosis is likely to occur predominantly in the same annular region where wall expansion rates are greatest. Therefore, tip growth in plant cells does not seem to happen exactly at the tip.Key words: tip growth, pollen tube, exocytosis, cell wall, expansion, root hair, plant cell growth, allometric growth, cytomechanics, cell mechanics, vesicle transport  相似文献   

18.
Root hairs are single-cell protrusions that enable roots to optimize nutrient and water acquisition. These structures attain their tubular shapes by confining growth to the cell apex, a process called tip growth. The actin cytoskeleton and endomembrane systems are essential for tip growth; however, little is known about how these cellular components coordinate their activities during this process. Here, we show that SPIRRIG (SPI), a beige and Chediak Higashi domain-containing protein involved in membrane trafficking, and BRK1 and SCAR2, subunits of the WAVE/SCAR (W/SC) actin nucleating promoting complex, display polarized localizations in Arabidopsis thaliana root hairs during distinct developmental stages. SPI accumulates at the root hair apex via post-Golgi compartments and positively regulates tip growth by maintaining tip-focused vesicle secretion and filamentous-actin integrity. BRK1 and SCAR2 on the other hand, mark the root hair initiation domain to specify the position of root hair emergence. Consistent with the localization data, tip growth was reduced in spi and the position of root hair emergence was disrupted in brk1 and scar1234. BRK1 depletion coincided with SPI accumulation as root hairs transitioned from initiation to tip growth. Taken together, our work uncovers a role for SPI in facilitating actin-dependent root hair development in Arabidopsis through pathways that might intersect with W/SC.  相似文献   

19.
Plant morphogenesis depends on polarized exocytic and endocytic membrane trafficking. Members of the Arabidopsis thaliana dynamin-related protein 1 (DRP1) subfamily are required for polarized cell expansion and cytokinesis. Using a combination of live-cell imaging techniques, we show that a functional DRP1C green fluorescent fusion protein (DRP1C-GFP) was localized at the division plane in dividing cells and to the plasma membrane in expanding interphase cells. In both tip growing root hairs and diffuse-polar expanding epidermal cells, DRP1C-GFP organized into dynamic foci at the cell cortex, which colocalized with a clathrin light chain fluorescent fusion protein (CLC-FFP), suggesting that DRP1C may participate in clathrin-mediated membrane dynamics. DRP1C-GFP and CLC-GFP foci dynamics are dependent on cytoskeleton organization, cytoplasmic streaming, and functional clathrin-mediated endocytic traffic. Our studies provide insight into DRP1 and clathrin dynamics in the plant cell cortex and indicate that the clathrin endocytic machinery in plants has both similarities and striking differences to that in mammalian cells and yeast.  相似文献   

20.
The endomembrane system is a complex and dynamic intracellular trafficking network. It is very challenging to track individual vesicles and their cargos in real time; however, affinity purification allows vesicles to be isolated in their natural state so that their constituent proteins can be identified. Pioneering this approach in plants, we isolated the SYP61 trans-Golgi network compartment and carried out a comprehensive proteomic analysis of its contents with only minimal interference from other organelles. The proteome of SYP61 revealed the association of proteins of unknown function that have previously not been ascribed to this compartment. We identified a complete SYP61 SNARE complex, including regulatory proteins and validated the proteome data by showing that several of these proteins associated with SYP61 in planta. We further identified the SYP121-complex and cellulose synthases, suggesting that SYP61 plays a role in the exocytic trafficking and the transport of cell wall components to the plasma membrane. The presence of proteins of unknown function in the SYP61 proteome including ECHIDNA offers the opportunity to identify novel trafficking components and cargos. The affinity purification of plant vesicles in their natural state provides a basis for further analysis and dissection of complex endomembrane networks. The approach is widely applicable and can afford the study of several vesicle populations in plants, which can be compared with the SYP61 vesicle proteome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号