首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly integrated, morphologically diverse bacterial community is associated with the dorsal surface of Alvinella pompejana, a polychaetous annelid that inhabits active high-temperature deep-sea hydrothermal vent sites along the East Pacific Rise (EPR). Analysis of a previously prepared bacterial 16S ribosomal DNA (rDNA) library identified a spirochete most closely related to an endosymbiont of the oligochete Olavius loisae. This spirochete phylotype (spirochete A) comprised only 2.2% of the 16S rDNA clone library but appeared to be much more dominant when the same sample was analyzed by denaturing gradient gel electrophoresis (DGGE) and the terminal restriction fragment length polymorphism procedure (12 to 18%). PCR amplification of the community with spirochete-specific primers used in conjunction with DGGE analysis identified two spirochete phylotypes. The first spirochete was identical to spirochete A but was present in only one A. pompejana specimen. The second spirochete (spirochete B) was 84.5% similar to spirochete A and, more interestingly, was present in the epibiont communities of all of the A. pompejana specimens sampled throughout the geographic range of the worm (13 degrees N to 32 degrees S along the EPR). The sequence variation of the spirochete B phylotype was less than 3% for the range of A. pompejana specimens tested, suggesting that a single spirochete species was present in the A. pompejana epibiotic community. Additional analysis of the environments surrounding the worm revealed that spirochetes are a ubiquitous component of high-temperature vents and may play an important role in this unique ecosystem.  相似文献   

2.
A unique community of bacteria colonizes the dorsal integument of the polychaete annelid Alvinella pompejana, which inhabits the high-temperature environments of active deep-sea hydrothermal vents along the East Pacific Rise. The composition of this bacterial community was characterized in previous studies by using a 16S rRNA gene clone library and in situ hybridization with oligonucleotide probes. In the present study, a pair of PCR primers (P94-F and P93-R) were used to amplify a segment of the dissimilatory bisulfite reductase gene from DNA isolated from the community of bacteria associated with A. pompejana. The goal was to assess the presence and diversity of bacteria with the capacity to use sulfate as a terminal electron acceptor. A clone library of bisulfite reductase gene PCR products was constructed and characterized by restriction fragment and sequence analysis. Eleven clone families were identified. Two of the 11 clone families, SR1 and SR6, contained 82% of the clones. DNA sequence analysis of a clone from each family indicated that they are dissimilatory bisulfite reductase genes most similar to the dissimilatory bisulfite reductase genes of Desulfovibrio vulgaris, Desulfovibrio gigas, Desulfobacterium autotrophicum, and Desulfobacter latus. Similarities to the dissimilatory bisulfite reductases of Thermodesulfovibrio yellowstonii, the sulfide oxidizer Chromatium vinosum, the sulfur reducer Pyrobaculum islandicum, and the archaeal sulfate reducer Archaeoglobus fulgidus were lower. Phylogenetic analysis separated the clone families into groups that probably represent two genera of previously uncharacterized sulfate-reducing bacteria. The presence of dissimilatory bisulfite reductase genes is consistent with recent temperature and chemical measurements that documented a lack of dissolved oxygen in dwelling tubes of the worm. The diversity of dissimilatory bisulfite reductase genes in the bacterial community on the back of the worm suggests a prominent role for anaerobic sulfate-reducing bacteria in the ecology of A. pompejana.  相似文献   

3.
Alvinella pompejana is a polychaetous annelid that inhabits active deep-sea hydrothermal vent sites along the East Pacific Rise, where it colonizes the walls of actively venting high-temperature chimneys. An abundant, morphologically diverse epibiotic microflora is associated with the worm's dorsal integument, with a highly integrated filamentous morphotype clearly dominating the microbial biomass. It has been suggested that this bacterial population participates in either the nutrition of the worm or in detoxification of the worm's immediate environment. The primary goal of this study was to phylogenetically characterize selected epibionts through the analysis of 16S rRNA gene sequences. Nucleic acids were extracted from bacteria collected from the dorsal surface of A. pompejana. 16S rRNA genes were amplified with universal bacterial primers by the PCR. These genes were subsequently cloned, and the resulting clone library was screened by restriction fragment length polymorphism analysis to identify distinct clone types. The restriction fragment length polymorphism analysis identified 32 different clone families in the library. Four of these families were clearly dominant, representing more than 65% of the library. Representatives from the four most abundant clone families were chosen for complete 16S rRNA gene sequencing and phylogenetic analysis. These gene sequences were analyzed by a variety of phylogenetic inference methods and found to be related to the newly established epsilon subdivision of the division Proteobacteria. Secondary structural model comparisons and comparisons of established signature base positions in the 16S rRNA confirmed the placement of the Alvinella clones in the epsilon subdivision of the Proteobacteria.  相似文献   

4.
5.
6.
ATP sulfurylase (ATP: sulfate adenylyltransferase, EC 2.7.7.4) was extensively purified from trophosome tissue of Riftia pachyptila, a tube worm that thrives in deep ocean hydrothermal vent communities. The enzyme is probably derived from the sulfide-oxidizing bacteria that densely colonize the tissue. Glycerol (20% v/v) protected the enzyme against inactivation during purification and storage. The native enzyme appears to be a dimer (MW 90 kDa +/- 10%) composed of identical size subunits (MW 48 kDa +/- 5%). At pH 8.0, 30 degrees C, the specific activities (units x mg protein-1) of the most highly purified sample are as follows: ATP synthesis, 370; APS synthesis, 23; molybdolysis, 65; APSe synthesis or selenolysis, 1.9. The Km values for APS and PPi at 5 mM Mg2+ are 6.3 and 14 microM, respectively. In the APS synthesis direction, the Km values for MgATP and SO4(2-) are 1.7 and 27 mM, respectively. The Km values for MgATP and MoO4(2-) in the molybdolysis reaction are 80 and 150 microM, respectively. The Kia for MgATP is 0.65 mM. APS is a potent inhibitor of molybdolysis, competitive with both MgATP and MoO4(2-) (Kiq = 2.2 microM). However, PPi (+ Mg2+) is virtually inactive as a molybdolysis inhibitor. Oxyanion dead end inhibitors competitive with SO4(2-) include (in order of decreasing potency) ClO4- greater than FSO3- (Ki = 22 microM) greater than ClO3- greater than NO3- greater than S2O3(2-) (Ki's = 5 and 43 mM). FSO3- is uncompetitive with MgATP, but S2O3(2-) is noncompetitive. Each subunit contains two free SH groups, at least one of which is functionally essential. ATP, MgATP, SO4(2-), MoO4(2-), and APS each protect against inactivation by excess 5,5'-dithiobis-(2-nitrobenzoate). FSO3- is ineffective as a protector unless MgATP is present. PPi (+Mg2+) does not protect against inactivation. Riftia trophosome contains little or no "ADP sulfurylase." The high trophosome level of ATP sulfurylase (67-176 ATP synthesis units x g fresh wt tissue-1 from four different specimens, corresponding to 4-10 microM enzyme sites), the high kcat of the enzyme for ATP synthesis (296 s-1), and the high Km's for MgATP and SO4(2-) are consistent with a role in ATP formation during sulfide oxidation, i.e., the physiological reaction is APS + MgPPi in equilibrium SO4(2-) + MgATP.  相似文献   

7.
Alvinella pompejana lives on the top of chimneys at deep-sea hydrothermal vents of the East Pacific Rise. It is thought to be one of the most thermotolerant and eurythermal metazoans. Our experimental approach combines methods of population genetics and biochemistry, considering temperature as a potential selective factor. Phosphoglucomutase (Pgm-1 locus) is one of the most polymorphic loci of A. pompejana and exhibits four alleles, from which alleles 90 and 100 dominate with frequencies of approximately 0.5 in populations. Results from previous studies suggested that allele 90 might be more thermostable than allele 100. Significant genetic differentiation was found by comparing contrasted microhabitats, especially the young, still hot, versus older and colder chimneys, with allele 90 being at highest frequency on young chimneys. Moreover the frequency of allele 90 was positively correlated with mean temperature at the opening of Alvinella tubes. In parallel, thermostability and thermal optimum experiments demonstrated that allele 90 is more thermostable and more active at higher temperatures than allele 100. This dataset supports an additive model of diversifying selection in which allele 90 is favoured on young hot chimneys but counterbalanced over the whole metapopulation by the dynamics of the vent ecosystem.  相似文献   

8.
We examined a single, non-spore-forming, aerobic, thermophilic strain that was isolated from a deep-sea hydrothermal vent in the Guaymas Basin at a depth of 2000 m and initially placed in a phenetic group with Thermus scotoductus (X-1). We identified this deep-sea isolate as a new strain belonging to Thermus thermophilus using several parameters. DNA–DNA hybridization under stringent conditions showed 74% similarity between the deep-sea isolate and T. thermophilus HB-8T (T = type strain). Phenotypic characteristics, such as the utilization of carbon sources, hydrolysis of different compounds, and antibiotic sensitivity were identical in the two strains. The polar lipids composition showed that strain Gy1211 belonged to the genus Thermus. The fatty acids composition indicated that this strain was related to the marine T. thermophilus strain isolated from the Azores. The new isolate T. thermophilus strain Gy1211 grew optimally at 75°C, pH 8.0, and 2% NaCl. A hydrostatic pressure of 20 MPa, similar to the in situ hydrostatic pressure of the deep-sea vent from which the strain was isolated, had no effect on growth. Strain HB-8T, however, showed slower growth under these conditions. Received: November 26, 1997 / Accepted: May 20, 1999  相似文献   

9.
Due to their inherent stability, thermophilic bacteria and archaea serve as important resources for biochemical and biophysical analyses of many biological processes. Unfortunately, scientists characterizing eukaryote-specific processes, such as nuclear pre-mRNA splicing, are unable to take advantage of these sources of thermostable proteins. To identify and provide a source of thermostable eukaryotic proteins, we are characterizing splicing factors in the thermotolerant deep-sea vent polychaete, Alvinella pompejana. This worm, also known as the Pompeii worm, is found in the extreme environment of deep-sea hydrothermal vents, and is one of the most thermotolerant eukaryotic organisms known. We report on detailed analyses of U2AF65, the large subunit of the U2 small nuclear ribonucleoprotein auxiliary factor, an essential splicing factor important for intron definition and alternative splicing. The cloning and characterization of Pompeii U2AF65 show it is highly similar to human U2AF65 in sequence and function and is more thermostable than the human protein when bound to RNA in vitro. Notably, Pompeii U2AF65 can restore splicing in a human extract depleted of human U2AF. We also determine that the general splicing mechanisms and signal sequences are conserved in the Pompeii worm, an annelid which has previously been uncharacterized in terms of splicing factors and signals.  相似文献   

10.
31P nuclear magnetic resonance (NMR) was used to study the major phosphorylated compounds visible in perchloric extracts of three body regions of the vestimentiferan worm Riftia pachyptila: winged vestimentum, trunk and segmented posterior opisthosome. Two phosphagens (PGs) were present in vestimentum and opisthosome. The major resonance corresponded to those of phosphoarginine and phosphotaurocyamine, which cannot be discriminated on 31P NMR spectra. We have identified four distinct phosphodiesters (PDEs) in these tissues: glycerophosphorylethanolamine (GPE), serine ethanolamine phosphodiester (SEP), glycero-phosphorylcholine (GPC) and threonine ethanolamine phosphodiester (TEP). Three phosphonates or derivates (PAs) were observed in the three body regions. The minor one was identified as 2-aminoethyl phosphonate (2-AEP). The phosphorus profile of the trunk was appreciably different: one additional resonance in the PDE region and only one phosphagen peak were observed.  相似文献   

11.
A frozen-hydrated specimen of the V1 hemoglobin of the hydrothermal vent tube worm Riftia pachyptila was observed in the electron microscope and subjected to three-dimensional reconstruction by the method of random conical tilt series. The 3D volume possesses a D6 point-group symmetry. When viewed along its 6-fold axis the vertices of its upper hexagonal layer are 16° clockwise rotated compared to those of the lower layer. A central linker complex is decorated by 12 hollow globular substructures. The linker complex comprises (i) a central hexagonal toroid, (ii) two internal bracelets onto which the hollow globular substructures are built, and (iii) six structures connecting the two hexagonal layers. The hollow globular substructures, related to the dodecamers of globin chains resulting from the dissociation of the hexagonal bilayer hemoglobin, have a local pseudo 3-fold symmetry and are composed each of three elongated structures visible when the volume is displayed at high threshold. At a resolution of 36 Å, the 3D volumes of the hexagonal bilayer hemoglobins of Riftia pachyptyla and of the leech Macrobdella decora look almost perfectly identical. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Recent molecular characterizations of microbial communities from deep-sea hydrothermal sites indicate the predominance of bacteria belonging to the epsilon subdivision of Proteobacteria (epsilon Proteobacteria). Here, we report the first enrichments and characterizations of four epsilon Proteobacteria that are directly associated with Alvinella pompejana, a deep sea hydrothermal vent polychete, or with hydrothermal vent chimney samples. These novel bacteria were moderately thermophilic sulfur-reducing heterotrophs growing on formate as the energy and carbon source. In addition, two of them (Am-H and Ex-18.2) could grow on sulfur lithoautrotrophically using hydrogen as the electron donor. Optimal growth temperatures of the bacteria ranged from 41 to 45 degrees C. Phylogenetic analysis of the small-subunit ribosomal gene of the two heterotrophic bacteria demonstrated 95% similarity to Sulfurospirillum arcachonense, an epsilon Proteobacteria isolated from an oxidized marine surface sediment. The autotrophic bacteria grouped within a deeply branching clade of the epsilon Proteobacteria, to date composed only of uncultured bacteria detected in a sample from a hydrothermal vent along the mid-Atlantic ridge. A molecular survey of various hydrothermal vent environments demonstrated the presence of two of these bacteria (Am-N and Am-H) in more than one geographic location and habitat. These results suggest that certain epsilon Proteobacteria likely fill important niches in the environmental habitats of deep-sea hydrothermal vents, where they contribute to overall carbon and sulfur cycling at moderate thermophilic temperatures.  相似文献   

13.
Cys-loop receptors are membrane spanning ligand-gated ion channels involved in fast excitatory and inhibitory neurotransmission. Three-dimensional structures of these ion channels, determined by X-ray crystallography or electron microscopy, have revealed valuable information regarding the molecular mechanisms underlying ligand recognition, channel gating and ion conductance. To extend and validate the current insights, we here present promising candidates for further structural studies. We report the biochemical and functional characterization of Cys-loop receptor homologues identified in the proteome of Alvinella pompejana, an extremophilic, polychaete annelid found in hydrothermal vents at the bottom of the Pacific Ocean. Seven homologues were selected, named Alpo1-7. Five of them, Alpo2-6, were unidentified prior to this study. Two-electrode voltage clamp experiments revealed that wild type Alpo5 and Alpo6, both sharing remarkably high sequence identity with human glycine receptor α subunits, are anion-selective channels that can be activated by glycine, GABA and taurine. Furthermore, upon expression in insect cells fluorescence size-exclusion chromatography experiments indicated that four homologues, Alpo1, Alpo4, Alpo6 and Alpo7, can be extracted out of the membrane by a wide variety of detergents while maintaining their oligomeric state. Finally, large-scale purification efforts of Alpo1, Alpo4 and Alpo6 resulted in milligram amounts of biochemically stable and monodisperse protein. Overall, our results establish the evolutionary conservation of glycine receptors in annelids and pave the way for future structural studies.  相似文献   

14.
15.
AIMS: The objective of the present work was to describe an aerobic, mesophilic and heterotrophic marine bacterium, designated HYD657, able to produce an exopolysaccharide (EPS). It was isolated from a East Pacific Rise deep-sea hydrothermal vent polychaete annelid. METHODS AND RESULTS: This micro-organism, on the basis of the phenotypical features and genotypic investigations, can be clearly assigned to the Alteromonas macleodii species and the name A. macleodii subsp. fijiensis biovar deepsane is proposed. Optimal growth occurs between 30 and 35 degrees C, at pH between 6.5 and 7.5 and at ionic strengths between 20 and 40 g x l(-1) NaCl. The G + C content of DNA was 46.5%. This bacterium excreted, under laboratory conditions, an EPS consisting of glucose, galactose, rhamnose, fucose and mannose as neutral sugars along with glucuronic and galacturonic acids and a diacidic hexose identified as a 3-0-(1 carboxyethyl)-D-glucuronic acid. Its average molecular mass was 1.6 x 10(6) Da. CONCLUSIONS: The bacterium HYD657, for which the name A. macleodii subsp. fijiensis biovar deepsane is proposed, produces an unusual EPS in specific medium. SIGNIFICANCE AND IMPACT OF THE STUDY: Due to its interesting biological activities, applications have been found in cosmetics. Its probable contribution to the filamentous microbial mat in the Alvinella pompejana microenvironment can be also mentioned.  相似文献   

16.
Extremely thermophilic bacteria were isolated from sediments collected at the Guaymas Basin hydrothermal vent located in the Gulf of California. One isolate, (FC89) is a hydrogenotrophic methanogen with an optimal growth temperature of 85°C; this isolate appears to be closely related to the previously describedMethanococcus jannaschii. Thermophilic isolates TY and TYS are heterotrophic, sulfur-reducing archaea that differ from other thermophilic heterotrophic strains in physiological and molecular properties. Both heterotrophic isolates fermented carbohydrates and proteinaceous substrates; acetate was the primary product of carbohydrate fermentation, whereas acetate and a mix of organic acids were primary products of proteinaceous substrate fermentation. A detailed microbiological characterization of the isolates and a profile of fermentable substrates and fermentation products are described.  相似文献   

17.
Abstract The giant tube worm, Riftia pachyptila , which is abundant at deep-sea hydrothermal vents, contains an extremely high density of bacterial symbionts in a specialized 'trophosome' tissue. Although the symbiont has not been cultured, enzymatic studies by others indicate that the symbiont is capable of hydrogen-sulfide- or sulfur-based lithoautotrophy and fixes CO2 via the Calvin-Benson cycle. Here we report additional findings for a specimen from the Guaymas Basin vent site (Gulf of California, 2000 m). Under assay conditions where activity was proportional to cell-free extract concentration, ribulose bisphosphate carboxylase/oxygenase (RuBisCO) activity was 6.3 nmol CO2/mg protein per min (30°C). This is within the range observed for non-CO2 limited cultures of sulfur bacteria. The activity vs. temperature profile suggests that the symbiont is a mesophile and not a thermophile. A substrate saturation curve shows an apparent K m (with respect to ribulose 1,5-bisphosphate) of 65 μM which is considerably lower than the single previous report for a sulfur bacterial symbiont. Strong hybridization was detected between a gene probe derived from the RuBisCO large subunit gene of Anacystis nidulans and Riftia trophosome DNA. A Rhodospirillum rubrum -derived probe also showed hybridization with the same restriction fragments of symbiont DNA.  相似文献   

18.
19.
Specimens of alvinellid polychaetes and their tubes were collected in the Parigo hydrothermal vent field on the East Pacific Rise (13°N) in October and November 1987. Heterotrophic bacterial strains were isolated on metal-amended media from the tube and dorsal integument of one specimen of Alvinella pompejana, from the dorsal integument of another from the whole integument of a specimen of Alvinella caudata, and from undetermined alvinellid tubes. The strains were characterized and tested for susceptibility to five heavy metals by using a microdilution method for MIC determinations. All strains were gram-negative rods. Most of them were characterized by the ability to degrade Tween 80 and gelatin and to produce hydrogen sulfide from cysteine. Numerous strains, from all sample origins, displayed resistance to cadmium, zinc, arsenate, and silver and tolerated high amounts of copper. Metal resistance was exhibited by 92.3% of the total isolates. The occurrence of multiply resistant bacteria may demonstrate an adaptation of alvinellid-associated microflora to the general enrichment of metals in the hydrothermal vent environment.  相似文献   

20.
Two novel, thermophilic piezophiles, capable of chemolithoautotrophic growth, are successfully cultivated and isolated from a black smoker chimney at the TAG field (Mid Atlantic Ridge: MAR) by using a piezophilic cultivation technique. Both strains (strains 106 and 108) represent dominant cultivated populations of the microbial communities in the chimney surface habitat. Strain 106 represents typically thin, long spiral cells under the piezophilic growth condition but short bent cells under the non-piezophilic condition. It is a strictly chemolithoautotrophic gammaproteobacterium using reduced sulfur compounds as the electron donors, and nitrate and O2 as the electron acceptors. Based on the 16S rRNA gene sequence, strain 106 would represent a novel genus of the previously uncultivated group (Symbiont Group I; a potentially novel family) within the Gammaproteobacteria , and ' Thioprofundum lithotrophica ' gen. nov., sp. nov. is proposed. Strain 108 is a short, oval rod at any of the growth pressures. It is a facultative chemoautotroph, capable of both chemolithoautotrophic growth with H2 and S oxidations and organotrophic growth with complex organics or organic acids using nitrate and O2 as the electron acceptors. The chemolithoautotrophic growth is strictly piezophilic and under the organotrophic growth condition, it grows at conventional pressures (0.1 MPa). Strain 108 is phylogenetically distinctive from any of the previously described genera of the family Rhodobacteraceae within the Alphaproteobacteria , and ' Piezobacter thermophilus ' gen. nov., sp. nov. is proposed. The piezophilic cultivation technique can be a powerful tool to isolate and characterize the previously uncultivated phylotypes in the deep-sea hydrothermal vent environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号