首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intrinsic chlorophyll-protein CP 47 is a component of photosystem II which functions in both light-harvesting and oxygen evolution. Using site-directed mutagenesis we have produced the mutant W167S which lies in loop C of CP 47. This strain exhibited a 75% loss in oxygen evolution activity and grew extremely slowly in the absence of glucose. Examination of normalized oxygen evolution traces indicated that the mutant was susceptible to photoinactivation. Analysis of the variable fluorescence yield indicated that the mutant accumulated very few functional PS II reaction centers. This was confirmed by immunoblotting experiments. Interestingly, when W167S was grown in the presence of 20 M DCMU, the mutant continued to exhibit these defects. These results indicate that tryptophan 167 in loop C of CP 47 is important for the assembly and stability of the PS II reaction center.  相似文献   

2.
The linear, four-step oxidation of water to molecular oxygen by photosystem II requires cooperation between redox reactions driven by light and a set of redox reactions involving the S-states within the oxygen-evolving complex. The oxygenevolving complex is a highly ordered structure in which a number of polypeptides interact with one another to provide the appropriate environment for productive binding of cofactors such as manganese, chloride and calcium, as well as for productive electron transfer within the photoact. A number of recent advances in the knowledge of the polypeptide structure of photosystem II has revealed a correlation between primary photochemical events and a core complex of five hydrophobic polypeptides which provide binding sites for chlorophyll a, pheophytin a, the reaction center chlorophyll (P680), and its immediate donor, denoted Z. Although the core complex of photosystem II is photochemically active, it does not possess the capacity to evolve oxygen. A second set of polypeptides, which are water-soluble, have been discovered to be associated with photosystem II; these polypeptides are now proposed to be the structural elements of a special domain which promotes the activities of the loosely-bound cofactors (manganese, chloride, calcium) that participate in oxygen evolution activity. Two of these proteins (whose molecular weights are 23 and 17 kDa) can be released from photosystem II without concurrent loss of functional manganese; studies on these proteins and on the membranes from which they have been removed indicate that the 23 and 17 kDa species from part of the structure which promotes retention of chloride and calcium within the oxygen-evolving complex. A third water-soluble polypeptide of molecular weight 33 kDa is held to the photosystem II core complex by a series of forces which in some circumstances may include ligation to manganese. The 33 kDa protein has been studied in some detail and appears to promote the formation of the environment which is required for optimal participation by manganese in the oxygen evolving reaction. This minireview describes the polypeptides of photosystem II, places an emphasis on the current state of knowledge concerning these species, and discusses current areas of uncertainty concerning these important polypeptides.Abbreviations A 23187 ionophore that exchanges divalent cations with H+ - Chl chlorophyll - cyt cytochrome - DCPIP dichlorophenolindophenol - DPC diphenylcarbazide - EGTA ethyleneglycoltetraacetic acid - P680 the chlorophyll a reaction center of photosystem II - pheo pheophytin - PQ plastoquinone - PS photosystem - QA and QB primary and secondary plastoquinone electron acceptors of photosystem II - Sn (n=0, 1, 2, 3, 4) charge accumulating state of the oxygen evolving system - Signals IIvf, IIf and IIs epr-detectable free radicals associated with the oxidizing side of photosystem II - Z primary electron donor to the photosystem II reaction center The survey of literature for this review ended in September, 1984.  相似文献   

3.
This review covers the recent progress in the elucidation of the structure of photosystem II (PSII). Because much of the structural information for this membrane protein complex has been revealed by electron microscopy (EM), the review will also consider the specific technical and interpretation problems that arise with EM where they are of particular relevance to the structural data. Most recent reviews of photosystem II structure have concentrated on molecular studies of the PSII genes and on the likely roles of the subunits that they encode or they were mainly concerned with the biophysical data and fast absorption spectroscopy largely relating to electron transfer in various purified PSII preparations. In this review, we will focus on the approaches to the three-dimensional architecture of the complex and the lipid bilayer in which it is located (the thylakoid membrane) with special emphasis placed upon electron microscopical studies of PSII-containing thylakoid membranes. There are a few reports of 3D crystals of PSII and of associated X-ray diffraction measurements and although little structural information has so far been obtained from such studies (because of the lack of 3D crystals of sufficient quality), the prospects for such studies are also assessed.Abbreviations ATP adenosine triphosphate - Chl chlorophyll - CP chlorophyll-binding protein - EM electron microscopy - LHC light harvesting complex - NADP nicotinamide adenine dinucleotide phosphate - OEC oxygen evolution enhancing complex - PS photosystem - Tris tris-hydroxymethyl aminomethane  相似文献   

4.
Given the unique problem of the extremely high potential of the oxidant P(+)(680) that is required to oxidize water to oxygen, the photoinactivation of photosystem II in vivo is inevitable, despite many photoprotective strategies. There is, however, a robustness of photosystem II, which depends partly on the highly dynamic compositional and structural heterogeneity of the cycle between functional and non-functional photosystem II complexes in response to light level. This coordinated regulation involves photon usage (energy utilization in photochemistry) and excess energy dissipation as heat, photoprotection by many molecular strategies, photoinactivation followed by photon damage and ultimately the D1 protein dynamics involved in the photosystem II repair cycle. Compelling, though indirect evidence suggests that the radical pair P(+)(680)Pheo(-) in functional PSII should be protected from oxygen. By analogy to the tentative oxygen channel of cytochrome c oxidase, oxygen may be liberated from the two water molecules bound to the catalytic site of the Mn cluster, via a specific pathway to the membrane surface. The function of the proposed oxygen pathway is to prevent O(2) from having direct access to P(+)(680)Pheo(-) and prevent the generation of singlet oxygen via the triplet-P(680) state in functional photosytem IIs. Only when the, as yet unidentified, potential trigger with a fateful first oxidative step destroys oxygen evolution, will the ensuing cascade of structural perturbations of photosystem II destroy the proposed oxygen, water and proton pathways. Then oxygen has direct access to P(+)(680)Pheo(-), singlet oxygen will be produced and may successively oxidize specific amino acids of the phosphorylated D1 protein of photosystem II dimers that are confined to appressed granal domains, thereby targeting D1 protein for eventual degradation and replacement in non-appressed thylakoid domains.  相似文献   

5.
The work addressed the adjustment of the photosystem ratio in the green algaChlamydomonas reinhardtii. It is shown that green algae, much like cyanophytes and higher plants, adjust and optimize the ratio of the two photosystems in chloroplasts in response to the quality of irradiance during growth. Such adjustments are compensation reactions and helpC. reinhardtii to retain a quantum efficiency of oxygen evolution near the theoretical maximum. Results show variable amounts of PS I and a fairly constant amount of PS II in chloroplasts and suggest that photosystem stoichiometry adjustments, occurring in response to the quality of irradiance during plant growth, are mainly an adjustment in the concentration of PS I. The work delineates chromatic effects on chlorophyll accumulation in the chloroplast ofC. reinhardtii from those pertaining to the regulation of the PS I/PS II ratio. The detection of the operation of a molecular feedback mechanism for the PS I/PS II ratio adjustment in green algae strengthens the notion of the highly conserved nature of this mechanism among probably all oxygen evolving photosynthetic organisms. Findings in this work are expected to serve as the basis of future biochemical and mutagenesis experiments for the elucidation of the photosystem ratio adjustment in oxygenic photosynthesis.  相似文献   

6.
Pheophytin and chlorophyll extracted from oxygen-evolving photosystem II particles, chloroplast thylakoids and cyanobacterial cells were separated by column chromatography with DEAE-Toyopearl, and quantitatively determined by spectrophotometry. The molecular ratio of chlorophyll a+b to pheophytin a was about 100 in spinach photosystem II particles and about 140 in spinach thylakoids. Using flash spectrophotometry of P680 and measurement of flash-induced oxygen yield, the molecular ratio of the chlorophyll to the photochemical reaction center II was determined to be about 200 in the photosystem II particles. These findings suggest that the stoichiometry in photosystem II particles is one reaction center II and two pheophytin a molecules per about 200 chlorophyll molecules. The same stoichiometry for pheophytin to the reaction center II was obtained in the cyanobacteria, Anacystis nidulans and Synechocystis PCC 6714. A quantitative determination of pheophytin a and the electron donor P700 in stroma thylakoids from pokeweed suggests that photosystem I does not contain pheophytin.Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

7.
光合放氧是植物光系统II(PSII)的重要功能之一。PSII的放氧反应主要是由PSII氧化侧的 4个锰原子组成的锰簇催化的。在类囊体膜的囊腔侧还结合有若干个外周蛋白 ,对放氧反应起着重要作用。文章总结了植物光系统II外周蛋白的结构和功能研究方面的最新进展  相似文献   

8.
The D1-precursor protein of the photosystem II reaction centre contains a carboxy-terminal extension whose proteolytic removal is necessary for oxygen-evolving activity. To address the question of the role of the carboxy-terminal extension in the green alga Chlamydomonas reinhardtii, we truncated D1 by converting codon Ser345 of the psbA gene into a stop codon. Particle gun transformation of an in vitro modified psbA gene fragment also carrying mutations conferring herbicide resistance yielded a homoplasmic transformant containing the stop codon. Since oxygen evolution capacity is not affected in this mutant as compared with herbicide-resistant control cells, the carboxy-terminal extension is dispensable for a functional photosystem II complex under normal growth conditions.  相似文献   

9.
In this report we demonstrate sulfite interaction with oxygen and PSII electron acceptors (ferricyanide and para-benzoquinone) during measurement of oxygen evolution in chloroplasts. Redox potentials of oxygen, ferricyanide and para-benzoquinone allow them to compete for sulfite. Without taking this into account, sulfite inhibition of oxygen evolution can be overestimated, since sulfite consumes oxygen and reduces ferricyanide or para-benzoquinone during the measurement. In order to correctly measure the rate of oxygen evolution in chloroplasts, it is necessary to avoid presence of sulfite during the measurement. After overcoming the artifact, mentioned above, we confirm the sulfite inhibition of oxygen evolution in chloroplasts but at a lesser extent than earlier reported. This, however, is a pretreatment effect.Abbreviations Chl Chlorophyll - EDTA Ethylenediamine Tetraacetic Acid - FeCN Potassium Ferricyanide - Hepes N-2-Hydroxyethylpiperazine-N1-2-ethanesulfonic acid - pBQ Para-benzoquinone - PSII photosystem II  相似文献   

10.
EPR measurements on inside-out thylakoids revealed that salt-washing, known to inhibit oxygen evolution and release a 23 and a 16 kDa protein, induced a Signal IIf and decreased the EPR signal from state S2. Readdition of the released 23 kDa protein restored the oxygen evolution and decreased the Signal IIf, but did not relieve the decrease in the state S2 signal. It is suggested that salt-washing inhibits the electron transfer from the oxygen-evolving site to Z, the physiological donor to P680. In inhibited photosystem II units lacking Signal IIf, Z+ is rapidly reduced, possibly by a modified S-cycle unable to evolve oxygen.  相似文献   

11.
In conventional photosystem II preparation high amounts of Cu are found. After fractionation by centrifugation, Cu can be completely removed from photosystem II without affecting either its photosynthetic activity or the composition of its specific proteins. We could demonstrate that the Cu was associated with nuclear contaminants in the starch fraction. Among the contaminants, several histones were identified by specific antisera and by N-terminal sequencing. In order to obtain homogeneous BBY preparations of PSII a procedure is employed that involves a 10000 g centrifugation step and which eliminates non-specifically bound metals, nucleic acids and histones with the starch pellet. The resulting starch-free BBY (BBYs-), which is free of these nuclear contaminants, is an appropriate preparation for biophysical studies or for those of metal interactions with PSII.  相似文献   

12.
Growth of a cadmium-tolerant mutant strain of the unicellular green alga Chlamydomonas reinhardtii was found to be impaired under photoautrotrophic, but not under mixotrophic conditions. As compared to wild-type cells, oxygen evolution by the photoautotrophically grown mutant was considerably decreased and higher photon fluence rates were required both for light compensation of oxygen consumption/production and maximal oxygen evolution. The capability for oxygen production was decreased in Chlamydomonas reinhardtii cells when grown in the presence of acetate without aeration. Wild-type cells grown under these conditions showed a rather low but significant oxygen evolution immediately after transfer to photoautotrophic conditions. This residual oxygen production was completely suppressed in the presence of acetate, obviously due to acetate inhibition of the water-splitting complex. In the case of our cadmium-tolerant mutant strain, however, residual oxygen production was measured even in the presence of acetate. After removal of acetate, oxygen evolution by the cadmium-tolerant mutant strain was increased to higher rates than measured for wild-type cells, but considerably higher photon fluence rates were required both for light compensation of oxygen consumption/production and maximal oxygen evolution. The conclusion that the donor side of photosystem II is affected in our cadmium-tolerant mutant strain was further corroborated by a stronger decrease of the fluorescence level caused by hydroxylamine.  相似文献   

13.
We have found that copper(II) ions at about equimolar Cu2+/photosystem II (PS II) reaction center proportions stimulate oxygen evolution nearly twofold. This high affinity Cu-binding site is different from the binding sites of Mn and Ca ions. The analysis of the Cu2+ content in PS II preparations isolated from wild-type tobacco and a tobacco mutant deficient in light-harvesting complex suggests that Cu2+ may be a native component of PS II and may take part in the oxygen evolution process. At higher concentrations, Cu2+ ions inhibit oxygen evolution and quench fluorescence.  相似文献   

14.
With the aim to specifically study the molecular mechanisms behind photoinhibition of photosystem I, stacked spinach (Spinacia oleracea) thylakoids were irradiated at 4 degrees C with far-red light (>715 nm) exciting photosystem I, but not photosystem II. Selective excitation of photosystem I by far-red light for 130 min resulted in a 40% inactivation of photosystem I. It is surprising that this treatment also caused up to 90% damage to photosystem II. This suggests that active oxygen produced at the reducing side of photosystem I is highly damaging to photosystem II. Only a small pool of the D1-protein was degraded. However, most of the D1-protein was modified to a slightly higher molecular mass, indicative of a damage-induced conformational change. The far-red illumination was also performed using destacked and randomized thylakoids in which the distance between the photosystems is shorter. Upon 130 min of illumination, photosystem I showed an approximate 40% inactivation as in stacked thylakoids. In contrast, photosystem II only showed 40% inactivation in destacked and randomized thylakoids, less than one-half of the inactivation observed using stacked thylakoids. In accordance with this, photosystem II, but not photosystem I is more protected from photoinhibition in destacked thylakoids. Addition of active oxygen scavengers during the far-red photosystem I illumination demonstrated superoxide to be a major cause of damage to photosystem I, whereas photosystem II was damaged mainly by superoxide and hydrogen peroxide.  相似文献   

15.
Changes in the protein secondary structure and electron transport activity of the Triton X-100-treated photosystem I (PSI) and photosystem II (PSII) complexes after strong illumination treatment were studied using Fourier transform-infrared (FT-IR) spectroscopy and an oxygen electrode. Short periods of photoinhibitory treatment led to obvious decreases in the rates of PSI-mediated electron transport activity and PSII-mediated oxygen evolution in the native or Triton-treated PSI and PSII complexes. In the native PSI and PSII complexes, the protein secondary structures had little changes after the photoinhibitory treatment. However, in both Triton-treated PSI and PSII complexes, short photoinhibition times caused significant loss of -helical content and increase of -sheet structure, similar to the conformational changes in samples of Triton-treated PSI and PSII complexes after long periods of dark incubation. Our results demonstrate that strong-light treatment to the Triton-treated PSI and PSII complexes accelerates destruction of the transmembrane structure of proteins in the two photosynthetic membranes.  相似文献   

16.
We have used three doxyl stearic acid spin labels to study the transverse hetero-geneity in lipid fluidity in thylakoids, photosystem II (PS II) preparations, and thylakoid galactolipid vesicles. This comparative study shows that spin labels incorporated into the membrane of the PS II preparation experience far more immobilization than do the same spin labels incorporated into either thylakoids or vesicles prepared from the polar lipids extracted from thylakoids. The spin label immobilization found in the PS II preparation is manifest even near the center of the bilayer, where lipid mobility is normally at its maximum. Analysis of the lipid content of the PS II preparation, relative to chlorophyll, suggests that the PS II preparation may be lipid depleted. This lipid depletion could explain the results presented. However, electron microscopy [Dunahay et al. (1984) Biochim. Biophys. Acta 764:179–193] has not indicated that major delipidation has occurred, and so it remains possible that the immobilization found in the PS II preparation is due primarily to the normal (but close) juxtaposition of adjacent PS II complexes and the cooperative immobilization of their surrounding lipids. Based on the results presented, we conclude that highly mobile lipids are not required for oxygen evolution, the primary photochemistry or the secondary reduction of exogenously added quinones. Unfortunately, the relationship between the plastoquinone pool and the fluidity of the membrane in the PS II preparation remains ambiguous.Abbreviations PS II photosystem II - SDSA 5-doxylstearic acid - 12DSA 12-doxylstearic acid - 16DSA 16-doxylstearic acid - 7N14 2-heptyl-2-hexyl-5,5-dimethyloxazolidine-N-oxyl - chromium oxalate potassium trioxalatochromiate - EPR electron paramagnetic resonance - Chl chlorophyll - MGDG monogalactosyldiacylglycerol - DGDG digalactosyldiacylglycerol  相似文献   

17.
Photosystem II thylakoid particles possessing high rates of oxygen evolution, were shown to have a very simple polypeptide composition. Upon washing of these particles with 250 mM NaCl the oxygen evolution was inhibited up to 80% concomitant with a release of two polypeptides of 23 and 16 kDa. Readdition of the pure 23 kDa protein to the depleted thylakoids under low ionic strength reconstituted more than half of the lost activity. No stimulation was obtained with the 16 kDa protein alone or in combination with glycerol. The results give further strong evidence that the 23 kDa protein is an essential component in the oxygen evolving complex. The possible involvement of other proteins in this complex is discussed in light of the demonstrated simple polypeptide pattern of the photosystem II particles.  相似文献   

18.
Hanna Jansson 《BBA》2008,1777(9):1116-1121
The electron transfer from wild-type spinach plastocyanin (Pc) to photosystem 1 has been studied by flash-induced absorption changes at 830 nm. The decay kinetics of photo-oxidized P700 are drastically slower in the presence of Ag(I)-substituted Pc, while addition of Zn(II)-substituted Pc has a weaker effect. The metal-substituted forms of Pc act as competitive inhibitors of the reaction between normal, Cu-containing, Pc and P700. The inhibition constants obtained from an analysis of the kinetic data were 30 and 410 μM for Ag(I)- and Zn(II)-substituted Pc, respectively. When the Gly8Asp mutant form of Pc was used instead of the wild-type form, the corresponding values were found to be 77 and 442 μM. If the Ag- and Zn-derivatives can be considered as structural mimics of reduced and oxidized CuPc, respectively, our results imply that there is a redox-induced decrease in the affinity between Pc and photosystem 1 that follows the electron donation to P700. Our data also imply that the Gly8Asp mutation can diminish the magnitude of this change. The findings reported here are consistent with a reaction mechanism where the electron transfer in the complex between Pc and photosystem 1 is assumed to be reversible.  相似文献   

19.
PsbW is a nuclear-encoded protein located in the thylakoid membrane of the chloroplast. Studies in higher plants have provided substantial evidence that PsbW is a core component of photosystem II. However, recent data have been presented to suggest that PsbW is also a subunit of photosystem I. Such a sharing of subunits between the two photosystems would represent a novel phenomenon. To investigate this, we have cloned and characterized the psbW gene from the green alga Chlamydomonas reinhardtii. The gene is split by five introns and encodes a polypeptide of 115 residues comprising the 6.1 kDa mature PsbW protein preceded by a 59 amino acid bipartite transit sequence. Using antibodies raised to PsbW we have examined: (1) C. reinhardtii mutants lacking either photosystem and (2) purified photosystem preparations. We find that PsbW is a subunit of photosystem II, but not photosystem I.  相似文献   

20.
Cells of the cyanobacterium Synechococcus 6301 were grown in yellow light absorbed primarily by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II), and in red light absorbed primarily by chlorophyll and, therefore, by photosystem I (PS I). Chromatic acclimation of the cells produced a higher phycocyanin/chlorophyll ratio and higher PBS-PS II/PS I ratio in cells grown under PS I-light. State 1-state 2 transitions were demonstrated as changes in the yield of chlorophyll fluorescence in both cell types. The amplitude of state transitions was substantially lower in the PS II-light grown cells, suggesting a specific attenuation of fluorescence yield by a superimposed non-photochemical quenching of excitation. 77 K fluorescence emission spectra of each cell type in state 1 and in state 2 suggested that state transitions regulate excitation energy transfer from the phycobilisome antenna to the reaction centre of PS II and are distinct from photosystem stoichiometry adjustments. The kinetics of photosystem stoichiometry adjustment and the kinetics of the appearance of the non-photochemical quenching process were measured upon switching PS I-light grown cells to PS II-light, and vice versa. Photosystem stoichiometry adjustment was complete within about 48 h, while the non-photochemical quenching occurred within about 25 h. It is proposed that there are at least three distinct phenomena exerting specific effects on the rate of light absorption and light utilization by the two photoreactions: state transitions; photosystem stoichiometry adjustment; and non-photochemical excitation quenching. The relationship between these three distinct processes is discussed.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F relative fluorescence intensity at emission wavelength nm - F o fluorescence intensity when all PS II traps are open - light 1 light absorbed preferentially by PS I - light 2 light absorbed preferentially by PS II - PBS phycobilisome - PS photosystem  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号