首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polymerase chain reaction (PCR) is a versatile method to amplify specific DNA with oligonucleotide primers. By designing degenerate PCR primers based on amino acid sequences that are highly conserved among all known gene family members, new members of a multigene family can be identified. The inherent weakness of this approach is that the degenerate primers will amplify previously identified, in addition to new, family members. To specifically address this problem, we synthesized a specific RNA for each known family member so that it hybridized to one strand of the template, adjacent to the 3′-end of the primer, allowing the degenerate primer to bind yet preventing extension by DNA polymerase. To test our strategy, we used known members of the soluble, nitric oxide-sensitive guanylyl cyclase family as our templates and degenerate primers that discriminate this family from other guanylyl cyclases. We demonstrate that amplification of known members of this family is effectively and specifically inhibited by the corresponding RNAs, alone or in combination. This robust method can be adapted to any application where multiple PCR products are amplified, as long as the sequence of the desired and the undesired PCR product(s) is sufficiently distinct between the primers.  相似文献   

2.
Using a combination of degenerate primers designed from the NBS domains of the resistance genes, amplification and subsequent cloning of the resistance gene fragments from sunflower (Helianthus agrophyllus) was conducted. Sequences of cloned PCR products differed from one another and displayed homology to NBS domain fragments of the already known plant resistance genes, as well as to the analogous genes from different classes. The highest homology was shown to the NBS domain regions of cultivated sunflower and the other members of the family Compositae. Two cloned fragments had open reading frames, while the other sequences carried stop codons and seemed to belong to pseudogenes. Amino acid sequences of Helianthus agrophyllus analyzed contained conservative regions typical of NBS domains of the resistance gene products.  相似文献   

3.
Using a combination of degenerate primers designed from the NBS domains of the resistance genes, amplification and subsequent cloning of the resistance gene fragments from sunflower (Helianthus agrophyllus) was conducted. Sequences of cloned PCR products differed from one another and displayed homology to NBS domain fragments of the already known plant resistance genes, as well as to the analogous genes from different classes. The highest homology was shown to the NBS domain regions of cultivated sunflower and the other members of the family Compositae. Two cloned fragments had open reading frames, while the other sequences carried stop codons and seemed to belong to pseudogenes. Amino acid sequences of Helianthus agrophyllus analyzed contained conservative regions typical of NBS domains of the resistance gene products.  相似文献   

4.
5.
We developed a novel efficient scheme, DEFOG (for "deciphering families of genes"), for determining sequences of numerous genes from a family of interest. The scheme provides a powerful means to obtain a gene family composition in species for which high-throughput genomic sequencing data are not available. DEFOG uses two key procedures. The first is a novel algorithm for designing highly degenerate primers based on a set of known genes from the family of interest. These primers are used in PCR reactions to amplify the members of the gene family. The second combines oligofingerprinting of the cloned PCR products with clustering of the clones based on their fingerprints. By selecting members from each cluster, a low-redundancy clone subset is chosen for sequencing. We applied the scheme to the human olfactory receptor (OR) genes. OR genes constitute the largest gene superfamily in the human genome, as well as in the genomes of other vertebrate species. DEFOG almost tripled the size of the initial repertoire of human ORs in a single experiment, and only 7% of the PCR clones had to be sequenced. Extremely high degeneracies, reaching over a billion combinations of distinct PCR primer pairs, proved to be very effective and yielded only 0.4% nonspecific products.  相似文献   

6.
Analysis of fungal polyketide synthase gene sequences suggested that these might be divided into two subclasses, designated WA-type and MSAS-type. Two pairs of degenerate PCR primers (LC1 and LC2c, LC3 and LC5c) were designed for the amplification of ketosynthase domain fragments from fungal PKS genes in each of these subclasses. Both primer pairs were shown to amplify one or more PCR products from the genomes of a range of ascomycetous Deuteromycetes and Southern blot analysis confirmed that the products obtained with each pair of primers emanated from distinct genomic loci. PCR products obtained from Penicillium patulum and Aspergillus parasiticus with the LC1/2c primer pair and from Phoma sp. C2932 with both primer pairs were cloned and sequenced; the deduced protein sequences were highly homologous to the ketosynthase domains of other fungal PKS genes. Genes from which LC1/2c fragments were amplified (WA-type) were shown by a phylogenetic analysis to be closely related to fungal PKS genes involved in pigment and aflatoxin biosynthetic pathways, whereas the gene from which the LC3/5c fragment was amplified (MSAS-type) was shown to be closely related to genes encoding 6-methylsalicylic acid synthase (MSAS). The phylogenetic tree strongly supported the division of fungal PKS genes into two subclasses. The LC-series primers may be useful molecular tools to facilitate the cloning of novel fungal polyketide synthase genes.  相似文献   

7.
A simple and rapid method for cloning of amplification products directly from the polymerase chain reaction (PCR) has been developed. The method is based on the addition of a 12-base dUMP-containing sequence (CUACUACUACUA) to the 5' end of PCR primers. Incorporation of these primers during PCR results in the selective placement of dUMP residues into the 5' end of amplification products. Selective degradation of the dUMP residues in the PCR products with uracil DNA glycosylase (UDG) disrupts base pairing at the termini and generates 3' overhangs. Annealing of 3' protruding termini to vector DNA containing complementary 3' ends results in chimeric molecules which can be transformed, with high efficiency, without in vitro ligation. Directional cloning of PCR products has also been accomplished by incorporating different dU-containing sequences at the end of each PCR primer. Substitution of all dT residues in PCR primers with dU eliminates cloning of aberrant "primer dimer" products and enriches cloning of genuine PCR products. The method has been applied to cloning of inter-Alu DNA sequences from human placental DNA. Using a single primer, DNA sequences between appropriately oriented Alu sequences were amplified and cloned. Cloning of cDNA for the glyceraldehyde-3'-phosphate dehydrogenase gene from rat brain RNA was also demonstrated. The 3' end region of this gene was amplified by the 3' RACE method and the amplified DNA was cloned after UDG digestion. Characterization of cloned DNAs by sequence analysis showed accurate repair of the cloning junctions. The ligase-free cloning method with UDG should prove to be a widely applicable procedure for rapid cloning of PCR-amplified DNA.  相似文献   

8.
9.
10.
简并PCR技术及其在基因克隆中的应用   总被引:14,自引:0,他引:14  
本文简要介绍简并PCR技术,包括什么是简并引物,如何设计简并引物,进行简并PCR的反应条件,应用简并PCR获得全长基因的方法和简并PCR技术的应用范围,并对简并PCR技术的局限性及其新进展进行讨论。在此基础上,简述基因的克隆策略以及简并PCR技术在基因克隆中的应用。简并PCR技术是寻找和发现“新”基因或蛋白质家族新成员的一种非常有用的工具。 Abstract:Degenerate PCR is introduced in this paper,including what is degenerate PCR,how to design degenerate primers,how to optimize degenerate PCR parameters,how to applying degenerate PCR to obtain full-length gene and which fields can apply degenerate PCR.The limits and recent advances of degenerate PCR are also discussed.Based on this introduction,strategies of gene cloning and applications of degenerate PCR in gene cloning are summarized in brief.Degenerate PCR is a very useful tool for searching and discovering new genes and new members of a protein family.  相似文献   

11.
The aim of this study was to enable the polymerase chain reaction (PCR) amplification of DNA fragments within endoglucanase gene(s) of Torula thermophila, by using degenerate primers so that the amplified fragment(s) could be used as homologous probe(s) for cloning of full-length endoglucanase gene(s). The design of the degenerate PCR primers was mainly based on the endoglucanase sequences of other fungi. The endoglucanase gene sequence of Humicola insolens was the only sequence from a thermophilic fungus publicly available in the literature. Therefore, the endoglucanase sequences of the two Trichoderma species, Trichoderma reesei and Trichoderma longibrachiatum, were used to generalize the primers. PCR amplification of T. thermophila genomic DNA with these primers resilied in a specific amplification. The specificity of the amplified fragment was shown by Southern hybridization analysis using egl3 gene of T. reesei as probe. This result suggested that the degenerate primers used in this study may be of value for studies aimed at cloning of endoglucanase genes from a range of related fungi.  相似文献   

12.
Probing the functional complexity of the human genome will require new gene cloning techniques, not only to discover intraspecies gene homologs and interspecies gene orthologs, but also to identify alternatively spliced gene variants. We report homologous cDNA cloning methods that allow cloning of gene family members, genes from different species, and alternatively spliced gene variants. We cloned human 14-3-3 gene family members using DNA probes with as much as 35% sequence divergence, cloned alternatively spliced gene forms of Rad51D, and cloned a novel splice form of the human 14-3-3 theta gene with a unique expression pattern. Interspecies gene cloning was demonstrated for the mouse Rad51C and mouse beta-actin genes using human gene probes. The gene family cloning method is fast, efficient, and free from PCR errors; moreover, it exploits the abilities of RecA protein to pair homologous or partially homologous DNA sequences stably in kinetically trapped, multistranded DNA hybrids that can be used for subsequent gene clone enrichment.  相似文献   

13.
Genomic DNA sequences sharing homology with the NBS-LRR (nucleotide binding site-leucine-rich repeat) resistance genes were isolated and cloned from apricot (Prunus armeniaca L.) using a PCR approach with degenerate primers designed from conserved regions of the NBS domain. Restriction digestion and sequence analyses of the amplified fragments led to the identification of 43 unique amino acid sequences grouped into six families of resistance gene analogs (RGAs). All of the RGAs identified belong to the Toll-Interleukin receptor (TIR) group of the plant disease resistance genes (R-genes). RGA-specific primers based on non-conserved regions of the NBS domain were developed from the consensus sequences of each RGA family. These primers were used to develop amplified fragment length polymorphism (AFLP)-RGA markers by means of an AFLP-modified procedure where one standard primer is substituted by an RGA-specific primer. Using this method, 27 polymorphic markers, six of which shared homology with the TIR class of the NBS-LRR R-genes, were obtained from 17 different primer combinations. Of these 27 markers, 16 mapped in an apricot genetic map previously constructed from the self-pollination of the cultivar Lito. The development of AFLP-RGA markers may prove to be useful for marker-assisted selection and map-based cloning of R-genes in apricot.  相似文献   

14.
New bioactive proteins need to be screened from various microorganismsfor the increasing need for industrial and pharmaceutical peptide,proteins, or enzymes. A novel polymerase chain reaction (PCR)method, restriction site-dependent PCR (RSD-PCR), was designedfor rapid new genes cloning from genomic DNA. RSD-PCR strategyis based on these principles: (i) restriction sites dispersethroughout genomes are candidacy for universal pairing; (ii)a universal primer is a combination of a 3'-end of selectedrestriction sites, and a 5'-end of degenerated sequence. A two-roundPCR protocol was designed and optimized for the RSD-PCR: amplifythe single strand target template from genomic DNA by a specificprimer and amplify the target gene by using the specific primerand one of the universal RSD-primers. The optimized RSD-PCRwas successfully applied in chromosome walking using specificinternal primers, and cloning of new genes using degeneratedprimers derived from NH2-terminal amino acid sequence of protein.  相似文献   

15.
用本研究设计的"预先去杂-SDS法"从梅花嫩叶提取到高质量的基因组DNA.根据11条已公开发表的并提交到GenBank的类黄酮3'-羟化酶基因cDNA的假定氨基酸序列的保守区设计2个正向简并引物和3个反向简并引物组成6对引物,仅有1对引物能以PCR法同时从梅花'南京红须'、'南京红'和'粉皮宫粉'的基因组DNA扩增到一个469 bp的核苷酸片段,这3个片段在总体上有99.72%的一致性,与11条类黄酮3'-羟化酶基因cDNA的相应区域有65.57%的一致性.同时,"GGEK"并非类黄酮3'-羟化酶的特征性模体.这是首次从木本植物的基因组DNA克隆到类黄酮3'-羟化酶基因片段.本研究结果可为梅花类黄酮3'-羟化酶基因全长的克隆奠定基础.  相似文献   

16.
17.
A method has been developed to prepare random DNA fragments using PCR. First, two cycles are carried out at 16 degrees C with the Klenow's fragment and oligonucleotides (random primers) with random 3'-sequences and the 5'-constant part containing the site for cloning with the site-specific endonuclease. The random primers can link to any DNA site, and random DNA fragments are formed during DNA synthesis. During the second cycle, after denaturation of the DNA and addition of the Klenow's fragment, the random primers can link to newly synthesized DNA strands, and after DNA synthesis single-stranded DNA fragments are produced which have a constant primer sequence at the 5'-end and a complementary to it sequence at the 3'-end. During the third cycle, the constant primer is added and double-stranded fragments with the constant primer sequences at both ends are formed during DNA synthesis. Incubation for 1 h at 37 degrees C degrades the oligonucleotides used at the first stage due to endonuclease activity of the Klenow's fragment. Then routine PCR amplification is carried out using the constant primer. This method is more advantageous than hydrodynamic methods of DNA fragmentation widely used for "shotgun" cloning.  相似文献   

18.
Isolation of cDNAs encoding individual members of a gene family is essential for assessing their role in a biological phenomenon. However, this process is often laborious and slow due to highly conserved protein-coding region that interferes with the isolation of the individual members. Identification of gene-specific probes from 3 non-coding regions of different members can assist in the fast retrieval and characterization of individual members of a multigene family. We used the recent technique of differential display for the same purpose. As an example of a multigene family in plants, we selected a heat shock protein gene family, HSP16.9 from wheat, with estimated 12 members. We modified the original differential display technique for selective amplification of the 3 non-coding regions of different wheat HSP16.9 genes by replacing the random 10-mer in the original method with a conserved HSP16.9 gene family-specific primer. Sixteen cDNA fragments from these experiments were sequenced and they represent 8 different members of a 12 member gene family. Our succes can be attributed to shorter 3 non-coding regions that are typical of higher-plant genes and use of highly conserved gene family-specific primer in these experiments. This modified differential display technique can be of general application to other plant systems where cloning of the different members of a gene family is desired.  相似文献   

19.
 K562细胞中锌指蛋白cDNA基因片段的克隆刘智,朱定尔,谢慎思,朱小湘,肖广惠,陈汉春(湖南医科大学分子生物学研究室,长沙410078)1985年,Miller等[1]等分离并测定了非洲爪蟾卵母细胞转录因子ⅢA(TFⅢA)的cDNA序列,推出蛋白质...  相似文献   

20.
A full-length cDNA was selectively amplified by the polymerase chain reaction (PCR) utilizing a primer pair consisting of a "universal" 21-base synthetic deoxyoligonucleotide (oligo dT 17GGCC) and a specific degenerate deoxyoligonucleotide sequence (DOS) derived from the N-terminal amino acid sequence. This double-stranded amplified cDNA was uni-directionally cloned into M13mp19 utilizing two restriction sites that had been previously incorporated into the termini of the universal and specific DOS primers. Cloning of the specific cDNA via this PCR amplification with the universal/specific DOS primer pair approach was confirmed by screening with a second DOS contiguous with the DOS employed to prime second (sense)-strand cDNA synthesis. This technique allows for the selective full-length cDNA cloning of low-abundance mRNAs from a single-protein sequence determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号