首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Neutrophils play an important role in antimicrobial defense as the first line of innate immune system. Recently, the release of neutrophil extracellular traps (NETs) has been identified as a killing mechanism of neutrophils against invading microbes. Mycoplasma pneumoniae, a causative agent of respiratory infection, has been shown to be resistant to in vitro killing by neutrophils, suggesting that the bacterium might circumvent bactericidal activity of NETs. In this study, we investigated whether M. pneumoniae possesses resistance mechanisms against the NETs‐mediated killing of neutrophils and found that the bacterium degrades the NETs induced upon M. pneumoniae infection. The NETs‐degrading ability of M. pneumoniae required the production of a secreted nuclease, Mpn491, capable of using Mg2+ as a cofactor for its hydrolytic activity. Moreover, the inactivation of the nuclease resulted in increased susceptibility of M. pneumoniae to the NETs‐mediated killing of neutrophils. The results suggest that M. pneumoniae employs Mpn491 as a means for evading the killing mechanism of neutrophils.  相似文献   

3.
The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointestinal tract indicated by recruitment of innate immune cells and increase of inflammatory cytokines. In this study, we describe a colonization defect of a double extracellular nuclease V. cholerae mutant in immunocompetent mice, which is not evident in neutropenic mice. Intrigued by this observation, we investigated the impact of neutrophils, as a central part of the innate immune system, on the pathogen V. cholerae in more detail. Our results demonstrate that V. cholerae induces formation of neutrophil extracellular traps (NETs) upon contact with neutrophils, while V. cholerae in return induces the two extracellular nucleases upon presence of NETs. We show that the V. cholerae wild type rapidly degrades the DNA component of the NETs by the combined activity of the two extracellular nucleases Dns and Xds. In contrast, NETs exhibit prolonged stability in presence of the double nuclease mutant. Finally, we demonstrate that Dns and Xds mediate evasion of V. cholerae from NETs and lower the susceptibility for extracellular killing in the presence of NETs. This report provides a first comprehensive characterization of the interplay between neutrophils and V. cholerae along with new evidence that the innate immune response impacts the colonization of V. cholerae in vivo. A limitation of this study is an inability for technical and physiological reasons to visualize intact NETs in the intestinal lumen of infected mice, but we can hypothesize that extracellular nuclease production by V. cholerae may enhance survival fitness of the pathogen through NET degradation.  相似文献   

4.
Elderly humans show increased susceptibility to invasive staphylococcal disease after skin and soft tissue infection. However, it is not understood how host immunity changes with aging, and how that predisposes to invasive disease. In a model of severe skin infection, we showed that aged mice (16- to 20-month-old) exhibit dramatic bacterial dissemination compared with young adult mice (2-month-old). Bacterial dissemination was associated with significant reductions of CXCL1 (KC), polymorphonuclear cells (PMNs), and extracellular DNA traps (NETs) at the infection site. PMNs and primary skin fibroblasts isolated from aged mice showed decreased secretion of CXCL2 (MIP-2) and KC in response to MRSA, and in vitro analyses of mitochondrial functions revealed that the mitochondrial electron transport chain complex I plays a significant role in induction of chemokines in the cells isolated from young but not old mice. Additionally, PMNs isolated from aged mice have reduced ability to form NETs and to kill MRSA. Expression of nuclease by S. aureus led to increased bacterial systemic dissemination in young but not old mice, suggesting that defective NETs formation in elderly mice permitted nuclease and non-nuclease expressing S. aureus to disseminate equally well. Overall, these findings suggest that gross impairment of both skin barrier function and innate immunity contributes to the propensity for MRSA to disseminate in aged mice. Furthermore, the study indicates that contribution of bacterial factors to pathogenicity may vary with host age.  相似文献   

5.
Neutrophils are multifaceted cells that are often the immune system's first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system.  相似文献   

6.
Neutrophils are leukocytes that are capable of eliminating both intra‐ and extracellular pathogens by mechanisms such as phagocytosis, degranulation, and release of neutrophil extracellular traps (NETs). Histoplasma capsulatum var. capsulatum (H. capsulatum) is a dimorphic fungus with a global distribution that causes histoplasmosis, a disease that is endemic in different geographic areas and is spreading worldwide. The release of NETs has been described as an important host defense mechanism against different fungi; however, there are no reports demonstrating that this process is implicated in neutrophil response to H. capsulatum infection. Therefore, the aim of this work is to investigate whether isolated human neutrophils release NETs in response to H. capsulatum and the potential mechanisms involved, as well as delineate the NETs antifungal activity. Using both confocal fluorescence and scanning electron microscopy techniques, we determined that NETs are released in vitro in response to H. capsulatum via an oxidative mechanism that is downstream of activation of the Syk and Src kinase pathways and is also dependent on CD18. NETs released in response to H. capsulatum yeasts involve the loss of neutrophil viability and are associated with elastase and citrullinated histones, however also can occur in a PAD4 histone citrullination independent pathway. This NETs also presented fungicidal activity against H. capsulatum yeasts. Our findings may contribute to the understanding of how neutrophils recognize and respond as immune effector cells to H. capsulatum, which may lead to better knowledge of histoplasmosis pathophysiology and treatment.  相似文献   

7.
NETosis is a process by which neutrophils extrude their DNA together with bactericidal proteins that trap and/or kill pathogens. In the present study, we evaluated the ability of Leptospira spp. to induce NETosis using human ex vivo and murine in vivo models. Microscopy and fluorometric studies showed that incubation of human neutrophils with Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 (LIC) resulted in the release of DNA extracellular traps (NETs). The bacteria number, pathogenicity and viability were relevant factors for induction of NETs, but bacteria motility was not. Entrapment of LIC in the NETs resulted in LIC death; however, pathogenic but not saprophytic Leptospira sp. exerted nuclease activity and degraded DNA. Mice infected with LIC showed circulating NETs after 2 days post-infection (dpi). Depletion of neutrophils with mAb1A8 significantly reduced the amount of intravascular NETs in LIC-infected mice, increasing bacteremia at 3 dpi. Although there was a low bacterial burden, scarce neutrophils and an absence of inflammation in the early stages of infection in the kidney and liver, at the beginning of the leptospiruric phase, the bacterial burden was significantly higher in kidneys of neutrophil-depleted-mice compared to non-depleted and infected mice. Surprisingly, interstitial nephritis was of similar intensity in both groups of infected mice. Taken together, these data suggest that LIC triggers NETs, and that the intravascular formation of these DNA traps appears to be critical not only to prevent early leptospiral dissemination but also to preclude further bacterial burden.  相似文献   

8.
The Gram-positive zoonotic bacterium Streptococcus suis (S. suis) is responsible for a wide range of diseases including meningitis in pigs and humans. The blood-cerebrospinal fluid (CSF) barrier is constituted by the epithelial cells of the choroid plexus, which execute barrier function also after bacteria have entered the central nervous system (CNS). We show that the bacterial capsule, a major virulence factor, strongly attenuates adhesion of S. suis to the apical side of porcine choroid plexus epithelial cells (PCPEC). Oligonucleotide microarray analysis and quantitative PCR surprisingly demonstrated that adherent wild-type and capsule-deficient S. suis influenced expression of a pronounced similar pattern of genes in PCPEC. Investigation of purified capsular material provided no evidence for a significant role of the capsule. Enriched among the regulated genes were those involved in “inflammatory response”, “defense response” and “cytokine activity”. These comprised several cytokines and chemokines including the interleukins 6 and 8, which could be detected on protein level. We show that after infection with S. suis the choroid plexus contributes to the immune response by actively producing cytokines and chemokines. Other virulence factors than the bacterial capsule may be relevant in inducing a strong inflammatory response in the CNS during S. suis meningitis.  相似文献   

9.
Neutrophils contribute to the pathological processes of a number of inflammatory disorders, including rheumatoid arthritis, sepsis and cystic fibrosis. Neutrophils also play prominent roles in schistosomiasis japonica liver fibrosis, being central mediators of inflammation following granuloma formation. In this study, we investigated the interaction between Schistosoma japonicum eggs and neutrophils, and the effect of eggs on the inflammatory phenotype of neutrophils. Our results showed significant upregulated expression of pro‐inflammatory cytokines (IL‐1α, IL‐1β and IL‐8) and chemokines (CCL3, CCL4 and CXCL2) in neutrophils after 4 h in vitro stimulation with S. japonicum eggs. Furthermore, mitochondrial DNA was released by stimulated neutrophils, and induced the production of matrix metalloproteinase 9 (MMP‐9), a protease involved in inflammation and associated tissue destruction. We also found that intact live eggs and isolated soluble egg antigen (SEA) triggered the release of neutrophil extracellular traps (NETs), but, unlike those reported in bacterial or fungal infection, NETs did not kill schistosome eggs in vitro. Together these show that S. japonicum eggs can induce the inflammatory phenotype of neutrophils, and further our understanding of the host–parasite interplay that takes place within the in vivo microenvironment of schistosome‐induced granuloma. These findings represent novel findings in a metazoan parasite, and confirm characteristics of NETs that have until now, only been observed in response to protozoan pathogens.  相似文献   

10.
Bacteriophage lysin has attracted considerable attentions as possible antimicrobial agents for solution of antibiotic resistance. SMP was a Streptococcus suis serotype 2 bacteriophage isolated from nasal swabs of healthy Bama minipigs. The putative SMP bacteriophage lysin, designated LySMP, was recombinantly expressed in Escherichia coli BL21, and chromatographically purified. Treated with 0.8% of β-mercaptoethanol, LySMP exhibited an extensive lysin spectrum than those of whole phage against bacteria investigated. S. suis serotype 2, S. suis serotype 7 and S. suis serotype 9 strains were recovered from diseased pigs between 1998 and 2005 in China. Fifteen of seventeen strains of S. suis serotype 2 could be lysed, as well as S. suis serotype 7 and 9, Streptococcus equi ssp. zooepidemicus and Staphylococcus aureus. But E. coli and Salmonella enterica were not affected. Purified LySMP showed high degrading efficiency against PMSF or lysozyme treated cells comparing to PBS washed cells. Optimum pH and temperature conditions for the lysin were investigated by turbidity reduction assay. The lysin exerted efficient lysis activity at 37°C, pH 5.2. The turbidity of bacterium investigated was observed to decrease by 1.2–68% in 30 min. Result indicated that putative LySMP could be a candidate antimicrobial agent in controlling S. suis infection.  相似文献   

11.
Wang  Yang  Wang  Yuxin  Sun  Liyun  Grenier  Daniel  Yi  Li 《Applied microbiology and biotechnology》2018,102(21):9121-9129

Streptococcus suis (S. suis) is a major swine pathogen and an important zoonotic agent. Like most pathogens, the ability of S. suis to form biofilms plays a significant role in its virulence and drug resistance. A better understanding of the mechanisms involved in biofilm formation by S. suis as well as of the methods to efficiently remove and kill biofilm-embedded bacteria can be of high interest for the prevention and treatment of S. suis infections. The aim of this literature review is to update our current knowledge of S. suis biofilm formation, regulatory mechanisms, drug-resistance mechanisms, and disinfection strategies.

  相似文献   

12.
Streptococcus pyogenes nuclease A (SpnA) is a recently discovered DNase that plays a role in virulence as shown in a mouse infection model. SpnA is the only cell wall-anchored DNase found in S. pyogenes thus far and shows a unique protein architecture. The C-terminal nuclease domain contains highly conserved catalytic site and Mg(2+) binding site residues. However, expression of the SpnA nuclease domain alone resulted in a soluble, but enzymatically inactive protein. We found that at least two out of three oligonucleotide/oligosaccharide-binding fold motifs found in the N-terminal domain are required for SpnA activity, probably contributing to substrate binding. Using a combination of a spnA deletion mutant and a Lactococcus lactis'gain-of-function' mutant, we have shown that SpnA promotes survival in whole human blood and in neutrophil killing assays and this is, at least in part, achieved by the destruction of neutrophil extracellular traps (NETs). We observed higher frequencies for anti-SpnA antibodies in streptococcal disease patient sera (79%, n = 19) compared with sera from healthy donors (33%, n = 9) suggesting that SpnA is expressed during infection. Detection of anti-SpnA antibodies in patient serum might be useful for the diagnostic of post-streptococcal diseases, such as acute rheumatic fever or glomerulonephritis.  相似文献   

13.
Streptococcus suis serotype 2 (S. suis 2) is an important zoonotic pathogen that can cause severe disease and even death in both humans and swine. No effective vaccine is clinically available. In this study, a reverse vaccinology method was first applied to identify protective antigens against S. suis 2. As a consequence, 153 genes encoding vaccine candidates were selected from the whole genome sequence by means of bioinformatics analysis, from which 10 genes were selected based on experimental evidences arising from the study of related bacteria such as Streptococcus pneumoniae, group B streptococcus, S. suis and so on. Of 10 target genes, 8 were successfully expressed in Escherichia coli Rosetta, and expressed proteins were purified and used as the immunogens for evaluating vaccine efficacy in a mouse infection model. The results have confirmed that RTX family exoprotein A (RfeA), epidermal surface antigen (ESA), immunoglobulin G (IgG)-binding protein (IBP), and suilysin (SLY) can induce a protective response of the vaccinated animals against S. suis 2, whereas RfeA, ESA, and IBP mainly induce humoral-mediated immunity, and SLY elicits a combined pattern of both humoral- and cellular-mediated immunity. Although immunoprotection of SLY against S. suis 2 was reported previously, RfeA, ESA, and IBP were explored first in this study.  相似文献   

14.
【背景】2型猪链球菌(Streptococcus suis serotype 2, S. suis 2)可感染宿主引起严重的脑膜炎,对养猪业和人类公共卫生安全构成重大威胁。【目的】构建S. suis 2感染小鼠脑膜炎模型,并对其脑组织进行转录组学分析,为揭示S.suis2感染宿主后引起脑膜炎的分子机制和发现潜在的治疗靶点提供理论依据。【方法】采用S. suis 2感染小鼠,并对其脑组织进行病理组织学分析确认构建脑膜炎小鼠后,对其脑组织进行转录组学分析,对比S.suis2感染和未感染小鼠的差异表达基因,并对差异表达基因进行基因本体论(geneontology,GO)功能、京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)通路富集和韦恩分析。【结果】脑病理组织学分析结果显示,S. suis 2感染的小鼠脑膜中有大量的炎症细胞浸润,并且血管周围出现“袖套”现象,并能从感染小鼠的组织器官中再分离出攻毒的S. suis 2菌株,结果证明构建了S. suis 2感染脑膜炎小鼠模型。转录组学分析结果表明,感染S.suis2与未感染的...  相似文献   

15.
Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease), and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs). Recombinant SWAN protein (rSWAN) digested multiple forms of DNA including NET DNA and human RNA, which required both Mg2+ and Ca2+ for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression.  相似文献   

16.
Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.  相似文献   

17.
Streptococcus suis infection has a substantial impact on the swine industry. In addition, S. suis serotype 2 is recognized as a zoonotic agent. In this paper, we report the cloning and complete sequence of the gene coding for the putative elongation factor Ts (tsf-like) of S. suis. The putative tsf gene seems to be transcribed from a promoter located within the cloned DNA fragment, as its expression is not dependent on insertional orientation within the plasmid. One copy of the tsf gene was detected in the chromosome of S. suis by Southern blot analysis. Interestingly, the elongation factor Ts expressed by all reference strains of all S. suis serotypes were antigenically similar, as determined by Western blot.  相似文献   

18.

Background

Streptococcus suis can cause severe systemic infection in adults exposed to infected pigs or after consumption of undercooked pig products. S. suis is often misdiagnosed, due to lack of awareness and improper testing. Here we report the first fifty cases diagnosed with S. suis infection in northern Viet Nam.

Methodology/Principal Findings

In 2007, diagnostics for S. suis were set up at a national hospital in Hanoi. That year there were 43 S. suis positive cerebrospinal fluid samples, of which S. suis could be cultured in 32 cases and 11 cases were only positive by PCR. Seven patients were blood culture positive for S. suis but CSF culture and PCR negative; making a total of 50 patients with laboratory confirmed S. suis infection in 2007. The number of S. suis cases peaked during the warmer months.

Conclusions/Significance

S. suis was commonly diagnosed as a cause of bacterial meningitis in adults in northern Viet Nam. In countries where there is intense and widespread exposure of humans to pigs, S. suis can be an important human pathogen.  相似文献   

19.
20.
Wu S  Li RW  Li W  Beshah E  Dawson HD  Urban JF 《PloS one》2012,7(4):e35470
Helminth infection in pigs serves as an excellent model for the study of the interaction between human malnutrition and parasitic infection and could have important implications in human health. We had observed that pigs infected with Trichuris suis for 21 days showed significant changes in the proximal colon microbiota. In this study, interactions between worm burden and severity of disruptions to the microbial composition and metabolic potentials in the porcine proximal colon microbiota were investigated using metagenomic tools. Pigs were infected by a single dose of T. suis eggs for 53 days. Among infected pigs, two cohorts were differentiated that either had adult worms or were worm-free. Infection resulted in a significant change in the abundance of approximately 13% of genera detected in the proximal colon microbiota regardless of worm status, suggesting a relatively persistent change over time in the microbiota due to the initial infection. A significant reduction in the abundance of Fibrobacter and Ruminococcus indicated a change in the fibrolytic capacity of the colon microbiota in T. suis infected pigs. In addition, ∼10% of identified KEGG pathways were affected by infection, including ABC transporters, peptidoglycan biosynthesis, and lipopolysaccharide biosynthesis as well as α-linolenic acid metabolism. Trichuris suis infection modulated host immunity to Campylobacter because there was a 3-fold increase in the relative abundance in the colon microbiota of infected pigs with worms compared to naïve controls, but a 3-fold reduction in worm-free infected pigs compared to controls. The level of pathology observed in infected pigs with worms compared to worm-free infected pigs may relate to the local host response because expression of several Th2-related genes were enhanced in infected pigs with worms versus those worm-free. Our findings provided insight into the dynamics of the proximal colon microbiota in pigs in response to T. suis infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号