首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sustained adaptive immunity to pathogens provides effective protection against infections, and effector cells located at the site of infection ensure rapid response to the challenge. Both are essential for the success of vaccine development. To explore new vaccination approach against Mycobacterium tuberculosis (M.tb) infection, we have shown that Rv3615c, identified as ESX‐1 substrate protein C of M.tb but not expressed in BCG, induced a dominant Th1‐type response of CD4+ T cells from patients with tuberculosis pleurisy, which suggests a potential candidate for vaccine development. But subcutaneous immunization with Rv3615c induced modest T‐cell responses systemically, and showed suboptimal protection against virulent M.tb challenge at the site of infection. Here, we use a mouse model to demonstrate that intranasal immunization with Rv3615c induces sustained capability of adaptive CD4+ T‐ and B‐cell responses in lung parenchyma and airway. Rv3615c contains a dominant epitope of mouse CD4+ T cells, Rv3615c41‐50, and elicits CD4+ T‐cell response with an effector–memory phenotype and multi‐Th1‐type cytokine coexpressions. Since T cells resident at mucosal tissue are potent at control of infection at early stage, our data show that intranasal immunization with Rv3615c promotes a sustained regional immunity to M.tb, and suggests a potency in control of M.tb infection. Our study warranties a further investigation of Rv3615c as a candidate for development of effective vaccination against M.tb infection.  相似文献   

2.
Induction of local (pulmonary) immunity plays a critical role in preventing dissemination of Mycobacterium tuberculosis (M. tb) during the early infection stage. To induce specific mucosal immunity, chitosan, a natural cationic polysaccharide, was employed as a mucosal gene carrier and complexed with pHSP65pep, our previously constructed multi‐epitope gene vaccine, which induces splenic gamma‐interferon (IFN‐γ)+ T helper cell 1 responses. The resultant chitosan–pHSP65pep was administered intranasally to BALB/c mice with four doses of 50 μg DNA followed by mycobacterial challenge 4 weeks after the final immunization. It was found that the chitosan formulation significantly induced production of secretory immunoglobulin A (P < 0.05) as determined by measuring its concentrations in lung lavage fluid and enhanced pulmonary CD4+ and CD8+IFN‐γ+ T cell responses (P < 0.001) compared with naked gene vaccine. Improved protection against Mycobacterium bovis bacillus Calmette–Guérin (BCG) challenge was consistently achieved by the chitosan–DNA formulation both as the vaccine alone or in a BCG prime‐vaccine boost immunization scenario. Our study shows that mucosal delivery of gene vaccine in a chitosan formulation remarkably enhances specific SIgA concentrations and mucosal IFN‐γ+ T cell response, which correlated positively with immunological protection.  相似文献   

3.
New vaccines are needed to combat Mycobacterium tuberculosis (MTB) infections. The currently employed Bacillus Calmette‐Guérin vaccine is becoming ineffective, due in part to the emergence of multidrug‐resistant tuberculosis (MDR‐TB) strains and the reduced immune capacity in cases of HIV coinfection. CD8+ T cells play an important role in the protective immunity against MTB infections, and the identification of immunogenic CD8+ T cell epitopes specific for MTB is essential for the design of peptide‐based vaccines. To identify CD8+ T cell epitopes of MTB proteins, we screened a set of 94 MTB antigens for HLA class I A*11:01‐binding motifs. HLA‐A*11:01 is one of the most prevalent HLA molecules in Southeast Asians, and definition of T cell epitopes it can restrict would provide significant coverage for the Asian population. Peptides that bound with high affinity to purified HLA molecules were subsequently evaluated in functional assays to detect interferon‐γ release and CD8+ T cell proliferation in active pulmonary TB patients. We identified six novel epitopes, each derived from a unique MTB antigen, which were recognized by CD8+ T cells from active pulmonary TB patients. In addition, a significant level of epitope‐specific T cells could be detected ex vivo in peripheral blood mononuclear cells from active TB patients by an HLA‐A*11:01 dextramer carrying the peptide Rv3130c194‐204 (from the MTB triacylglycerol synthase Tgs1), which was the most frequently recognized epitope in our peptide library. In conclusion, this study identified six dominant CD8+ T cell epitopes that may be considered potential targets for subunit vaccines or diagnostic strategies against TB.  相似文献   

4.
The Zika virus is a rapidly spreading Aedes mosquito‐borne sickness, which creates an unanticipated linkage birth deformity and neurological turmoil. This study represents the use of the combinatorial immunoinformatics approach to develop a multiepitope subunit vaccine using the structural and nonstructural proteins of the Zika virus. The designed subunit vaccine consists of cytotoxic T‐lymphocyte and helper T‐lymphocyte epitopes accompanied by suitable adjuvant and linkers. The presence of humoral immune response specific B‐cell epitopes was also confirmed by B‐cell epitope mapping among vaccine protein. Further, the vaccine protein was characterized for its allergenicity, antigenicity, and physiochemical parameters and found to be safe and immunogenic. Molecular docking and molecular dynamics studies of the vaccine protein with the toll‐like receptor‐3 were performed to ensure the binding affinity and stability of their complex. Finally, in silico cloning was performed for the effective expression of vaccine construct in the microbial system (Escherichia coli K12 strain). Aforementioned approaches result in the multiepitope subunit vaccine which may have the ability to induce cellular as well as humoral immune response. Moreover, this study needs the experimental validation to prove the immunogenic and protective behavior of the developed subunit vaccine.  相似文献   

5.
Dengue virus (DENV) is still a major threat to human health in most tropical and subtropical countries and regions. In the present study, a multi‐epitope DNA vaccine that encodes 15 immunogenic and conserved HLA‐A*0201‐, HLA‐A*1101‐, HLA‐A*2402‐restricted CTL epitopes from DENV serotype 1 (DENV‐1) was constructed based on the eukaryotic expressing plasmid pcDNATM3.1/mycHis(?) A. Immunization of HLA‐A*0201, HLA‐A*1101 and HLA‐A*2402 transgenic mice with the recombinant plasmid pcDNATM3.1/mycHis(?) A‐DENV‐1‐Meg resulted in significantly greater IFN‐γ‐secreting T‐cell responses against most (14/15) CTL epitopes than occurred in mice immunized with the empty plasmid pcDNATM3.1/mycHis(?) A. Additionally, the epitope‐specific T cells directed to some epitopes secreted not only IFN‐γ but also IL‐6 and/or TNF‐α. Finally, the induced epitope‐specific T cells also efficiently lysed epitope‐pulsed splenocytes and DENV‐1‐infected splenic monocytes. The present study confirms the immunogenicity of multi‐epitope DENV vaccine, suggesting that it may contribute to the development of a universal DENV vaccine.
  相似文献   

6.
Although CD8+ cytotoxic T lymphocyte (CTL) epitope-based DNA vaccination is valuable experience on vaccine research but many attempts are still continued to achieve acceptable protective response. To study the role of full length antigen in CTL epitope immunization, we evaluated cellular immunity of diverse patterns of complete Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) and the immunodominant CTL epitope (498–505) DNA injection in C57BL/6 mice. Optimal immune response was observed in the group immunized with the full length of gB in the first injection and CTL epitope in the second and third vaccination as assessed by lymphocyte proliferation assay (MTT), cytokine assay (ELISA) and CTL assay. B cell and spatially CD4+ T cell epitopes in full length protein might be important for appropriate priming of CTL immune response. These findings may have important implication for the improvement of CTL epitope based DNA vaccine against HSV and other pathogens.  相似文献   

7.
MPT63 protein is found only in Mycobacterium tuberculosis complex, including M. tuberculosis and M. bovis. Detection of MPT63‐specific IFN‐γ‐secreting T cells could be useful for the diagnosis of tuberculosis (TB) diseases. In the present study, the HLA‐A*0201 restriction of ten predicted MPT63‐derived CD8 + T‐cell epitopes was assessed on the basis of T2 cell line and HLA‐A*0201 transgenic mice. The diagnostic potential of immunogenic peptides in active pulmonary TB patients was evaluated using an IFN‐γ enzyme‐linked immunospot assay. It was found that five peptides bound to HLA‐A*0201 with high affinity, whereas the remaining peptides exhibited low affinity for HLA‐A*0201. Five immunogenic peptides (MPT6318–26, MPT6329–37, MPT6320–28, MPT635–14 and MPT6310–19) elicited large numbers of cytotoxic IFN‐γ‐secreting T cells in HLA‐A*0201 transgenic mice. Each of the five immunogenic peptides was recognized by peripheral blood mononuclear cells from 45% to 73% of 40 HLA‐A*0201 positive TB patients. The total diagnostic sensitivity of the five immunogenic peptides was higher than that of a T‐SPOT.TB assay (based on ESAT‐6 and CFP‐10) (93% versus 90%). It is noticeable that the diagnostic sensitivity of the combination of five immunogenic peptides and T‐SPOT.TB assay reached 100%. These MPT63‐derived HLA‐A*0201‐restricted CD8 + T‐cell epitopes would likely contribute to the immunological diagnosis of M. tuberculosis infection and may provide the components for designing an effective TB vaccine.  相似文献   

8.
Immunization with a combination melanoma helper peptide (6MHP) vaccine has been shown to induce CD4+ T cell responses, which are associated with patient survival. In the present study, we define the relative immunogenicity and HLA allele promiscuity of individual helper peptides and identify helper peptide-mediated augmentation of specific CD8+ T cell responses. Thirty-seven participants with stage IIIB-IV melanoma were vaccinated with 6MHP in incomplete Freund’s adjuvant. The 6MHP vaccine is comprised of 6 peptides representing melanocytic differentiation proteins gp100, tyrosinase, Melan-A/MART-1, and cancer testis antigens from the MAGE family. CD4+ and CD8+ T cell responses were assessed in peripheral blood and in sentinel immunized nodes (SIN) by thymidine uptake after exposure to helper peptides and by direct interferon-γ ELIspot assay against 14 MHC class I-restricted peptides. Vaccine-induced CD4+ T cell responses to individual epitopes were detected in the SIN of 63 % (22/35) and in the peripheral blood of 38 % (14/37) of participants for an overall response rate of 65 % (24/37). The most frequently immunogenic peptides were MAGE-A3281–295 (49 %) and tyrosinase386–406 (32 %). Responses were not limited to HLA restrictions originally described. Vaccine-associated CD8+ T cell responses against class I-restricted peptides were observed in 45 % (5/11) of evaluable participants. The 6MHP vaccine induces both CD4+ and CD8+ T cell responses against melanoma antigens. CD4+ T cell responses were detected beyond reported HLA-DR restrictions. Induction of CD8+ T cell responses suggests epitope spreading and systemic activity mediated at the tumor site.  相似文献   

9.
The existing vaccine against tuberculosis (M. bovis BCG) exerts some protection against the extrapulmonary forms of the disease, particularly in young children, but is not very effective against the pulmonary form of TB, which often results from the reactivation of a latent M. tuberculosis (M.tb)infection. Among the new approaches in TB vaccine development, live attenuated M.tb mutants are a promising new avenue. Here we report on the vaccine potential of two highly attenuated M.tb mutants, MGM1991 and M.tbhma::hyg (HMA), lacking all oxygenated mycolates in their cell wall. In C57BL/6 mice, stronger Th1 (IFN-γ, IL-2 and TNF-α) and IL-17 responses could be induced following subcutaneous vaccination with either of the two mutants, than following vaccination with M. bovis BCG. Significantly more mycobacteria specific IFN-γ producing CD4+ and particularly CD8+ T cells could be detected by intracellular cytokine staining in mice vaccinated with the M.tb mutants. Finally, vaccination with either of the two mutants conferred stronger protection against intratracheal M.tb challenge than vaccination with BCG, as indicated by reduced bacterial replication in lungs at 4 to 12 weeks after challenge. Protection against M. tb dissemination, as indicated by reduced bacterial numbers in spleen, was comparable for both mutants to protection conferred by BCG.  相似文献   

10.
Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb) is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e) and fms-like tyrosine kinase 3 ligand (FL) genes (termed Esat-6/3e-FL), and was enveloped with chitosan (CS) nanoparticles (nano-chitosan). The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL) was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice.  相似文献   

11.
Chlamydia trachomatis is one of the most prevalent sexually transmitted pathogens. There is currently no commercially available vaccine against C. trachomatis. Chlamydial translocated actin‐recruiting phosphoprotein (Tarp) can induce cellular and humoral immune responses in murine models and has been regarded as a potential vaccine candidate. In this report, the amino acid sequence of Tarp was analyzed using computer‐assisted techniques to scan B‐cell epitopes, and six possible linear B‐cell epitopes peptides (aa80–95, aa107–123, aa152–170, aa171–186, aa239–253 and aa497–513) with high predicted antigenicity and high conservation were investigated. Sera from mice immunized with these potential immunodominant peptides was analyzed by ELISA, which showed that epitope 152–170 elicited serum immunoglobulin G (IgG) response and epitope 171–186 elicited both serum IgG and mucosal secretory immunoglobulin A response. The response of immune sera of epitope 171–186 to endogenous Tarp antigen obtained from the Hela229 cells infected with C. trachomatis was confirmed by Western blot and indirect fluorescence assay. In addition, binding of the antibodies against epitope 171–186 to endogenous Tarp was further confirmed by competitive ELISA. Our results demonstrated that the putative epitope (aa171–186) was an immunodominant B‐cell epitope of Tarp. If proven protective and safe, this epitope, in combination with other well‐documented epitopes, might be included into a candidate epitope‐based vaccine against C. trachomatis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Vaccination is expected to make a major contribution to the goal of eliminating tuberculosis worldwide by 2050. Because the protection afforded by the currently available tuberculosis vaccine, BCG, is insufficient, new vaccine strategies are urgently needed. Protective immunity against MTB depends on generation of a Th1-type cellular immune response characterized by secretion of IFN-γ from antigen-specific T cells. Epitope-driven vaccines are created from sub-sequences of proteins (epitopes) derived by scanning the protein sequences of pathogens and selecting epitopes with patterns of amino acids which permit binding to human MHC molecules. Guided by the crystal structure of HSP65 and its characteristics, four functional T cell epitopes elaborately elicited from ESAT-6, Ag85A, CFP-10 and Ag85B were cast into the intermediate domain of HSP65. A panel of a novel chimeric vaccine, ECANS, expressing HSP65 and combined T cell epitopes was created. Gene cloning and sequencing, DNA vaccination and humoral and cellular responses were studied. After being immunized with DNA vaccine three times, all mice injected with ECANS had specific cellular immune responses. In addition, lymphocytes obtained from the spleen of ECANS immunized mice at week eight exhibited significantly greater specific lymphocyte proliferation, IFN-γ secretion and CTL activity than those of mice that had been immunized with BCG. DNA vaccine with ECANS can successfully induce enhanced specific cellular immune response to PPD, and further study of its protective effects against Mycobacterium tuberculosis in vivo is needed.  相似文献   

13.
Dengue is a major global disease requiring improved treatment and prevention strategies. The recently licensed Sanofi Pasteur Dengvaxia vaccine does not protect children under the age of nine, and additional vaccine strategies are thus needed to halt this expanding global epidemic. Here, we employed a molecular engineering approach and plant expression to produce a humanized and highly immunogenic poly‐immunoglobulin G scaffold (PIGS) fused to the consensus dengue envelope protein III domain (cEDIII). The immunogenicity of this IgG Fc receptor‐targeted vaccine candidate was demonstrated in transgenic mice expressing human FcγRI/CD64, by induction of neutralizing antibodies and evidence of cell‐mediated immunity. Furthermore, these molecules were able to prime immune cells from human adenoid/tonsillar tissue ex vivo as evidenced by antigen‐specific CD4+ and CD8+ T‐cell proliferation, IFN‐γ and antibody production. The purified polymeric fraction of dengue PIGS (D‐PIGS) induced stronger immune activation than the monomeric form, suggesting a more efficient interaction with the low‐affinity Fcγ receptors on antigen‐presenting cells. These results show that the plant‐expressed D‐PIGS have the potential for translation towards a safe and easily scalable single antigen‐based tetravalent dengue vaccine.  相似文献   

14.
Trypanosoma cruzi infection is controlled but not eliminated by host immunity. The T. cruzi trans-sialidase (TS) gene superfamily encodes immunodominant protective antigens, but expression of altered peptide ligands by different TS genes has been hypothesized to promote immunoevasion. We molecularly defined TS epitopes to determine their importance for protection versus parasite persistence. Peptide-pulsed dendritic cell vaccination experiments demonstrated that one pair of immunodominant CD4+ and CD8+ TS peptides alone can induce protective immunity (100% survival post-lethal parasite challenge). TS DNA vaccines have been shown by us (and others) to protect BALB/c mice against T. cruzi challenge. We generated a new TS vaccine in which the immunodominant TS CD8+ epitope MHC anchoring positions were mutated, rendering the mutant TS vaccine incapable of inducing immunity to the immunodominant CD8 epitope. Immunization of mice with wild type (WT) and mutant TS vaccines demonstrated that vaccines encoding enzymatically active protein and the immunodominant CD8+ T cell epitope enhance subdominant pathogen-specific CD8+ T cell responses. More specifically, CD8+ T cells from WT TS DNA vaccinated mice were responsive to 14 predicted CD8+ TS epitopes, while T cells from mutant TS DNA vaccinated mice were responsive to just one of these 14 predicted TS epitopes. Molecular and structural biology studies revealed that this novel costimulatory mechanism involves CD45 signaling triggered by enzymatically active TS. This enhancing effect on subdominant T cells negatively regulates protective immunity. Using peptide-pulsed DC vaccination experiments, we have shown that vaccines inducing both immunodominant and subdominant epitope responses were significantly less protective than vaccines inducing only immunodominant-specific responses. These results have important implications for T. cruzi vaccine development. Of broader significance, we demonstrate that increasing breadth of T cell epitope responses induced by vaccination is not always advantageous for host immunity.  相似文献   

15.
This study aimed to examine miR‐140 expression in clinical samples from tuberculosis (TB) patients and to explore the molecular mechanisms of miR‐140 in host‐bacterial interactions during Mycobacterium tuberculosis (M tb) infections. The miR‐140 expression and relevant mRNA expression were detected by quantitative real‐time PCR (qRT‐PCR); the protein expression levels were analysed by ELISA and western blot; M tb survival was measured by colony formation unit assay; potential interactions between miR‐140 and the 3′ untranslated region (UTR) of tumour necrosis factor receptor‐associated factor 6 (TRAF6) was confirmed by luciferase reporter assay. MiR‐140 was up‐regulated in the human peripheral blood mononuclear cells (PBMCs) from TB patients and in THP‐1 and U937 cells with M tb infection. Overexpression of miR‐140 promoted M tb survival; on the other hand, miR‐140 knockdown attenuated M tb survival. The pro‐inflammatory cytokines including interleukin 6, tumour necrosis‐α, interleukin‐1β and interferon‐γ were enhanced by M tb infection in THP‐1 and U937 cells. MiR‐140 overexpression reduced these pro‐inflammatory cytokines levels in THP‐1 and U937 cells with M tb infection; while knockdown of miR‐140 exerted the opposite actions. TRAF6 was identified to be a downstream target of miR‐140 and was negatively modulated by miR‐140. TRAF6 overexpression increased the pro‐inflammatory cytokines levels and partially restored the suppressive effects of miR‐140 overexpression on pro‐inflammatory cytokines levels in THP‐1 and U937 cells with M tb infection. In conclusion, our results implied that miR‐140 promoted M tb survival and reduced the pro‐inflammatory cytokines levels in macrophages with M tb infection partially via modulating TRAF6 expression.  相似文献   

16.
Leishmaniasis is a neglected disease with an estimated 12 million infected people. The recent completion of the sequencing of the Leishmania major genome has opened opportunities for the identification of targets for vaccine development. We present here the first attempt at identifying novel vaccine candidates by whole genome analysis. We predicted CD8+ T cell epitopes from the L. major proteome and validated in vivo in mice the immunogenicity of some of the best predicted epitopes. Consensus epitope predictions from 8272 annotated protein sequences with 5–8 different algorithms allowed the identification of 78 class I CD8+ epitopes. BALB/c mice were immunized with 26 synthetic peptides corresponding to the most likely epitopes. Fourteen (54%) resulted immunogenic, with eight being strong inducers of T cell IFNγ production. None of the proteins from which the epitopes are derived are differentially expressed, only two may be surface proteins, eight have putative enzymatic, and metabolic activities. These epitopes and proteins represent new antigen candidates for further studies. While pathogen genomes have not yet delivered their full promise in terms of human health applications, our study opens the way for extensive genome mining for antigen identification and vaccine development against Leishmania and other pathogens.  相似文献   

17.
Protection from infectious disease by the host immune response requires specific molecular recognition of unique antigenic determinants of a given pathogen. An epitope is an antigenic determinant which: 1) specifically stimulates the immune response (either B or T cell mediated); and 2) is acted upon by the products of these protective mechanisms. In B cell immunity, antibodies produced from stimulation by specific epitopes recognize and bind to these same antigenic structures. Identification of protective epitopes is extremely valuable to successful vaccine development. In order to be protective these antibodies must, in addition to recognition and binding, interfere with some vital step in pathogenesis such as adherence or toxin action. Protein B cell epitopes are frequently composed of the side chains (R-groups) of the amino acids found at solvent-exposed surfaces. These epitopes are classified as continuous (also linear or sequential) if composed of a single antibody-recognizing element located at a single locus of the primary structure. They are discontinuous (or assembled) if more than one physically separated entity is involved. T cell epitopes are peptides on the surface of antigen-presenting cells (macrophages, dendritic cells, and B cells) that are bound to major histocompatibility proteins; the T cell recognizes this peptide-MHC complex. Received 12 August 1996/ Accepted in revised form 03 November 1996  相似文献   

18.
The concept of peptide‐based vaccines against cancer has made noteworthy progress. Metadherin (MTDH) overexpression and its role in the development of diverse cancers make it an attractive target for cancer immunotherapy. In the current study, six different T cell epitope prediction tools were run to identify MTDH peptides with multiple immunogenic regions. Further, molecular docking was performed to assess HLA‐peptide binding interactions. Nine and eleven peptides fragments containing multiple CD8 + and CD4 + T‐cell epitopes, ranging from 9 to 20 amino acids, respectively, were obtained using a consensus immunoinformatics approach. The three peptides that were finally identified as having overlapping CD4 + and CD8 + T‐ cell epitopes are ARLREMLSVGLGFLRTELG, FLLGYGWAAACAGAR, YIDDEWSGLNGLSSADP. These peptides were found to not only have multiple T cell epitopes but also to have binding affinity with wide HLA molecules. A molecular docking study revealed that the predicted immunogenic peptides (with single or multiple T cell epitopes) of MTDH have comparable binding energies with naturally bound peptides for both HLA classes I and II. Thus, these peptides have the potential to induce immune responses that could be considered for developing synthetic peptide vaccines against multiple cancers.  相似文献   

19.
The Bacillus Calmette-Guérin (BCG) vaccine is known to have protective effects not only against tuberculosis but also against other unrelated infectious diseases caused by different pathogens. Several epidemiological studies have also documented the beneficial influence of BCG vaccine in reducing both susceptibility to and severity of SARS-CoV-2 infection. The protective, non-specific effects of BCG vaccination would be related to an antigen-independent enhancement of the innate immunity, termed trained immunity. However, the knowledge that heat shock protein (HSP)65 is the main antigen of Mycobacterium bovis BCG prompted us to verify whether sequence similarity existed between HSP65 and SARS-CoV-2 spike (S) and nuclear (N) proteins that could support an antigen-driven immune protection of BCG vaccine. The results of the in silico investigation showed an extensive sequence similarity of HSP65 with both the viral proteins, especially SARS-CoV-2 S, that also involved the regions comprising immunodominant epitopes. The finding that the predicted B cell and CD4+ T cell epitopes of HSP65 shared strong similarity with the predicted B and T cell epitopes of both SARS-CoV-2 S and N would support the possibility of a cross-immune reaction of HSP65 of BCG with SARS-CoV-2.  相似文献   

20.
CD4+ T cells contribute importantly to the antitumor T cell response, and thus, long peptides comprising CD4 and CD8 epitopes may be efficient cancer vaccines. We have previously identified an overexpressed antigen in melanoma, MELOE-1, presenting a CD8+ T cell epitope, MELOE-136–44, in the HLA-A*0201 context. A T cell repertoire against this epitope is present in HLA-A*0201+ healthy subjects and melanoma patients and the adjuvant injection of TIL containing MELOE-1 specific CD8+ T cells to melanoma patients was shown to be beneficial. In this study, we looked for CD4+ T cell epitopes in the vicinity of the HLA-A*0201 epitope. Stimulation of PBMC from healthy subjects with MELOE-126–46 revealed CD4 responses in multiple HLA contexts and by cloning responsive CD4+ T cells, we identified one HLA-DRβ1*1101-restricted and one HLA-DQβ1*0603-restricted epitope. We showed that the two epitopes could be efficiently presented to CD4+ T cells by MELOE-1-loaded dendritic cells but not by MELOE-1+ melanoma cell-lines. Finally, we showed that the long peptide MELOE-122–46, containing the two optimal class II epitopes and the HLA-A*0201 epitope, was efficiently processed by DC to stimulate CD4+ and CD8+ T cell responses in vitro, making it a potential candidate for melanoma vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号