首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H5N8亚型高致病性禽流感病毒(highly pathogenic avian influenza virus,HPAIV)随候鸟的迁徙活动及商业贸易活动现已蔓延至亚洲、欧洲、非洲、美洲等国家和地区.2014-2015和2016-2019年H5N8亚型HPAIV已引发两波全球疫情,现正经历第三波疫情,导致家禽及野生鸟类...  相似文献   

2.
On 15 November 2016, a black swan that had died in a zoo in Akita prefecture, northern Japan, was strongly suspected to have highly pathogenic avian influenza (HPAI); an HPAI virus (HPAIV) belonging to the H5N6 subtype was isolated from specimens taken from the bird. After the initial report, 230 cases of HPAI caused by H5N6 viruses from wild birds, captive birds, and domestic poultry farms were reported throughout the country during the winter season. In the present study, 66 H5N6 HPAIVs isolated from northern Japan were further characterized. Phylogenetic analysis of the hemagglutinin gene showed that the H5N6 viruses isolated in northern Japan clustered into Group C of Clade 2.3.4.4 together with other isolates collected in Japan, Korea and Taiwan during the winter season of 2016–2017. The antigenicity of the Japanese H5N6 isolate differed slightly from that of HPAIVs isolated previously in Japan and China. The virus exhibited high pathogenicity and a high replication capacity in chickens, whereas virus growth was slightly lower in ducks compared with that of an H5N8 HPAIV isolate collected in Japan in 2014. Comprehensive analyses of Japanese isolates, including those from central, western, and southern Japan, as well as rapid publication of this information are essential for facilitating greater control of HPAIVs.
  相似文献   

3.
H5 highly pathogenic avian influenza viruses (HPAIV) have spread in both poultry and wild birds since late 2003. Continued circulation of HPAIV in poultry in several regions of the world has led to antigenic drift. In the present study, we analyzed the antigenic properties of H5 HPAIV isolated in Asia using four neutralizing mAbs recognizing hemagglutinin, which were established using A/chicken/Kumamoto/1‐7/2014 (H5N8), belonging to clade 2.3.4.4 and also using polyclonal antibodies. Viruses of clades 1.1, 2.3.2.1, 2.3.4, and 2.3.4.4 had different reactivity patterns to the panel of mAbs, thereby indicating that the antigenicity of the viruses of clade 2.3.4.4 were similar but differed from the other clades. In particular, the antigenicity of the viruses of clade 2.3.4.4 differed from those of the viruses of clades 2.3.4 and 2.3.2.1, which suggests that the recent H5 HPAIV have further evolved antigenically divergent. In addition, reactivity of antiserum suggests that the antigenicity of viruses of clade 2.3.4.4 differed slightly among groups A, B, and C. Vaccines are still used in poultry in endemic countries, so the antigenicity of H5 HPAIV should be monitored continually to facilitate control of avian influenza. The panel of mAbs established in the present study will be useful for detecting antigenic drift in the H5 viruses that emerge from the current strains.  相似文献   

4.
5.
【背景】自2014年以来,H5N6禽流感病毒在我国家禽和活禽市场持续进化,成为人类和动物健康的重大威胁。【目的】对2017–2019年中国南方地区93株高致病性H5N6禽流感病毒的HA基因进行分子进化分析。【方法】接种9–11日龄鸡胚分离核酸检测阳性的H5N6标本,运用下一代测序平台对病毒分离物进行全基因组测序,从NCBI和GISAID数据库下载参考序列,利用BLAST、MEGA6.1及Clustal X等软件进行序列分析。【结果】2017–2019年,从189份江苏省H5亚型禽类/环境标本和1名H5N6患者咽拭子标本中共分离到43株病毒,完成了33株H5N6病毒的全基因组测序。下载网上同时期中国其他地区流行的H5N6毒株序列,对总计93株H5N6病毒的HA基因进行分子进化分析。93株H5N6病毒中有78株属于Clade 2.3.4.4h,9株病毒属于Clade 2.3.4.4e,4株H5N6病毒属于Clade 2.3.4.4b,1株属于Clade 2.3.4.4f,1株属于Clade 2.3.4.4g。所有93株病毒HA蛋白的裂解位点含有多个碱性氨基酸,表明它们都属于高致病性禽流感病...  相似文献   

6.
In early 2014, a novel subclade (2.3.4.4) of the highly pathogenic avian influenza (HPAI) A(H5N8) virus caused the first outbreak in domestic ducks and migratory birds in South Korea. Since then, it has spread to 44 countries and regions. To date, no human infections with A(H5N8) virus have been reported, but the possibility cannot be excluded. By analyzing the genomic signatures of A(H5N8) strains, we found that among the 47 species-associated signature positions, three positions exhibited human-like signatures (HLS), including PA-404S, PB2-613I and PB2-702R and that mutation trend of host signatures of avian A(H5N8) is different before and after 2014. About 82% of A(H5N8) isolates collected after January of 2014 carried the 3 HLS (PA-404S/PB2-613I/PB2-702R) in combination, while none of isolates collected before 2014 had this combination. Furthermore, the HA protein had S137A and S227R substitutions in the receptor-binding site and A160T in the glycosylation site, potentially increasing viral ability to bind human-type receptors. Based on these findings, the newly emerged HPAI A(H5N8) isolates show an evolutionary trend toward gaining more HLS and, along with it, the potential for bird-to-human transmissibility. Therefore, more extensive surveillance of this rapidly spreading HPAI A(H5N8) and preparedness against its potential pandemic are urgently needed.  相似文献   

7.
雍玮  乔梦凯  石利民  王璇  何敏  丁洁 《微生物学通报》2019,46(11):3058-3069
【背景】H5N1禽流感病毒可以感染人类导致重症呼吸道感染,致死率高。【目的】研究我中心确认的一例人感染高致病性禽流感H5N1病毒A/Nanjing/1/2015的可能起源及基因组分子特征。【方法】对病人痰液样本中的H5N1病毒进行全基因组测序,使用CLC Genomics Workbench 9.0对序列进行拼接,使用BLAST和MEGA 5.22软件进行同源性比对和各片段分子特征分析。【结果】该株禽流感病毒属于H5亚型的2.3.2.1c家系,其8个片段均与江浙地区禽类中分离的病毒高度同源,未发现有明显的重配。分子特征显示,该病毒血凝素(Hemagglutinin,HA)蛋白裂解位点为PQRERRRR/G,受体结合位点呈现禽类受体特点,但出现D94N、S133A和T188I氨基酸置换增强了病毒对人类受体的亲和性。神经氨酸酶(Neuraminidase,NA)蛋白颈部在49-68位缺失20个氨基酸,非结构蛋白1 (Non-structure protein,NS1)存在P42S置换和80-84位氨基酸的缺失。其他蛋白中也存在多个增强病毒致病力和对人类细胞亲和力的氨基酸突变。对耐药位点分析发现存在对奥司他韦的耐药突变H_274Y,病毒对金刚烷胺仍旧敏感。【结论】人感染高致病性禽流感H5N1病毒A/Nanjing/1/2015属于2.3.2.1c家系,禽类来源,关键位点较保守,但仍出现了多个氨基酸的进化与变异使其更利于感染人类。H5N1禽流感病毒进化活跃,持续动态监测不能放松。  相似文献   

8.
Outbreaks of highly pathogenic avian influenza (HPAI) caused by H5N1 virus occurred during 2003 to 2004 in Korea and Japan. The H5N1 viruses isolated in both countries were genetically similar at > 99% identity in the nucleotide sequences of all eight RNA segments, indicating that they belong to genotype V and are distinct from HPAI viruses prevalent in southeast Asia that belong to genotype Z. These findings indicate that the H5N1 viruses that caused the HPAI outbreaks in both Korea and Japan were derived from a common ancestor.  相似文献   

9.
The isolation of an H5N1 influenza A virus from a tree sparrow (Passer montanus) captured in East Java, Indonesia in 2010 is reported here. Its hemagglutinin and neuraminidase were genetically similar to those of human isolates from 2006-2007 in Indonesia. The finding of a tree sparrow H5N1 virus that possesses genetically similar surface molecules to those of human viruses highlights the importance of monitoring resident wild birds, as well as migratory birds, for pandemic preparedness.  相似文献   

10.
对长沙市家禽市场污水来源的H5N1亚型禽流感病毒(Avian influenza viruses,AIV)的非结构蛋白(Non-structural,NS)基因进行进化和分子特征分析,探讨污水中H5N1病毒的传播风险。9份家禽市场环境污水H5N1亚型AIV标本进行NS基因TA克隆测序,测序结果利用Lasergene和Mega5软件进行氨基酸(amine acid,aa)比对和进化树分析。共得到8个阳性克隆,进化树构建显示8个H5N1的NS基因均属于A亚群,其编码的NS1和NS2蛋白与A亚群代表株(A/chicken/Hubei/w h/1999)aa同源性分别为90.1%~92.5%和91.0%~92.6%,8个H5N1的NS1和NS2aa之间的同源性分别为93.8%~100.0%和98.4%~100.0%。8个H5N1的NS1蛋白均具有缺失80~84位aa、C末端携带有ESEV的PL基序和第92位aa为E的高致病性分子特征。家禽市场污水来源的H5N1亚型AIV的NS基因具有高致病性的分子特征,这种基因特征表明污水可能传播H5N1病毒。  相似文献   

11.
The role of wild birds in the spread of influenza H5N1 virus remains speculative and the ecology of influenza A viruses in nature is largely unstudied. There is an urgent need for multidisciplinary studies to explore the ecology of avian influenza viruses in wild birds and the environment to support ecological interpretation of the source of disease outbreaks in poultry.  相似文献   

12.
The continued spread of a highly pathogenic avian influenza (HPAI) H5N1 virus among poultry and wild birds has posed a potential threat to human public health. An influenza pandemic happens, when a new subtype that has not previously circulated in humans emerges. Almost all of the influenza pandemics in history have originated from avian influenza viruses (AIV). Birds are significant reservoirs of influenza viruses. In the present study, we performed a survey of avian influenza virus in ostriches and H5N1 virus (A/Ostrich/SuZhou/097/03, China097) was isolated. This H5N1 virus is highly pathogenic to both chickens and mice. It is also able to replicate in the lungs of, and to cause death in, BALB/c mice following intranasal administration. It forms plaques in chicken embryo fibroblast (CEF) cells in the absence of trypsin. The hemagglutinin (HA) gene of the virus is genetically similar to A/Goose/Guangdong/1/96(H5N1) and belongs to clade 0. The HA sequence contains multiple basic amino acids adjacent to the cleavage site, a motif associated with HPAI viruses. More importantly, the existence of H5N1 isolates in ostriches highlights the potential threat of wild bird infections to veterinary and public health.  相似文献   

13.
Highly pathogenic avian influenza and in particular the H5N1 strain has resulted in the culling of millions of birds and continues to pose a threat to poultry industries worldwide. The recent outbreak of H5N1 in the UK highlights the need for detailed assessment of the consequences of an incursion and of the efficacy of control strategies. Here, we present results from a model of H5N1 propagation within the British poultry industry. We find that although the majority of randomly seeded incursions do not spread beyond the initial infected premises, there is significant potential for widespread infection. The efficacy of the European Union strategy for disease control is evaluated and our simulations emphasize the pivotal role of duck farms in spreading H5N1.  相似文献   

14.
Highly pathogenic H5N1 influenza virus causes coagulopathy in chickens   总被引:3,自引:0,他引:3  
Severe hemorrhage at multiple organs is frequently observed in chickens infected with highly pathogenic avian influenza (HPAI) A viruses. In this study we examined whether HPAI virus infection leads to coagulation disorder in chickens. Pathological examinations showed that the fibrin thrombi were formed in arterioles at the lung, associated with the viral antigens in endothelial cells of chickens infected intravenously with HPAI virus. Hematological analyses of peripheral blood collected from the chickens revealed that coagulopathy was initiated at early stage of infection when viral antigens were detected only in the endothelial cells and monocytes/macrophages. Furthermore, gene expression of the tissue factor, the main initiator of blood coagulation, was upregulated in the spleen, lung, and brain of HPAI virus-infected chickens. These results suggest that dysfunction of endothelial cells and monocytes/macrophages upon HPAI virus infection may induce hemostasis abnormalities represented by the excessive blood coagulation and consumptive coagulopathy in chickens.  相似文献   

15.
H5N1 highly pathogenic avian influenza virus was first detected in a goose in Guangdong Province of China in 1996. Multiple genotypes of H5N1 viruses have been identified from apparently healthy waterfowl since 1999. In the years 2004–2008, over 100 outbreaks in domestic poultry occurred in 23 provinces and caused severe economic damage to the poultry industry in China. Beginning from 2004, a culling plus vaccination strategy has been implemented for the control of epidemics. Since then, over 35420000 poultry have been depopulated, and over 55 billion doses of the different vaccines have been used to control the outbreaks. Although it is logistically impossible to vaccinate every single bird in China due to the large poultry population and the complicated rearing styles, there is no doubt that the increased vaccination coverage has resulted in decreased disease epidemic and environmental virus loading. The experience in China suggests that vaccination has played an important role in the protection of poultry from H5N1 virus infection, the reduction of virus load in the environment, and the prevention of H5N1 virus transmission from poultry to humans. Supported by the Key Animal Infectious Disease Control Program of the Ministry of Agriculture, the Chinese National S&T Plan(Grant No. 2004BA519A-57), National Key Basic Research and Development Program of China (Grant Nos: 2005CB523005, 2005CB523200).  相似文献   

16.
为了构建更为安全有效能同时抵抗高致病性H5亚型和低致病忡H9亚型禽流行性感冒(禽流感)病毒的基因工程疫苗,将H5和H9亚型禽流感病毒分离株的血凝素(HA)基因,分别由鸡痘病毒早晚期启动子PS和PE/L调控其转求,定向插入鸡痘病毒转移载体p11s中,获得H5A和H9A基因分别处于PS及PE/L启动子转录调控下的重组转移载体p11SH5H9。以FuGene^TM6转染法将p11SH5H9转染至已感染鸡痘病毒282E4疫苗株(wt-FPV)的鸡胚成纤维细胞(CEF)中。p11SH5H9与wt—FPV基因组DNA之间的同源重组产生了重组鸡痘病毒rFPV11SH5H9。通过在含X-gal的营养琼脂上连续挑选蓝色病毒蚀斑获得并纯化rFPV-11SH5H9。以间接免疫荧光法试验证实,纯化的rFPV-11SH5H9感染的CEF能同时表达H5A和H9A。初步的动物试验表明,用10^5PFU的rFPV-11SH5H9免疫无特定病原体(SPF)鸡,免疫后血凝抑制(HI)抗体监测阳性率均为100%(8/8);该重组病毒能显著抑制H9亚型AIV滴鼻、点眼后7日龄SPF鸡从气管和泄殖腔排毒,同时也能抵抗H5亚型AIV肌肉注射后对7日龄SPF鸡致死性攻击,保护率均为100%,显示出一定的应用前景。  相似文献   

17.
Highly pathogenic influenza A (H5N1) virus causes a widespread poultry deaths worldwide. The first human H5N1 infected case was reported in Hong Kong Special Administrative Region of China in 1997. Since then, the virus re-emerged in 2003 and continues to infect people worldwide. Currently, over 400 human infections have been reported in more than 15 countries and mortality rate is greater than 60%. H5N1 viruses still pose a potential pandemic threat in the future because of the continuing global spread and evolution. Here, we summarize the epidemiological, clinical and virological characteristics of human H5N1 infection in China monitored and identified by our national surveillance systems. Chinese Nature Science Foundation Key Project (Grant No. 30599433), Chinese Basic Science Research Program (973)Key Project (Grant No. 2005CB523006)  相似文献   

18.
The continuous spread of highly pathogenic avian influenza virus (AIV) subtype H5N1 is threatening the poultry industry and human health worldwide. Rapid and sensitive diagnostic methods are required for the H5N1 surveillance. In this study, the fluorescent (FL) probe of CdTe quantum dots (QDs) was designed using covalently linked rabbit anti‐AIV H5N1 antibody. Based on these QD–antibody conjugates, a novel sandwich FL‐linked immunosorbent assay (sFLISA) was developed for H5N1 viral antigen detection. The sFLISA allowed for H5N1 viral antigen determination in a linear range of 8.0 × 10?3 to 5.1 × 10?1 μg mL?1 with the limit of detection (LOD) of 1.5 × 10?4 μg mL?1. In comparison with virus isolation for 103 clinic samples, the sensitivity and specificity of sFLISA were found to be 93.6 and 91.1% respectively. The sFLISA supplied a novel approach to rapid and sensitive detection of AIV subtype H5N1 and showed great potential for biological applications in immunoassays. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The role of wild birds in the spread of highly pathogenic avian influenza H5N1 has been greatly debated and remains an unresolved question. However, analyses to determine involvement of wild birds have been hindered by the lack of basic information on their movements in central Asia. Thus, we initiated a programme to document migrations of waterfowl in Asian flyways to inform hypotheses of H5N1 transmission. As part of this work, we studied migration of waterfowl from Qinghai Lake, China, site of the 2005 H5N1 outbreak in wild birds. We examined the null hypothesis that no direct migratory connection existed between Qinghai Lake and H5N1 outbreak areas in central Mongolia, as suggested by some H5N1 phylogeny studies. We captured individuals in 2007 from two of the species that died in the Qinghai Lake outbreaks and marked them with GPS satellite transmitters: Bar-headed Geese Anser indicus ( n  =   14) and Ruddy Shelduck Tadorna ferruginea ( n  =   11). Three of 25 marked birds (one Goose and two Shelducks) migrated to breeding grounds near H5N1 outbreak areas in Mongolia. Our results describe a previously unknown migratory link between the two regions and offer new critical information on migratory movements in the region.  相似文献   

20.
为阐明上海地区 H9N2亚型禽流感病毒分离株的遗传变异、分子特征和重组模式,选取2002和2006~2014年分离自活禽市场、家禽养殖场和生猪屠宰场的14株 H9N2亚型禽流感病毒进行分析。这14株病毒分别来源于鸡、鸭、鸽、野鸡咽喉和泄殖腔样品及猪肺脏样品,用 H9亚型荧光反转录‐聚合酶链反应(RT‐PCR)试剂盒检测后,阳性样品经无特定病原体(SPF)级鸡胚尿囊腔接种并分离病毒,用血凝抑制(HI)实验进一步确定其血凝素(HA)亚型。RT‐PCR分别扩增这14株病毒全基因并进行序列测定,分析8个基因片段的遗传发生关系,发现这些分离株主要由 F/98亚系、Y280亚系、G1亚系及未知亚系重组而成。根据8个基因片段的组合情况,这14株病毒可分成5个基因型。2002、2006~2008年分离的5株H9N2亚型禽流感病毒代表了4个不同基因型,2009~2014年分离的9株H9N2亚型禽流感病毒属第5种基因型,推测可能与疫苗免疫选择压力有关。因此,在以后工作中加强H9N2亚型禽流感分子流行病学监测是非常必要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号