共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A novel bispecific diabody targeting both vascular endothelial growth factor receptor 2 and epidermal growth factor receptor for enhanced antitumor activity 下载免费PDF全文
Haizhen Jin Zhiguo Chen Wei Xie Youfu Wang Yang Wang Min Wang Juan Zhang Desmond Omane Acheampong 《Biotechnology progress》2016,32(2):294-302
Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor 2 (VEGFR2) are receptor tyrosine kinases known to play critical roles in the development and progression of tumors. Based on the cross‐talk between EGFR and VEGFR2 signal pathways, we designed and produced a bispecific diabody (bDAb) targeting both EGFR and VEGFR2 simultaneously. The bispecific molecule (EK‐02) demonstrated that it could bind to HUVEC (VEGFR2 high‐expressing) and A431 (EGFR overexpressing) cells. Additionally, similar to the parental antibodies, it was able to inhibit proliferation and migration, and induced apoptosis in these cells (HUVECs and A431), demonstrating that it had retained the functional properties of its parental antibodies. Furthermore, the efficacy of EK‐02 was evaluated using the human colon adenocarcinoma cell line HT29 (VEGFR2 and EGFR coexpressing). In vitro assay showed that EK‐02 could bind to HT29 cells, restrain cell growth and migration, and induce apoptosis with enhanced efficacy compared to both parental antibodies. Further, it inhibited the neovascularization and tumor formation on an HT29 cell bearing chicken chorioallantoic membrane (CAM) tumor model in vivo. In conclusion, these data suggest that the novel bDAb (EK‐02) has antiangiogenesis and antitumor capacity both in vitro and in vivo, and can possibly be used as cotargeted therapy for the treatment of EGFR and VEGFR2 overexpressing tumors. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:294–302, 2016 相似文献
3.
Pokorná D Macková J Dusková M Rittich S Ludvíková V Smahel M 《The journal of gene medicine》2005,7(6):696-707
BACKGROUND: The E7 oncoprotein of human papillomavirus type 16 (HPV16) is frequently used as a model tumor-associated antigen. Its immunogenicity has been substantially enhanced by fusion with several proteins of various origins and functions. Different mechanisms have been responsible for increased vaccination efficacy of fusion proteins. METHODS AND RESULTS: We linked E7 and its mutated form (E7GGG) with the mouse heat-shock protein 70.1 (HSP70.1). Enhanced immunogenicity of both fusion genes administered via a gene gun was demonstrated by protection of C57BL/6 mice against oncogenic MHC class I positive TC-1 cells producing the HPV16 E7 oncoprotein but not against the MHC class I negative TC-1/A9 subline. To assess if the efficacy of E7-based DNA vaccines could be increased by combination of various fusion genes, we combined the HSP70.1 fusion genes (i.e. E7HSP or E7GGGHSP) with the fusion construct linking E7GGG with targeting signals of lysosome-associated membrane protein 1 (Sig/E7GGG/LAMP-1). Treatment of mice 4 days after TC-1 cell inoculation showed moderately higher immunization potency of HSP70.1 fusion genes in comparison with the Sig/E7GGG/LAMP-1 gene. Any combination of two fusion genes given in the same gene gun shot neither was more effective compared with single genes nor protected mice against TC-1/A9 cells. As fusion of E7GGG with E. coli glucuronidase (E7GGG.GUS) had been previously proven to provide partial protection from TC-1/A9-induced tumors, we also combined E7GGGHSP with E7GGG.GUS. The genes were inoculated either in mix in two gene gun shots or separately each gene in one shot into opposite sides of the abdomen. Neither mode of combined immunization induced higher protection than E7GGG.GUS alone. However, doubling the DNA dose considerably enhanced the antitumor efficacy of E7GGG.GUS. CONCLUSIONS: We constructed highly immunogenic fusions of HPV16 E7 and E7GGG with mouse HSP70.1. Furthermore, we substantially enhanced protection against TC-1/A9 cells with downregulated MHC class I expression by doubling the pBSC/E7GGG.GUS dose, but we failed to demonstrate a beneficial effect of any combination of two fusion genes with different mechanisms causing enhancement of HPV16 E7 immunogenicity. 相似文献
4.
Liu HC Chen GG Vlantis AC Tse GM Chan AT van Hasselt CA 《Journal of cellular biochemistry》2008,103(4):1125-1143
The carcinogenesis of human papillomaviruses type 16 (HPV-16) is mainly due to its two oncoproteins, E6 and E7. Their carcinogenic features in term of their relationship with Bcl-2 family are still unclear. We thus aimed to analyze the expression of Bcl-2 family members, Bcl-2, Bax, and Bak in laryngeal cancer cells transfected with the E6 or E7 and to determine the sensitivity of these cells to apoptotic stimuli. We employed two human laryngeal cancer cell lines, UMSCC12 and UMSCC11A in this study. These two cell lines were stably transfected with HPV16 E6, E7 or empty vector, pcDNA3.1. We found that E6 and E7 inhibited apoptosis induced by TNF-alpha/CHX in both UMSCC11A and UMSCC12 cells, enhanced the stability of Bcl-2 protein and increased the degradation of Bak protein. Furthermore, it was found that HPV-16 E7 statistically enhanced the expression of Bcl-2 in laryngeal cancer. The alteration of Bak by E6 and E7 was not through the influence on the Bak promoter, as the luciferase assay showed that neither E6 nor E7 changed the Bak promoter activity. We conclude that the evasion of apoptosis mediated by HPV-16 E6 and E7 is associated with increased Bcl-2 and decreased Bak in laryngeal carcinogenesis and that the decreased level of Bak by E6 and E7 is not caused by the regulation of the Bak promoter but by reducing its protein stability. 相似文献
5.
目的通过观察血管内皮生长因子(VEGF)及其受体和细胞周期蛋白E(Cyclin E)在肝癌模型大鼠肝脏中表达情况,探讨VEGF与细胞周期相关蛋白在肝癌发生发展过程中的作用。方法建立诱发性肝癌模型,采用酶联免疫吸附试验检测血清中VEGF量的变化,免疫组化技术检测VEGFR1、Cyclin E和细胞周期蛋白依赖性激酶(CDK2)的表达情况。结果血清中的VEGF含量在对照组中最低,在实验组中逐渐增多,以癌变期含量最高。VEGFR1、Cyclin E和CDK2蛋白表达的平均光密度值均随着肝癌的发生发展有增高的趋势,大鼠血清中的VEGF量与肝脏组织中VEGFR1、Cyclin E和CDK2蛋白表达的平均光密度值随着肝癌的发生发展呈正相关(r=0.834,F=42.1274,P<0.05)。结论 VEGF及其受体VEGFR1在肝癌发生发展中异常表达,促进肝癌的发生发展,可能与Cyclin E、CDK2细胞周期蛋白异常表达有关。 相似文献
6.
Vascular endothelial growth factor receptor 2 (VEGFR‐2) plays a critical role in tumor angiogenesis. None therapeutic antibodies targeting VEGFR‐2 are available in clinical use. Herein, we describe the screening of a new single‐chain antibody fragment (scFv) targeting extracellular domain 3 of human VEGFR‐2 (kinase insert domain‐containing receptor [KDR]3) from Griffin phage display scFv library. A comprehensive sequence analysis was performed to assign the framework and complementary‐determining regions. The scFv exerted particular binding sites to KDR3 on molecular docking, and the binding affinity was further convinced by binding analysis both in quantitative ELISA and real‐time kinetic determination by biosensors (KD = 40 nM). Finally, the scFv was revealed to inhibit VEGF‐stimulated proliferation of human umbilical vein endothelial cells (HUVECs; IC50 = 5 nM) and to inhibit HUVEC migration significantly at 17 nM. Taken together, our results indicate that we have successfully isolated a scFv which differentially recognizes KDR3 and has potential clinical applications in the treatment of angiogenesis related diseases. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 981–989, 2012 相似文献
7.
Ting He Nataliya Smith Debra Saunders Sabrina Doblas Yasuko Watanabe Jessica Hoyle Robert Silasi‐Mansat Florea Lupu Megan Lerner Daniel J. Brackett Rheal A. Towner 《Journal of cellular and molecular medicine》2011,15(4):837-849
Angiogenesis is essential to tumour progression and a precise evaluation of angiogenesis is important for tumour early diagnosis and treatment. The quantitative and dynamic in vivo assessment of tumour angiogenesis can be achieved by molecular magnetic resonance imaging (mMRI). Vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) are the main regulatory systems in angiogenesis and have been used as hot targets for radionuclide‐based molecular imaging. However, little research has been accomplished in targeting VEGF/VEGFRs by mMRI. In our study, we aimed to assess the expression of VEGFR2 in C6 gliomas by using a specific molecular probe with mMRI. The differential uptake of the probe conjugated to anti‐VEGFR2 monoclonal antibody, shown by varied increases in T1 signal intensity during a 2 hr period, demonstrated the heterogeneous expression of VEGFR2 in different tumour regions. Microscopic fluorescence imaging, obtained for the biotin group in the probe with streptavidin‐Cy3, along with staining for cellular VEGFR2 levels, laminin and CD45, confirmed the differential distribution of the probe which targeted VEGFR2 on endothelial cells. The angiogenesis process was also assessed using magnetic resonance angiography, which quantified tumour blood volume and provided a macroscopic view and a dynamic change of the correlation between tumour vasculature and VEGFR2 expression. Together these results suggest mMRI can be very useful in assessing and characterizing the expression of specific angiogenic markers in vivo and help evaluate angiogenesis associated with tumour progression. 相似文献
8.
A polytope DNA vaccine elicits multiple effector and memory CTL responses and protects against human papillomavirus 16 E7-expressing tumour 总被引:1,自引:0,他引:1
Doan T Herd K Ramshaw I Thomson S Tindle RW 《Cancer immunology, immunotherapy : CII》2005,54(2):157-171
Vaccine-induced CD8 T cells directed to tumour-specific antigens are recognised as important components of protective and therapeutic immunity against tumours. Where tumour antigens have pathogenic potential or where immunogenic epitopes are lost from tumours, development of subunit vaccines consisting of multiple individual epitopes is an attractive alternative to immunising with whole tumour antigen. In the present study we investigate the efficacy of two DNA-based multiepitope (polytope) vaccines containing murine (H-2b) and human (HLA-A*0201)–restricted epitopes of the E7 oncoprotein of human papillomavirus type 16, in eliciting tumour-protective cytotoxic T-lymphocyte (CTL) responses. We show that the first of these polytopes elicited powerful effector CTL responses (measured by IFN- ELISpot) and long-lived memory CTL responses (measured by functional CTL assay and tetramers) in immunised mice. The responses could be boosted by immunisation with a recombinant vaccinia virus expressing the polytope. Responses induced by immunisation with polytope DNA alone partially protected against infection with recombinant vaccinia virus expressing the polytope. Complete protection was afforded against challenge with an E7-expressing tumour, and reduced growth of nascent tumours was observed. A second polytope differing in the exact composition and order of CTL epitopes, and lacking an inserted endoplasmic reticulum targeting sequence and T-helper epitope, induced much poorer CTL responses and failed to protect against tumour challenge. These observations indicate the validity of a DNA polytope vaccine approach to human papillomavirus E7–associated carcinoma, and underscore the importance of design in polytope vaccine construction. 相似文献
9.
Regulation of nuclear receptor activities by two human papillomavirus type 18 oncoproteins,E6 and E7
The human papillomavirus (HPV) E6 and E7 oncoproteins are two major proteins that remain expressing in HPV-associated human cancers. The high-risk HPVs synthesize E6 and E7 oncoproteins to alter the function of cellular regulatory proteins, such as p53 and retinoblastoma gene product, respectively. In this study, we demonstrated that HPV-18 E6 and E7 proteins were able to directly interact with some nuclear receptors (NRs), such as thyroid receptor, androgen receptor, and estrogen receptor (ER), whether or not appropriate hormones were present. The functional roles of these two oncoproteins in NRs depended on the cell type (including ligand), promoter context, and NR type. These two oncoproteins regulated ER functions through ER's AF-1, AF-2, or both. Hence, our results provide new insights into the mechanisms controlling the proliferation and immortalization of HPV infected cells by these two oncoproteins mediating through their regulatory functions in NR systems. 相似文献
10.
Ying Xiang Qiying Li Dehong Huang Xianjun Tang Li Wang Yang Shi Wenjun Zhang Tao Yang Chunyan Xiao Jianghong Wang 《Experimental biology and medicine (Maywood, N.J.)》2015,240(2):160-168
The aberrant signaling activation of vascular endothelial growth factor receptor (VEGFR) and urokinase plasminogen activator (uPA) is a common characteristic of many tumors, including lung cancer. Accordingly, VEGFR and uPA have emerged as attractive targets for tumor. KDR (Flk-1/VEGFR-2), a member of the VEGFR family, has been recognized as an important target for antiangiogenesis in tumor. In this study, a recombinant immunotoxin was produced to specifically target KDR-expressing tumor vascular endothelial cells and uPA-expressing tumor cells and mediate antitumor angiogenesis and antitumor effect. Based on its potent inhibitory effect on protein synthesis, Luffin-beta (Lβ) ribosome-inactivating protein was selected as part of a recombinant fusion protein, a single-chain variable fragment against KDR (KDRscFv)-uPA cleavage site (uPAcs)-Lβ-KDEL (named as KPLK). The KDRscFv-uPAcs-Lβ-KDEL (KPLK) contained a single-chain variable fragment (scFv) against KDR, uPAcs, Lβ, and the retention signal for endoplasmic reticulum proteins KDEL (Lys-Asp-Glu-Leu). The KPLK-expressing vector was expressed in Escherichia coli, and the KPLK protein was isolated with nickel affinity chromatography and gel filtration chromatography. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis test demonstrated KPLK was effectively expressed. Result of in vitro cell viability assay on non-small cell lung cancer (NSCLC) H460 cell line (uPA-positive cell) revealed that KPLK significantly inhibited cell proliferation, induced apoptosis, and accumulated cells in S and G2/M phases, but the normal cell line (human submandibular gland cell) was unaffected. These effects were enhanced when uPA was added to digest KPLK to release Lβ. For in vivo assay of KPLK, subcutaneous xenograft tumor model of nude mice were established with H460 cells. Growth of solid tumors was significantly inhibited in animals treated with KPLK up to 21 days, tumor weights were decreased, and the expression of angiogenesis marker CD31 was downregulated; meanwhile, the apoptosis-related protein casspase-3 was upregulated. These results suggested that the recombinant KPLK may have therapeutic applications on tumors, especially uPA-overexpressing ones. 相似文献
11.
Selvaraj Jayaraman Vidhya Rekha Umapathy Jayamathi Govindaraj Keerthidaa Govidaraj 《Bioinformation》2021,17(1):223
It is known that vascular endothelial growth factor receptor (VGFR) is linked with cancer. Therefore, it is of interest to document the molecular binding features of bioactive molecules from Piper longum as potential anti-cancer agents with VGFR2 for further consideration. Thus, we document the binding features of four compounds (sesamin, fargesin, longamide and piperlonguminine) with VGFR2 for further consideration in drug discovery. 相似文献
12.
Leptin increases vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), and Notch expression in cancer cells, and transphosphorylates VEGFR-2 in endothelial cells. However, the mechanisms involved in leptin’s actions in endothelial cells are not completely known. Here we investigated whether a leptin-VEGFR-Notch axis is involved in these leptin’s actions. To this end, human umbilical vein and porcine aortic endothelial cells (wild type and genetically modified to overexpress VEGFR-1 or -2) were cultured in the absence of VEGF and treated with leptin and inhibitors of Notch (gamma-secretase inhibitors: DAPT and S2188, and silencing RNA), VEGFR (kinase inhibitor: SU5416, and silencing RNA) and leptin receptor, OB-R (pegylated leptin peptide receptor antagonist 2: PEG-LPrA2). Interestingly, in the absence of VEGF, leptin induced the expression of several components of Notch signaling pathway in endothelial cells. Inhibition of VEGFR and Notch signaling significantly decreased leptin-induced S-phase progression, proliferation, and tube formation in endothelial cells. Moreover, leptin/OB-R induced transphosphorylation of VEGFR-1 and VEGFR-2 was essential for leptin’s effects. These results unveil for the first time a novel mechanism by which leptin could induce angiogenic features via upregulation/trans-activation of VEGFR and downstream expression/activation of Notch in endothelial cells. Thus, high levels of leptin found in overweight and obese patients might lead to increased angiogenesis by activating VEGFR-Notch signaling crosstalk in endothelial cells. These observations might be highly relevant for obese patients with cancer, where leptin/VEGFR/Notch crosstalk could play an important role in cancer growth, and could be a new target for the control of tumor angiogenesis. 相似文献
13.
Regulation of vascular endothelial growth factor receptor-2 expression in pancreatic cancer cells by Sp proteins 总被引:3,自引:0,他引:3
Higgins KJ Abdelrahim M Liu S Yoon K Safe S 《Biochemical and biophysical research communications》2006,345(1):292-301
Vascular endothelial growth factor receptor-2 (VEGFR2/KDR) is an important mediator of angiogenesis, and VEGFR2 mRNA is expressed in several pancreatic cancer cell lines. Deletion analysis of the VEGFR2 promoter in Panc-1, AsPC-1, and MiaPaCa-2 pancreatic cancer cells shows that the proximal region of the promoter is primarily responsible for VEGFR2 expression, and two GC-rich sites at -58 and -44 are critical elements in all three cell lines. Panc-1, AsPC-1, and MiaPaCa-2 cells also express Sp1, Sp3, and Sp4 proteins which bind to the GC-rich region of the VEGFR2 promoter in electrophoretic mobility shift and chromatin immunoprecipitation assays. RNA interference with small inhibitory RNAs for Sp1, Sp3, and Sp4 decreases VEGFR2 mRNA and reporter gene activity in transfection assays, confirming that VEGFR2 expression in pancreatic cancer cells is regulated by Sp proteins. These results suggest that VEGFR2 cannot only be targeted by receptor tyrosine kinase inhibitors but also by drugs that downregulate Sp proteins or block Sp-dependent transactivation. 相似文献
14.
Shaochun Chen Chaowei Liao Yiukay Lai Yan Fan Gang Lu Hua Wang Xiaoai Zhang Marie C.M. Lin Shuilong Leng Hsiang-Fu Kung 《Acta biochimica et biophysica Sinica》2014,(1):6-14
In order to develop more effective therapeutic vaccines against cancers with high-risk human papillomavirus (HPV) infection, it is crucial to enhance the immunogenicity, eliminate the oncogenicity of oncoproteins, and take a combination of ET- and E6-containing vaccines. It has been shown recently that PE(AIII)-E7-KDEL3 (E7), a fusion protein containing the HPVI6 oncoprotein E7 and the trans- location domain of Pseudomonas aeruginosa exotoxin A, is effective against TC-1 tumor cells inoculated in mice, there- fore, we engineered PE(AIII)-E6-CRL-KDEL3 (E6), the deoncogenic versions of the E7 and E6 fusion proteins [i.e. PE(AIII)-E7(d)-KDEL3, E7(d), and PE(AIII)-E6(d)-CRL- KDEL3, E6(d)] and tested the immunoefficacies of these fusion proteins as mono- and bivalent vaccines. Results indicated that the E7(d) get higher immunogenicity than its wild type and the E6 fusion proteins augmented the im- munogenicity and antitumor effects of their E7 counterparts. Furthermore, the bivalent vaccine system E7(d) plus E6(d), in the presence of cisplatin, showed the best tumori- static and tumoricidal effects against established tumors in vivo. Therefore, it can be concluded that this novel therapeutic vaccine system, upon further optimization, may shed new light on clinical management of HPV-related carcinomas. 相似文献
15.
Ewan LC Jopling HM Jia H Mittar S Bagherzadeh A Howell GJ Walker JH Zachary IC Ponnambalam S 《Traffic (Copenhagen, Denmark)》2006,7(9):1270-1282
The human endothelial vascular endothelial growth factor receptor 2 (VEGFR2/kinase domain region, KDR/fetal liver kinase-1, Flk-1) tyrosine kinase receptor is essential for VEGF-mediated physiological responses including endothelial cell proliferation, migration and survival. How VEGFR2 kinase activation and trafficking are co-coordinated in response to VEGF-A is not known. Here, we elucidate a mechanism for endothelial VEGFR2 response to VEGF-A dependent on constitutive endocytosis co-ordinated with ligand-activated ubiquitination and proteolysis. The selective VEGFR kinase inhibitor, SU5416, blocked the endosomal sorting required for VEGFR2 trafficking and degradation. Inhibition of VEGFR2 tyrosine kinase activity did not block plasma membrane internalization but led to endosomal accumulation. Lysosomal protease activity was required for ligand-stimulated VEGFR2 degradation. Activated VEGFR2 codistributed with the endosomal hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)/signal-transducing adaptor molecule (STAM) complex in a ligand and time-dependent manner, implying a role for this factor in sorting of ubiquitinated VEGFR2. Increased tyrosine phosphorylation of the Hrs subunit in response to VEGF-A links VEGFR2 activation and Hrs/STAM function. In contrast, VEGFR2 in quiescent cells was present on both the endothelial plasma membrane and early endosomes, suggesting constitutive recycling between these two compartments. This pathway was clathrin-linked and dependent on the AP2 adaptor complex as the A23 tyrphostin inhibited VEGFR2 trafficking. We propose a mechanism whereby the transition of endothelial VEGFR2 from a constitutive recycling itinerary to a degradative pathway explains ligand-activated receptor degradation in endothelial cells. This study outlines a mechanism to control the VEGF-A-mediated response within the vascular system. 相似文献
16.
A recombinant pertussis DNA vaccine was described here with its immunogenicity and the ability to induce protection against B. pertussis infection in mice. Three immunodominant antigen gene fragments of pertussis, pertussis toxin subunit 1 (pts1), fragments of pertactin (prn) and filamentous hemagglutinin (fha), were recombined as fragment pts1-prn-fha named ppf, and it was cloned to plasmid pVAX1 as pVAX1/ppf. Compared to those injected with pVAX1, the mice injected with pVAX1/ppf significantly elicited more antigen specific antibody anti-PTS1, anti-PRN, anti-FHA and cytokine IL-10, IFN-gamma. When pGM-CSF was coinjected with pVAX1/ppf, the mice showed significantly increases of the three antibodies and cytokine IL-10, IL-4, IFN-gamma and TNF-alpha compared to those injected with pVAX1 only. The mice in group pVAX1/ppf & pGM-CSF, in particular; induced much more anti-PTS1, IL-4 and TNF-alpha than those in group pVAX1/ppf. In the intracerebral mouse protection test, the mice immunized with pVAX1/ppf or pVAX1/ppf & pGM-CSF induced protection to a lethal dose of B. pertussis. The results indicate that recombinant DNA vaccine and pGM-CSF coinjection can induce protective immunity against B. pertussis, demonstrating a valuable method to prevent pertussis. 相似文献
17.
An optimized recombinant HPV16 E6E7 fusion gene(HPV16 ofE6E7)was constructed according to codon usage for mammalian cell expression,and a mutant of HPV16 ofE6E7 fusion gene(HPV16 omfE6E7)was generated by site-directed mutagenesis at L57G,C113R for the E6 protein and C24G,E26G for the E7 protein for HPV16 ofE6E7 [patent pending(CN 101100672)].The HPV16 omfE6E7 gene constructed in this work not only lost the transformation capability to NIH 3T3 cells and tumorigenicity in SCID mice,but also maintained very good stability and antigenicity.These results suggests that the HPV16 omfE6E7 gene should undergo further study for application as a safe antigen-specific therapeutic vaccine for HPV16-associated tumors. 相似文献
18.
Enhancement of immunotherapeutic effects of HPV16E7 on cervical cancer by fusion with CTLA4 extracellular region 总被引:2,自引:0,他引:2
Yi Zheng Yijuan Zhang Yuandong Ma Jun Wan Chaofan Shi Laiqiang Huang 《Journal of microbiology (Seoul, Korea)》2008,46(6):728-736
Cervical cancer is caused by infection by high-risk human papillomavirus (HPV), especially HPV16. Limitations in current treatments
of cervical cancers call for the development of new and improved immunotherapies. This study aims at investigating the efficacy
of a novel vaccine consisting of modified HPV 16E7 fused with human cytotoxic T-lymphocyte antigen 4 (CTLA4). The regions
in HPV16 E7 gene associated with its transformation and CTL-enhanced response were modified; the resultant HPV16mE7 was fused
with extracellular region of CTLA4 to generate HPVml6E7-eCTLA4 fusion protein. Binding of this fusion protein to B7 molecules
expressed on antigen presenting-cells (APCs) was demonstrated. C57BL/6 (H-2b) mice immunized with low dose of the fusion protein (10 μg) produced higher titer antibody and stronger specific CTL response,
and expressed higher levels of IFN-γ and IL-12, compared with those immunized with HPVml6E7 only or admixture of HPVml6E7
and CTLA4, or PBS; and were protected from lethal dose tumor challenge. Tumor growth was retarded and survival prolonged in
mouse models with the fusion protein treatment. Our results demonstrate that fusion of HPV16 E7 with eCTLA4 targeting APCs
resulted in enhanced immunity, and that this fusion protein may be useful for improving the efficacy of immunotherapeutic
treatments of cervical cancer and other HPV16 infection-associated tumors. 相似文献
19.
为提高人乳头瘤病毒(HPV)16型治疗性融合蛋白疫苗HPV16 L2E7在大肠杆菌中的表达量,根据大肠杆菌偏爱密码子,对HPV16 l2e7基因进行密码子优化,优化后的基因分别插入到p GEX-5X-1、p QE30和p ET41a表达载体中,转化JM109、JM109(DE3)和BL21(DE3)表达菌,筛选出高表达菌株p ET41a-HPV16sl2e7/BL21(DE3),目的蛋白从占全菌蛋白的10%以下提高到约28%,优化接种量、IPTG浓度、诱导温度和诱导时间,获得最佳表达条件;通过15 L发酵罐发酵,SP Sepharose Fast Flow、Q Sepharose Fast Flow和Superdex 200 pg纯化及复性HPV16 L2E7融合蛋白,制备的融合蛋白纯度可达95%以上,经SDS-PAGE、Western blotting鉴定证实,制备的HPV16 L2E7蛋白加Cp G佐剂对小鼠移植瘤生长具有明显的抑制作用,有75%(6/8)的小鼠不成瘤,为后续的疫苗产业化奠定基础。 相似文献