首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The aim of our study was to determine the genetic characterization and classification of Lb. gasseri K7 bacteriocins, comparison with bacteriocins of the Lb. gasseri LF221 strain and other related strains. Bacteriocin-encoding genes were amplified by PCR, subjected to DNA sequencing, and BLAST sequence analysis was performed to search the database for homologous peptides. Lb. gasseri K7 produces two two-peptide bacteriocins, named gassericin K7 A and gassericin K7 B. Their nucleotide sequences were deposited at GenBank, under accession numbers EF392861 for the gassericin K7 A and AY307382 for the gassericin K7 B. Analysis of gene clusters of bacteriocins in Lb. gasseri K7 strain revealed a 100 percent sequence identity with bacteriocins in LF221 strain. An active peptide of gassericin K7 B is homologous to the complementary peptide of gassericin T, and a complementary peptide of gassericin K7 B is homologous to the active peptide of gassericin T. Another surprising finding was that the sakacin T-beta peptide is partly homologous to the active peptide of gassericin K7 A, while the other sakacin T peptide (alfa) is partly homologous to the complementary peptide of gassericin K7 B. Gassericins of Lb. gasseri K7 strain were both classified as two-peptide bacteriocins. Human probiotic strains Lb. gasseri K7 and LF221 are different isolates but with identical bacteriocin genes. They produce wide-inhibitory spectra bacteriocins that are new members of two-peptide bacteriocins with some homologies to other bacteriocins in this group. Described bacteriocins offer a great potential in applications in food industry, pharmacy and biomedicine.  相似文献   

2.
Chen M  Chen J  Liao W  Zhu S  Yu J  Leung WK  Hu P  Sung JJ 《Helicobacter》2003,8(6):613-625
Aim. To evaluate the protective effect of live attenuated Salmonella typhimurium expressing catalase against gastric Helicobacter pylori infection in mice, and to explore the underlying mechanisms of the protective immune reaction. Materials and Methods The H. pylori catalase gene was introduced into attenuated S. typhimurium strain SL3261. C57BL/6 mice were orally immunized with the SL3261 vaccine strain expressing catalase or with SL3261 alone or phosphate‐buffered saline (PBS). Mice were sacrificed 4 weeks after immunization and 5 weeks after H. pylori challenge, respectively. Results. All PBS control mice were infected. Eight of 13 (61.5%) mice immunized with the SL3261 vaccine strain and three of 14 (21%) mice immunized with SL3261 alone showed protection against H. pylori infection. Serum anti‐H. pylori IgG2a levels of S. typhimurium‐immunized mice were higher than those of PBS controls, both before and after H. pylori challenge, while there were no differences for IgG1 and IgA. Similarly, mRNA expression of interleukin (IL)‐2, IL‐12 and interferon‐γ in the gastric mucosa of S. typhimurium‐immunized mice was significantly higher than that of PBS controls both before and after challenge. Moreover, S. typhimurium‐immunized mice were characterized by marked infiltration of lymphocyte and mononuclear cells in the gastric mucosa after challenge. IL‐4 and IL‐10 were not detected in any of the three groups. IL‐6 expression was increased in the PBS group compared with the S. typhimurium‐immunized groups after challenge. Conclusions. This study demonstrates that oral immunization of mice with catalase delivered by an attenuated S. typhimurium strain offers protection against H. pylori infection. This protective immunity was mediated through a predominantly Th1‐type response and was associated with post‐immunization gastritis.  相似文献   

3.
Streptococcus pyogenes is an important pathogen that causes pharyngitis, scarlet fever, rheumatic fever, and streptococcal toxic shock syndrome. To survive within its host, S. pyogenes has developed several immune evasion mechanisms. Here, we identified a novel gene encoding a 66-kDa protein with many leucine zipper motifs, that we call streptococcal leucine zipper protein (Lzp). Lzp was expressed on the bacterial cell surface, and some was detected in the culture medium. Lzp was expressed by all the S. pyogenes strains we tested, but not by group B streptococcal strains. Western blotting and Biacore assay demonstrated that recombinant Lzp bound to human IgA, IgG, IgM, and Lzp. In addition, native-PAGE analysis suggested that the Lzp molecule formed dimer and trimer conformations. Thus, Lzp is a novel immunoglobulin-binding protein that may play a role in helping S. pyogenes escape detection by the host immune system.  相似文献   

4.

Background

Streptococcus pyogenes (S. pyogenes) causes various serious diseases including necrotizing fasciitis and streptococcal toxic shock syndrome. One serious problem observed recently with S. pyogenes therapy is attenuation of the antibiotic effect, especially penicillin treatment failure and macrolide resistance. Hainosankyuto, a traditional Japanese medicine based on ancient Chinese medicine, has been used for treatment of infectious purulent diseases in Japan. In this study, we investigated the protective and therapeutic efficacy of Hainosankyuto against S. pyogenes-skin infection.

Methodology/Principal Findings

A broth microdilution method revealed that Hainosankyuto did not show a direct anti-bacterial effect against S. pyogenes. Force-feeding Hainosankyuto to infected mice for 4 consecutive days increased the survival rate and reduced the size of local skin lesions compared with mice fed PBS. Although we did not find the significant recovery of survival rate in Hainosankyuto administration only after S. pyogenes infection, the sizes of ulcer lesion were significant smaller after Hainosankyuto administration compared with mice fed PBS. No difference was observed in the anti-bacterial effect of Hainosankyuto between macrolide-susceptible and -resistant strains. Blood bactericidal assay showed that the survival rate of S. pyogenes using the blood from Hainosankyuto -treated mice was lower than that using the blood from untreated mice. We also found increased levels of IL-12, IFN-γ and a decreased level of TNF-α in the serum of S. pyogenes-infected mice treated with Hainosankyuto. Mouse peritoneal macrophage from Hainosankyuto-treated mice had significant phagocytic activity and increased mRNA levels of IL-12, IFN-γ and decreased mRNA level of TNF-α compared with control macrophage.

Conclusions/Significance

Hainosankyuto increased survival rate after S. pyogenes infection and up-regulated both blood bactericidal activity and macrophage phagocytic activity through modulation of inflammatory cytokines. Our data also suggest Hainosankyuto may be useful for the treatment of S. pyogenes infection more prophylactically than therapeutically.  相似文献   

5.
Streptococcus pyogenes (group A Streptococcus) causes diseases ranging from mild pharyngitis to severe invasive infections. The N‐terminal fragment of streptococcal M protein elicits protective antibodies and is an attractive vaccine target. However, this N‐ terminal fragment is hypervariable: there are more than 200 different M types. In this study, an intranasal live bacterial vaccine comprising 10 strains of Lactococcus lactis, each expressing one N‐terminal fragment of M protein, has been developed. Live bacterial‐vectored vaccines cost less to manufacture because the processes involved are less complex than those required for production of protein subunit vaccines. Moreover, intranasal administration does not require syringes or specialized personnel. Evaluation of individual vaccine types (M1, M2, M3, M4, M6, M9, M12, M22, M28 and M77) showed that most of them protected mice against challenge with virulent S. pyogenes. All 10 strains combined in a 10‐valent vaccine (M×10) induced serum and bronchoalveolar lavage IgG titers that ranged from three‐ to 10‐fold those of unimmunized mice. After intranasal challenge with M28 streptococci, survival of M×10‐immunized mice was significantly higher than that of unimmunized mice. In contrast, when mice were challenged with M75 streptococci, survival of M×10‐immunized mice did not differ significantly from that of unimmunized mice. Mx‐10 immunized mice had significantly less S. pyogenes in oropharyngeal washes and developed less severe disease symptoms after challenge than did unimmunized mice. Our L. lactis‐based vaccine may provide an alternative solution to development of broadly protective group A streptococcal vaccines.
  相似文献   

6.
Streptococcus pyogenes is an important human pathogen that causes invasive diseases such as necrotizing fasciitis, sepsis, and streptococcal toxic shock syndrome. We investigated the function of a major cysteine protease from S. pyogenes that affects the amount of C1-esterase inhibitor (C1-INH) and other complement factors and aimed to elucidate the mechanism involved in occurrence of streptococcal toxic shock syndrome from the aspect of the complement system. First, we revealed that culture supernatant of a given S. pyogenes strain and recombinant SpeB degraded the C1-INH. Then, we determined the N-terminal sequence of the C1-INH fragment degraded by recombinant SpeB. Interestingly, the region containing one of the identified cleavage sites is not present in patients with C1-INH deficiency. Scanning electron microscopy of the speB mutant incubated in human serum showed the abnormal superficial architecture and irregular oval structure. Furthermore, unlike the wild-type strain, that mutant strain showed lower survival capacity than normal as compared with heat-inactivated serum, whereas it had a significantly higher survival rate in serum without the C1-INH than in normal serum. Also, SpeB degraded multiple complement factors and the membrane attack complex. Flow cytometric analyses revealed deposition of C9, one of the components of membrane the attack complex, in greater amounts on the surface of the speB mutant, whereas lower amounts of C9 were bound to the wild-type strain surface. These results suggest that SpeB can interrupt the human complement system via degrading the C1-INH, thus enabling S. pyogenes to evade eradication in a hostile environment.  相似文献   

7.
The major virulence factor of the important human pathogen Streptococcus pyogenes is the M protein, which prevents phagocytosis of the bacterium. In different strains of streptococci, there are over 80 serologically different M proteins and there are additional M-like proteins, some of which bind immunoglobulins. Although the sequence of the M molecules differs among different S. pyogenes strains, all M proteins, and some of the immunogiobulin-binding molecules, have at least two copies of the C repeat region. We describe construction of a deletion mutation in S. pyogenes, which has only one C repeat copy, and show that the mutant strain is still resistant to phagocytosis. The mutation was constructed in vitro and used to replace the resident emm allele in an S. pyogenes strain. To facilitate homologous recombination into the streptococcal chromosome, we adapted a shuttle vector which is temperature sensitive for replication in Gram-positive bacteria but not in Gram-negative hosts. This new method for delivery of a homologous DNA fragment to the S. pyogenes chromosome is efficient and reproducible and should be of general use.  相似文献   

8.
Abstract

Streptococcus pyogenes is a Gram-positive human bacterial pathogen that causes pharyngitis, tonsillitis, skin infections (impetigo, erysipelis, and other forms of pyoderma), acute rheumatic fever (ARF), scarlet fever (SF), poststreptococcal glomerulonephritis (PSGN), a streptococcal toxic shock syndrome (STSS), and necrotizing fasciitis. These infections are some of the most economically and medically important conditions that affect humans. For example, globally, ARF is the most common cause of pediatric heart disease. It is estimated that in India more than six million school-aged children suffer from rheumatic heart disease (1). In the United States, “sore throat” is the third most common reason for physician office visits and S. pyogenes is recovered from about 30% of children with this complaint (2). It has been estimated that there are 25–35 million cases of streptococcal pharyngitis per year in the United States, and these infections cause 1–2 billion dollars per year in direct health care costs (3,4). Although the continued great morbidity and mortality caused by S. pyogenes in developing nations, the significant health care financial burden attributable to group A streptococci in the United States, and increasing levels of antibiotic resistance (5), have highlighted the need for a fuller understanding of the molecular pathogenesis of streptococcal infection, it has been the relatively recent intercontinental increase in streptococcal disease frequency and severity (6,7) that has resulted in renewed interest in S. pyogenes virulence factors and host-parasite interactions.  相似文献   

9.

Background  

Collagen-like surface proteins Scl1 and Scl2 on Streptococcus pyogenes contain contiguous Gly-X-X triplet amino acid motifs, the characteristic structure of human collagen. Although the potential role of Scl1 in adhesion has been studied, the conclusions may be affected by the use of different S. pyogenes strains and their carriages of various adhesins. To explore the bona fide nature of Scl1 in adherence to human epithelial cells without the potential interference of other streptococcal surface factors, we constructed a scl1 isogenic mutant from the Scl2-defective S. pyogenes strain and a Scl1-expressed Escherichia coli.  相似文献   

10.
Infection with Streptococcus pyogenes (S. pyogenes) can result in several diseases, particularly in children. S. pyogenes M protein is the major virulence factor, and certain regions of its N-terminus can trigger autoimmune sequelae such as rheumatic fever in susceptible individuals with untreated group A streptococcal pharyngitis. In a previous study, we utilized a large panel of human peripheral blood cells to define the C-terminal protective epitope StreptInCor (medical identity), which does not induce autoimmune reactions. We recently confirmed the results in HLA-transgenic mice. In the present study, we extended the experimental assays to outbred animals (Swiss mice). Herein, we demonstrate high titers of StreptInCor-specific antibodies, as well as appropriate T-cell immune responses. No cross-reaction to cardiac myosin was detected. Additionally, immunized Swiss mice exhibited 87% survival one month after challenge with S. pyogenes. In conclusion, the data presented herein reinforce previous results in humans and animals and further emphasize that StreptInCor could be an effective and safe vaccine for the prevention of S. pyogenes infections.  相似文献   

11.
Streptococcus pyogenes, a group A Streptococcus (GAS), has been recognized as the causative pathogen in patients with severe invasive streptococcal infection with or without necrotizing fasciitis. In recent epidemiological studies, Streptococcus dysgalactiae subsp. equisimilis (SDSE) has been isolated from severe invasive streptococcal infection. Complete genome sequence showed that SDSE is the closest bacterial species to GAS, with approximately 70% of genome coverage. SDSE, however, lacks several key virulence factors present in GAS, such as SPE‐B, the hyaluronan synthesis operon and active superantigen against human immune cells. A key event in the ability of GAS to cause severe invasive streptococcal infection was shown to be the acquisition of novel genetic traits such as phages. Strikingly, however, during severe invasive infection, GAS destroys its own covRS two‐component system, which negatively regulates many virulence factor genes, resulting in a hyper‐virulent phenotype. In contrast, this phenomenon has not been observed in SDSE. The present review describes the epidemiology of severe invasive streptococcal infection and the detailed pathogenic mechanisms of GAS and SDSE, emphasizing findings from their genome sequences and analyses of gene expression.  相似文献   

12.
Streptococcus pyogenes is an important human pathogen that causes a wide range of diseases. Using bioinformatics analysis of the complete S. pyogenes strain SF370 genome, we have identified a novel S. pyogenes virulence factor, which we termed streptococcal 5′-nucleotidase A (S5nA). A recombinant form of S5nA hydrolyzed AMP and ADP, but not ATP, to generate the immunomodulatory molecule adenosine. Michaelis-Menten kinetics revealed a Km of 169 μm and a Vmax of 7550 nmol/mg/min for the substrate AMP. Furthermore, recombinant S5nA acted synergistically with S. pyogenes nuclease A to generate macrophage-toxic deoxyadenosine from DNA. The enzyme showed optimal activity between pH 5 and pH 6.5 and between 37 and 47 °C. Like other 5′-nucleotidases, S5nA requires divalent cations and was active in the presence of Mg2+, Ca2+, or Mn2+. However, Zn2+ inhibited the enzymatic activity. Structural modeling combined with mutational analysis revealed a highly conserved catalytic dyad as well as conserved substrate and cation-binding sites. Recombinant S5nA significantly increased the survival of the non-pathogenic bacterium Lactococcus lactis during a human whole blood killing assay in a dose-dependent manner, suggesting a role as an S. pyogenes virulence factor. In conclusion, we have identified a novel S. pyogenes enzyme with 5′-nucleotidase activity and immune evasion properties.  相似文献   

13.
Aims: This study compared the in vitro activity of telithromycin with that of azithromycin against 438 Streptococcus pyogenes and 198 Streptococcus pneumoniae, isolated over the period 2005–2007 from specimens of different human origin obtained in three Piemonte Region’s hospitals. Methods and Results: The determination of antimicrobial activity was evaluated by the microdilution broth method and the erythromycin‐resistant (Ery‐R) phenotypes by the triple‐disc test. Exactly 78·8% of S. pyogenes and 69·2% of S. pneumoniae were erythromycin‐susceptible (Ery‐S). Concerning S. pyogenes, telithromycin was active against M and inducible MLSB, subtype‐C, phenotypes but not against constitutive MLSB strains. Telithromycin acted well against all S. pneumoniae, irrespective of their mechanism of macrolide‐resistance. On the contrary, the Ery‐R isolates, both S. pyogenes and S. pneumoniae, were resistant to azithromycin. Conclusions: Our results indicate that macrolide resistance in streptococci still persist in northwest Italy (21·2% of S. pyogenes and 30·8% of S. pneumoniae) and that telithromycin is confirmed as being extremely active even against recent clinical Ery‐R streptococcal isolates. Significance and Impact of the Study: The present study emphasizes that an active surveillance of the phenotype distribution and antibacterial resistance in streptococci is essential in guiding the effective use of empirical treatment option for streptococcal infections, also at regional level.  相似文献   

14.
Streptococcus species is considered as an important pathogen for human and animals. The antibiotic resistance mechanism in this species is continuously increased. On the other side, the tolerance of environmental stresses play an effective role in the severity of many streptococcal causative disease. In this study we assayed survey on the causative agents of pharyngitis and tonsillitis patients. The predominant causative strain was Streptococcus pyogenes with 93 % isolating ratio frequency. The other pathogenic species were S. agalactia 5.3 % and S. pneumonia 1.7 %. According to the antibiotic resistant test the S. pyogenes isolates were classified into six different groups. A selected strain from each antibiotic resistant group was tested for tolerance of a restrictive environmental factors. The variations of the environmental niches of isolates were in consistence with their antibiotic resistant variation.  相似文献   

15.
Streptococcus pyogenes is a causative agent of streptococcal toxic shock syndrome (STSS). The complete genome sequence of a S. pyogenes strain 10–85 isolated from a STSS patient was recently announced. In this study, the genome sequence was dissected and it was found that the genomic region around 200 kbp (region A) and the genomic region around 1600 kbp (region B) were replaced by each other in strain 10–85, when compared with those in reference strains SF370 and A20. In order to address whether this replacement is unique to 10–85, we further analyzed 163 emm1‐type strains. The results indicated that none of the strains isolated before 1990 had the replacement. In contrast, most of the strains isolated at least after 2000 appeared to have the 10–85‐type replacement.  相似文献   

16.
To examine the molecular population genetics of the M protein family of Streptococcus pyogenes (group A Streptococcus), the 5′ regions of polymerase chain reaction-amplified emm products from 79 M serotypes were sequenced and the phylogeny was compared to estimates of overall genetic relationships among strains determined by multilocus enzyme electrophoresis. Although the 5′emm sequences from several strains designated as distinct M types were identical or almost identical, the overall pattern is characterized by very extensive variation. The composition of distinct emm sequence clusters generally parallels the ability of strains to express serum opacity factor and in some cases historical associations of certain M types with acute rheumatic fever, but not with M types classified as nephritogenic. For many strains there is a lack of congruency between variation in 5′emm sequences and estimates of overall chromosomal relationships, which is undoubtedly due to horizontal transfer and recombination of emm sequences. The results of these studies provide insights into the nature and extent of emm sequence variation and describe how this variation ‘maps’ onto the population genetic structure of extant S. pyogenes lineages. The complexity of emm sequence and streptococcal cell lineage relationships revealed by this analysis has significant implications for understanding evolutionary events generating strain diversity and the epidemiology of S. pyogenes diseases.  相似文献   

17.
An M-like protein fromStreptococcus pyogenes type M15 strain EF1949 (EMML15) was cloned inEscherichia coli and sequenced. Recombinant EMML15 protein revealed a unique binding pattern for human IgG subclasses not described previously. Comparative analysis of the EMML15 amino acid sequence with those of other M-like proteins of opacity factor positive (OF+) serotypes and protein H, an IgG receptor from OF serotype M1, showed that IgG-binding proteins with common binding of IgG3 were closely related and distinct from streptococcal IgG receptors not binding IgG3. Thus, the Ig-binding proteins fromS. pyogenes were subdivided into two main categories according to binding pattern, protein structure, and gene location.  相似文献   

18.
Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes severe invasive streptococcal infections, especially in elderly people. Between 2013 and 2018, 88 streptococci were isolated from clinical blood culture in a hospital in Toyama prefecture, Japan. The collection included six Group A SDSE (ASD) strains, which are rarely isolated. Multilocus sequence typing categorized five of the six strains into ST128 and the remaining strain into a new type. Maximum-likelihood phylogenetic analysis revealed that the six ASD strains had highly similar genome sequences. Bayesian analysis indicated that the most recent common ancestor of the strains appeared 39 years ago. The ASD strains possessed carbohydrate synthase genes that are conserved in Streptococcus pyogenes strains, whereas one strain featured a different arrangement of the gene cluster. The carbohydrate synthase genes varied by Lancefield type (A, C, and G).  相似文献   

19.
The effect of growth conditions on adhesion was studied in six species belonging to Lactobacillus acidophilus homology groups. Namely, 17 strains including 6 fresh isolates of L. gasseri from human feces were assessed for their adherence to immobilized fibronectin, laminin, and type IV collagen. These extracellular matrix proteins were used as a model of damaged intestinal mucosa. When the bacteria were grown on MRS agar under anaerobic conditions, all eight L. gasseri strains and one L. johnsonii strain showed strong adhesiveness to laminin, but not when grown in static MRS broth. A similar pattern was observed in four L. gasseri strains in terms of adherence to fibronectin. No L. gasseri or L. johnsonii strains exhibited adhesion to type IV collagen under either growth condition. Adhesion of L. acidophilus, L. crispatus, L. amylovorus, and L. gallinarum was not affected by the growth conditions. Although protease treatment of L. gasseri cells abolished the adhesion, periodate oxidation of the cells increased it except in one strain. The adherence of L. gasseri cells was diminished by periodate and α-mannosidase treatments of immobilized laminin. The above results suggest that mannose-specific proteinaceous adhesion can be induced in L. gasseri by contact with a mucosal surface in the anaerobic intestinal lumen.  相似文献   

20.
The aim of this study was to investigate the immunoprotective effects of AaHIV in mice. After purification, a 12% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS‐PAGE) was performed. Bicinchoninic acid was used to determine the molecular weight and concentration of AaHIV. AaHIV, venom complex (VC), and phosphate buffered saline (PBS) were subsequently used to immunize the mice three times, and the blood was sampled 1 week after the third immunization to determine the serum immunoglobulin G (IgG) antibody titer. A skin‐bleeding inhibition assay and toxin‐eliminating assay were performed on the immunized mice. The purity and concentration of AaHIV were 86.6% and 1.20 mg/mL, respectively. The AaHIV group exhibited higher antibody titers than the VC group. The survival rate of the AaHIV group (7/10) was significantly higher than that of the PBS group (0/10) (P = 0.0031). The high titer of antibodies induced by AaHIV partially neutralized the bleeding activity of the Deinagkistrodon acutus venom complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号