首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corynebacterium ulcerans has been increasingly isolated as an emerging zoonotic agent of diphtheria and other infections from companion animals. Since pets are able to act as symptomless carriers, it is also essential to identify virulence potential for humans of these isolates. In this work the ability of C. ulcerans to bind to fibrinogen (Fbg), fibronectin (Fn) and Type I collagen as well the genetic relationship among strains isolated from human and asymptomatic dogs in Rio de Janeiro (Brazil) were analyzed. Five pulsed-field gel electrophoresis (PFGE) profiles were demonstrated (I, II, III, IV and V). In addition, the IV and V profiles exhibiting ≥85 % similarity were expressed by the BR-AD41 and BR-AD61 strains from companion dogs living in the same neighborhood. Independent of the PFGE-types, human and dog isolates showed affinity to Fbg, Fn and collagen. Heterogeneity of PFGE profiles indicated endemicity of C. ulcerans in the Rio de Janeiro metropolitan area. Differences in the expression of adhesins to the human extracellular matrix may contribute to variations in the virulence and zoonotic potential of C. ulcerans strains.  相似文献   

2.
3.
A non-toxigenic tox gene-bearing (NTTB) Corynebacterium ulcerans was grown from the wound of a 61-year-old gardener and in a nasal specimen from the patient's asymptomatic dog. The two isolates were similar in terms of antibiogram, multilocus sequence typing (ST341), virulence genes, and only three SNPs were found to differentiate the two NTTB C. ulcerans isolates supporting a zoonotic transmission to or between the patient and his dog. Of interest, we found that the two C. ulcerans isolates, although not expressing the diphtheria toxin tox, possessed 13 out of 14 recently described virulence candidate genes.  相似文献   

4.
Zoonotic pathogens often infect several animal species, and gene flow among populations infecting different host species may affect the biological traits of the pathogen including host specificity, transmissibility and virulence. The bacterium Campylobacter jejuni is a widespread zoonotic multihost pathogen, which frequently causes gastroenteritis in humans. Poultry products are important transmission vehicles to humans, but the bacterium is common in other domestic and wild animals, particularly birds, which are a potential infection source. Population genetic studies of C. jejuni have mainly investigated isolates from humans and domestic animals, so to assess C. jejuni population structure more broadly and investigate host adaptation, 928 wild bird isolates from Europe and Australia were genotyped by multilocus sequencing and compared to the genotypes recovered from 1366 domestic animal and human isolates. Campylobacter jejuni populations from different wild bird species were distinct from each other and from those from domestic animals and humans, and the host species of wild bird was the major determinant of C. jejuni genotype, while geographic origin was of little importance. By comparison, C. jejuni differentiation was restricted between more phylogenetically diverse farm animals, indicating that domesticated animals may represent a novel niche for C. jejuni and thereby driving the evolution of those bacteria as they exploit this niche. Human disease is dominated by isolates from this novel domesticated animal niche.  相似文献   

5.
Clostridium difficile is an emerging enteropathogen responsible for pseudomembranous colitis in humans and diarrhoea in several domestic and wild animal species. Despite its known importance, there are few studies aboutC. difficile polymerase chain reaction (PCR) ribotypes in Brazil and the actual knowledge is restricted to studies on human isolates. The aim of the study was therefore to compare C. difficileribotypes isolated from humans and animals in Brazil. Seventy-six C. difficile strains isolated from humans (n = 25), dogs (n = 23), piglets (n = 12), foals (n = 7), calves (n = 7), one cat, and one manned wolf were distributed into 24 different PCR ribotypes. Among toxigenic strains, PCR ribotypes 014/020 and 106 were the most common, accounting for 14 (18.4%) and eight (10.5%) samples, respectively. Fourteen different PCR ribotypes were detected among human isolates, nine of them have also been identified in at least one animal species. PCR ribotype 027 was not detected, whereas 078 were found only in foals. This data suggests a high diversity of PCR ribotypes in humans and animals in Brazil and support the discussion of C. difficile as a zoonotic pathogen.  相似文献   

6.
Background: Clostridium difficile is an important gastrointestinal pathogen of humans and animals. It has been isolated from various foods, including meat and ready‐to‐eat salads, and concern has been expressed regarding food as a possible source of human C. difficile infection (CDI). Aims: We sought to isolate C. difficile from a variety of vegetables obtained from local grocery stores and to characterize these isolates. Materials and Methods: Vegetables were purchased from 11 different grocery stores in Guelph, Ontario, Canada between May and August 2009. Enrichment culture was performed and isolates were characterized by ribotyping, PFGE, toxinotyping and PCR detection of toxin genes. Results: Clostridium difficile was isolated from 4.5% (5/111) of retail vegetables. Two different ribotypes and two different toxinotypes were identified. Three isolates were ribotype 078/NAP 7/toxinotype V, possessing all three toxin genes. The other two isolates shared a ribotype with a toxigenic strain previously found in humans with CDI in this region. Discussion: Contamination of vegetables was found at relatively low levels, however, all isolates were toxigenic and belonging to ribotypes previously associated with CDI. Conclusions: Contamination of vegetables with CDI‐associated isolates can occur and although the implications for food safety practices remain elusive, the presence of toxigenic isolates suggests vegetables could be a source of C. difficile in humans.  相似文献   

7.
Diphtheria, caused by toxigenic strains of Corynebacterium diphtheriae, is an ancient disease with high incidence and mortality that has always been characterized by epidemic waves of occurrence. Whilst towards the beginning of the 1980s, many European countries were progressing towards the elimination of diphtheria, an epidemic re-emergence of diphtheria in the Russian Federation and the Newly Independent States of the former Soviet Union demonstrated a continuous threat of the disease into the 1990s. At present, the epidemic is under control and only sporadic cases are observed in Europe. However, the circulation of toxigenic strains is still observed in all parts of the world, posing a constant threat to the population with low levels of seroprotection. More recently, Corynebacterium ulcerans has been increasingly isolated as emerging zoonotic agent of diphtheria from companion animals such as cats or dogs, indicating the enduring threat of this thought-to-be controlled disease.  相似文献   

8.
Corynebacterium diphtheriae, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis constitute a group of potentially toxigenic microorganisms that are related to different infectious processes in animal and human hosts. Currently, there is a lack of information on the prevalence of disease caused by these pathogens, which is partially due to a reduction in the frequency of routine laboratory testing. In this study, a multiplex polymerase chain reaction (mPCR) assay that can simultaneously identify and determine the toxigenicity of these corynebacterial species with zoonotic potential was developed. This assay uses five primer pairs targeting the following genes: rpoB (Corynebacterium spp), 16S rRNA (C. ulcerans and C. pseudotuberculosis), pld (C. pseudotuberculosis), dtxR (C. diphtheriae) and tox [diphtheria toxin (DT) ]. In addition to describing this assay, we review the literature regarding the diseases caused by these pathogens. Of the 213 coryneform strains tested, the mPCR results for all toxigenic and non-toxigenic strains of C . diphtheriae, C. ulcerans and C. pseudotuberculosis were in 100% agreement with the results of standard biochemical tests and PCR-DT. As an alternative to conventional methods, due to its advantages of specificity and speed, the mPCR assay used in this study may successfully be applied for the diagnosis of human and/or animal diseases caused by potentially toxigenic corynebacterial species.  相似文献   

9.
Over the last three decades, successful implementation of the diphtheria vaccination in the developed and developing countries has reduced the infections caused by the toxigenic strains of Corynebacterium diphtheriae, but a concomitant increase in the invasive infections due to the nontoxigenic strains was seen. In addition, the recent reports on the emergence of nontoxigenic toxin gene‐bearing strains, having the potential to revert back to toxigenic form poses a significant threat to human beings. Besides infections caused by C. diphtheriae, the emergence of the respiratory, cutaneous and invasive infections by related pathogenic Corynebacterium species like C. ulcerans and C. pseudotuberculosis, complicate the diagnosis and management of infection. These observations together with the widespread prevalence of diphtheria in the vaccine era, necessitates the strengthening of the epidemiological surveillance and laboratory diagnosis of the pathogen. This review provides the overview of the advantages and limitations of different molecular methods and the role of MALDI‐TOF in the laboratory diagnosis of Diphtheria. The contribution of next generation sequencing technology and different genotyping techniques in understanding the pathogenicity, transmission dynamics and epidemiology of the C. diphtheriae is discussed.  相似文献   

10.
Companion animals carry different microorganism of severely public health hazard for human; the kindness relation and contact between humans and companion animals may the route in the transmission of most zoonotic bacteria, including Methicillin-Resistant Staphylococcus aureus (MRSA). Therefore, the current study investigate the companion animals mainly dogs and cat as a reservoir for MRSA and the genetic similarity between the recovered strains of MRSA from such companion animals and their owners. One hundred swabs were collected under aseptic condition from companion animals and seventy swabs were collected from nasal and soft tissue of the infected owners in contact. All samples were examined with standard microbiological techniques, antimicrobial sensitivity, molecular typing and genetic finger printing using RAPD-PCR to determine the genetic finger printing of the recovered strains from humans and companion animals. The prevalence of the MRSA was higher in dog’s swabs than human swabs. Dog swabs showed a rate of (44.4%), cat’s revealed (27.3%), while the owner swabs could detect (42.8%). The antibiotics profiles were 69.2% and all MRSA strains were positive for mecA gene (100%), while only 25 strains (38.5%) were positive for Panton Valentine Leukocidin (PVL gene). Phylogenetic tree revealed 4 clusters with complete genetic relatedness and higher identity between the strains recovered from humans and companion animals. Our results revealed that there is great similarity between the recovered strains, indicating that pets play an important role in colonization and transmitting MRSA to humans, and vice versa.  相似文献   

11.
Human giardiasis, caused by the intestinal flagellate Giardia duodenalis, is considered a zoonotic infection, although the role of animals in the transmission to humans is still unclear. Molecular characterisation of cysts of human and animal origin represents an objective means to validate or reject this hypothesis. In the present work, cysts were collected in Italy from humans (n=37) and animals (dogs, one cat and calves, n=46), and were characterised by PCR amplification and sequencing of the beta-giardin gene. As expected, only Assemblages A and B were identified among human isolates. The host-specific Assemblages C and D were found in the majority of dog isolates; however, 6 dog isolates were typed as Assemblage A. The cat-specific Assemblage F has been identified in the single feline isolate available. Among calf isolates, most were typed as Assemblages A (n=12) and B (n=5), whereas the host-specific Assemblage E was rarely found (n=3). Sequence heterogeneity in the beta-giardin gene allowed a number of subgenotypes to be identified within Assemblage A (8 subgenotypes), B (6 subgenotypes), D (2 subgenotypes), and E (3 subgenotypes). Five of these subgenotypes, namely A1, A2, A3, A4 and B3, were found to be associated with infections of humans, of dogs and of calves; these data, therefore, supported the role of these animals as a source of infection for humans.  相似文献   

12.
Aims: Escherichia coli have been targeted for studying antimicrobial resistance in companion animals because of opportunistic infections and as a surrogate for resistance patterns in zoonotic organisms. The aim of our study is to examine antimicrobial resistance in E. coli isolated from various anatomical sites on healthy dogs and cats and identify genetic relatedness. Methods and Results: From May to August, 2007, healthy companion animals (155 dogs and 121 cats) from three veterinary clinics in the Athens, GA, USA, were sampled. Escherichia coli was isolated from swabs of nasal, oral, rectal, abdomen and hindquarter areas. Antimicrobial susceptibility testing against 16 antimicrobials was performed using broth microdilution with the Sensititre? system. Clonal types were determined by a standardized pulsed‐field gel electrophoresis protocol. Although rectal swabs yielded the most E. coli (165/317; 52%) from dogs and cats, the organism was distributed evenly among the other body sites sampled. Escherichia coli isolates from both dogs and cats exhibited resistance to all antimicrobials tested with the exception of amikacin, cephalothin and kanamycin. Resistance to ampicillin was the most prevalent resistance phenotype detected (dogs, 33/199; 17%; and cats, 27/118; 23%). Among the resistant isolates, 21 resistance patterns were observed, where 18 patterns represented multidrug resistance (MDR; resistance ≥2 antimicrobial classes). Also among the resistant isolates, 33 unique clonal types were detected, where each clonal type contained isolates from various sampling sites. Similar resistance phenotypes were exhibited among clonal types, and three clonal types were from both dogs and cats. Conclusions: Healthy companion animals can harbour antimicrobial‐resistant E. coli on body sites that routinely come in contact with human handlers. Significance and Impact of the Study: This study is the first report that demonstrates a diverse antimicrobial‐resistant E. coli population distributed over various sites of a companion animal’s body, thereby suggesting potential transfer of resistant microflora to human hosts during contact.  相似文献   

13.
《Anthrozo?s》2013,26(2):76-87
ABSTRACT

The history of the relationship between humans and their companion animals is long and more than a little complex. This is in large part due to the special status of these animals. Over the years these animals have evolved socially from that of an impersonal “object” to a “subject,” i.e. a sentient being with a recognized mental and emotional life. Histories of this change in relationship are rare. This is due mainly to a lack of source material; little is available and what there is is rarely reflective of a general population. Recently, records of a 1796 English dog tax have become available and they provide a fairly complete overview of the status of the dog as a companion animal in late eighteenth-century London.

The evidence indicates the dog was very popular as a companion animal in late eighteenth-century English urban society. While some of these creatures were former working-class canines others were what might be described as “professional companion animals” i.e. creatures who had no previous work history. The tax records further indicate that concern as to specific breed was still in the future. Dogs often received a generic title such as “yard dog” or “lapdog” or “housedog.” What is particularly interesting from these records is the number of mixed breed creatures—animals with the title of either “mongrel” or “curr.” (At least three Londoners kept foxes as pets.) There is also an almost total absence of kennels of hunting dogs in eighteenth-century London. Other historical records suggest this to be a recent phenomenon. Lastly, this outline appears to correlate strongly with the literary remarks, material accoutrements, and even religious practices of the late eighteenth-century urban dog population of England.  相似文献   

14.
All six great ape species are listed as endangered or critically endangered by the IUCN and experiencing decreasing population trends. One of the threats to these non-human primates is the transmission of pathogens from humans. We conducted a literature review on occurrences of pathogen transmission from humans to great apes to highlight this often underappreciated issue. In total, we found 33 individual occurrences of probable or confirmed pathogen transmission from humans to great apes: 23 involved both pathogen and disease transmission, 7 pathogen transmission only, 2 positive antibody titers to zoonotic pathogens, and 1 pathogen transmission with probable disease. Great ape populations were categorized into captive, semi-free-living, and free-living conditions. The majority of occurrences involved chimpanzees (Pan troglodytes) (n = 23) or mountain gorillas (Gorilla beringei beringei) (n = 8). These findings have implications for conservation efforts and management of endangered great ape populations. Future efforts should focus on monitoring and addressing zoonotic pathogen and disease transmission between humans, great ape species, and other taxa to ensure the health of humans, wild and domestic animals, and the ecosystems we share.  相似文献   

15.
Domestic dogs (Canis lupus familiaris) can transmit a variety of pathogens due to their ubiquitousness in urban, rural and natural environments, and their close interactions with wildlife and humans. In this study, we used a mixed-methods approach to assess the role of domestic dogs as potential intermediaries of disease transmission from wildlife to humans among indigenous Waiwai in the Konashen Community Owned Conservation Area, Guyana. To address these objectives we 1) performed physical examinations and collected biological samples to assess Waiwai domestic dog health, and 2) administered questionnaires to characterize the role of dogs in the community and identify potential transmission pathways between wildlife, dogs, and humans. We observed ectoparasites on all dogs (n = 20), including: fleas (100%), ticks (15%), botflies (30%), and jigger flea lesions (Tunga penetrans) (80%). Ten percent of dogs were seropositive for Ehrlichia canis/ewingii, 10% were positive for Dirofilaria immitis, and one dog was seropositive for Leishmania infantum. All dogs (n = 20) were seronegative for: canine distemper virus, Brucella canis, Leptospira serovars, Trypanosoma cruzi, Anaplasma phagocytophilum/platys and Borrelia burgdorferi. Our questionnaire data revealed that the Waiwai remove ectoparasites from their dogs, clean up dog feces, and administer traditional and/or Western medicine to their dogs. White blood cell, strongyle-type ova, and eosinophil counts were lower in dogs that were not frequently used for hunting, dogs that did receive traditional and/or western medicine, and dogs that were frequently kept in elevated dog houses, although differences were not statistically significant. While our results suggest that the Waiwai have developed cultural practices that may promote dog health and/or prevent zoonotic disease transmission, more research is necessary to determine the efficacy of these practices. Our study provides important data on the health of dogs and the potential for disease transmission to humans in a zoonotic hotspot.  相似文献   

16.
Trichomonad species inhabit a variety of vertebrate hosts; however, their potential zoonotic transmission has not been clearly addressed, especially with regard to human infection. Twenty-one strains of trichomonads isolated from humans (5 isolates), pigs (6 isolates), rodents (6 isolates), a water buffalo (1 isolate), a cow (1 isolate), a goat (1 isolate), and a dog (1 isolate) were collected in Indonesia and molecularly characterized. The DNA sequences of the partial 18S small subunit ribosomal RNA (rRNA) gene or 5.8S rRNA gene locus with its flanking regions (internal transcribed spacer region, ITS1 and ITS2) were identified in various trichomonads; Simplicimonas sp., Hexamastix mitis, and Hypotrichomonas sp. from rodents, and Tetratrichomonas sp. and Trichomonas sp. from pigs. All of these species were not detected in humans, whereas Pentatrichomonas hominis was identified in humans, pigs, the dog, the water buffalo, the cow, and the goat. Even when using the high-resolution gene locus of the ITS regions, all P. hominis strains were genetically identical; thus zoonotic transmission between humans and these closely related mammals may be occurring in the area investigated. The detection of Simplicimonas sp. in rodents (Rattus exulans) and P. hominis in water buffalo in this study revealed newly recognized host adaptations and suggested the existence of remaining unrevealed ranges of hosts in the trichomonad species.  相似文献   

17.
When selecting a habitat, animals utilize habitat in which they yield the highest rate of energy. Differences in foraging costs and hunting success are therefore likely to affect habitat choice. In a previous study, we showed that African wild dog (Lycaon pictus) packs with territories inside Hwange National Park (HNP), over the course of several years, moved their territories into the buffer zone outside HNP, where reproductive success was higher but anthropogenic mortality exceeded natality. In this study, based on long‐term radio‐telemetry data from 22 African wild dog packs, we analysed whether differences in foraging costs and hunting success could have contributed to this territorial drift. Taking seasonality and pack size into account, we determined foraging costs (foraging distance and chase distance) and hunting success (successful or failed chase) inside and outside HNP. Although we observed no difference in foraging costs, hunting success was higher outside HNP, which is likely to have contributed to the territorial drift into the buffer zone outside the protected area. This study shows the importance of taking factors affecting hunting success into account in the conservation strategy of African wild dogs.  相似文献   

18.
Microsporidia comprises a diverse group of obligate intracellular parasites that infect a broad range of invertebrates and vertebrates. Among Microsporidia, Enterocytozoon bieneusi is the most frequently detected species in humans and animals worldwide bringing into question the possible role of animal reservoirs in the epidemiology of this pathogen. Although E. bieneusi is an emerging zoonotic pathogen able to infect many domestic and wild mammals that could act as reservoir of infection for humans and other animals, only few studies have documented its occurrence in wild carnivores. To determine the occurrence of E. bieneusi in wild carnivores, we examined 190 wild carnivores collected from different locations in Spain. Twenty‐five fecal samples (13.2%) from three host species (European badger, beech marten, and red fox) were E. bieneusi‐positive by PCR. Nucleotide sequence analysis of the ITS region revealed a high degree of genetic diversity with a total of eight distinct genotypes including four known (PtEbIX, S5, S9, and WildBoar3) and four novel (EbCar1‐EbCar4) genotypes identified. Phylogenetic analysis showed that the four novel genotypes (EbCar1‐EbCar4), S5, S9, and WildBoar3 clustered within the previously designated zoonotic Group 1. Our results demonstrate that human‐pathogenic genotypes are present in wild carnivores, corroborating their potential role as a source of human infection and environmental contamination.  相似文献   

19.
Diphtheria toxin (DT) is a potent toxin produced by the so-called diphtheria group which includes Corynebacterium diphtheriae (C. diphtheriae), Corynebacterium ulcerans (C. ulcerans), and Corynebacterium pseudotuberculosis (C. pseudotuberculosis). The present investigation is aimed to study in detail the production of DT by C. pseudotuberculosis. Twenty isolates were obtained from sheep diseased with caseous lymphadenitis (CLA) and twenty-six isolates were obtained from 26 buffaloes diseased with oedematous skin disease (OSD). All isolates were identified by standard microbiological and DT production was assayed serologically by modified Elek test and immunoblotting. All sheep isolates were nitrate negative, failed to hydrolyze starch and could not produce DT, while all buffalo isolates (biotype II) revealed positive results and a specific band of 62 kDa, specific to DT, was resulted in all concentrated cell fractions (CF), but was absent from non-toxigenic biotype I isolates. At the same time, another band of 31 kDa specific to the PLD gene was obtained with all isolates of biotype I and II. Moreover, all isolates showed positive synergistic hemolytic activity and antagonistic hemolysis with β-hemolytic Staphylococci. The obtained results also indicated that C. pseudotuberculosis could be classified into two strains; non-toxigenic biotype I strain, which failed to produce DT as well as being negative to nitrate and starch hydrolysis, and toxigenic biotype II strain, which can reduce nitrate, hydrolyze starch as well as produce DT.  相似文献   

20.
The overhunting of wildlife for food and commercial gain presents a major threat to biodiversity in tropical forests and poses health risks to humans from contact with wild animals. Using a recent survey of wildlife offered at wild meat markets in Malaysia as a basis, we review the literature to determine the potential zoonotic infection risks from hunting, butchering and consuming the species offered. We also determine which taxa potentially host the highest number of pathogens and discuss the significant disease risks from traded wildlife, considering how cultural practices influence zoonotic transmission. We identify 51 zoonotic pathogens (16 viruses, 19 bacteria and 16 parasites) potentially hosted by wildlife and describe the human health risks. The Suidae and the Cervidae families potentially host the highest number of pathogens. We conclude that there are substantial gaps in our knowledge of zoonotic pathogens and recommend performing microbial food safety risk assessments to assess the hazards of wild meat consumption. Overall, there may be considerable zoonotic risks to people involved in the hunting, butchering or consumption of wild meat in Southeast Asia, and these should be considered in public health strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号