首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammals have co‐evolved with retroviruses, including lentiviruses, over a long period. Evidence supporting this contention is that viral infectivity factor (Vif) encoded by lentiviruses antagonizes the anti‐viral action of cellular apolipoprotein B mRNA editing enzyme catalytic polypeptide‐like 3 (APOBEC3) of the host. To orchestrate E3 ubiquitin ligase complex for APOBEC3 degradation, Vifs utilize mammalian proteins such as core‐binding factor beta (CBFB; for primate lentiviruses) or cyclophilin A (CYPA; for Maedi–Visna virus [MVV]). However, the co‐evolutionary relationship between lentiviral Vif and the mammalian proteins associated with Vif‐mediated APOBEC3 degradation is poorly understood. Moreover, it is unclear whether Vif proteins of small ruminant lentiviruses (SRLVs), including MVV and caprine arthritis encephalitis virus (CAEV), commonly utilize CYPA to degrade the APOBEC3 of their hosts. In this study, molecular phylogenetic and protein homology modeling revealed that Vif co‐factors are evolutionarily and structurally conserved. It was also found that not only MVV but also CAEV Vifs degrade APOBEC3 of both sheep and goats and that CAEV Vifs interact with CYPA. These findings suggest that lentiviral Vifs chose evolutionarily and structurally stable proteins as their partners (e.g., CBFB or CYPA) for APOBEC3 degradation and, particularly, that SRLV Vifs evolved to utilize CYPA as their co‐factor in degradation of ovine and caprine APOBEC3.  相似文献   

2.
Primate lentivirus Vif proteins function by suppressing the antiviral activity of the cell-encoded apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like (APOBEC) proteins APOBEC3G and APOBEC3F. It has been hypothesized that species-specific susceptibilities of APOBEC proteins to Vif proteins may help govern the transmission of primate lentiviruses to new host species. Consistent with this view and with previous results, we report that the Vif proteins of several diverse simian immunodeficiency viruses (SIVs) that are not known to infect humans are not effective inhibitors of human APOBEC3G or APOBEC3F when assessed in transient-transfection experiments. Unexpectedly, this lack of SIV Vif function did not prevent the replication of two vif-deficient SIVs (SIVtan and SIVmnd1; isolated from tantalus monkeys and mandrills, respectively) in a human T-cell line, HUT78, that expresses both APOBEC 3G and APOBEC3F, a finding which demonstrates that some SIVs are partially resistant to the antiretroviral effects of these enzymes irrespective of Vif function. Additional virus replication studies also revealed that the Vif protein of SIVtan is, in fact, active in human T cells, as it substantially enhanced the replication of its cognate virus and human immunodeficiency virus type 1. In sum, we now consider it improbable that species-specific restrictions to SIV Vif function can explain the lack of human infection with certain SIVs. Instead, our data reveal that the species-specific modulation of Vif function is more complex than previously envisioned and that additional (as-yet-unidentified) viral or host factors may be involved in regulating this dynamic interaction between host and pathogen.  相似文献   

3.
Wang J  Zhang W  Lv M  Zuo T  Kong W  Yu X 《Journal of virology》2011,85(23):12482-12491
Various feline APOBEC3 (fA3) proteins exhibit broad antiviral activities against a wide range of viruses, such as feline immunodeficiency virus (FIV), feline foamy virus (FFV), and feline leukemia virus (FeLV), as well as those of other species. This activity can be counteracted by the FIV Vif protein, but the mechanism by which FIV Vif suppresses fA3s is unknown. In the present study, we demonstrated that FIV Vif could act via a proteasome-dependent pathway to overcome fA3s. FIV Vif interacted with feline cellular proteins Cullin5 (Cul5), ElonginB, and ElonginC to form an E3 complex to induce degradation of fA3s. Both the dominant-negative Cul5 mutant and a C-terminal hydrophilic replacement ElonginC mutant potently disrupted the FIV Vif activity against fA3s. Furthermore, we identified a BC-box motif in FIV Vif that was essential for the recruitment of E3 ubiquitin ligase and also required for FIV Vif-mediated degradation of fA3s. Moreover, despite the lack of either a Cul5-box or a HCCH zinc-binding motif, FIV Vif specifically selected Cul5. Therefore, FIV Vif may interact with Cul5 via a novel mechanism. These finding imply that SOCS proteins may possess distinct mechanisms to bind Cul5 during formation of the Elongin-Cullin-SOCS box complex.  相似文献   

4.
Liu B  Yu X  Luo K  Yu Y  Yu XF 《Journal of virology》2004,78(4):2072-2081
The Vif protein of human immunodeficiency virus type 1 (HIV-1) is essential for viral evasion of the host antiviral protein APOBEC3G, also known as CEM15. Vif mutant but not wild-type HIV-1 viruses produced in the presence of APOBEC3G have been shown to undergo hypermutations in newly synthesized viral DNA upon infection of target cells, presumably resulting from C-to-U modification during minus-strand viral DNA synthesis. We now report that HIV-1 Vif could induce rapid degradation of human APOBEC3G that was blocked by the proteasome inhibitor MG132. The efficiency of Vif-induced downregulation of APOBEC3G expression depended on the level of Vif expression. A single amino acid substitution in the conserved SLQXLA motif reduced Vif function. Vif proteins from distantly related primate lentiviruses such as SIVagm were unable to suppress the antiviral activity of human APOBEC3G or the packaging of APOBEC3G into HIV-1 Vif mutant virions, due to a lack of interaction with human APOBEC3G. In the presence of the proteasome inhibitor MG132, virion-associated Vif increased dramatically. However, increased virion packaging of Vif did not prevent virion packaging of APOBEC3G when proteasome function was impaired, and the infectivity of these virions was significantly reduced. These results suggest that Vif function is required during virus assembly to remove APOBEC3G from packaging into released virions. Once packaged, virion-associated Vif could not efficiently block the antiviral activity of APOBEC3G.  相似文献   

5.
The inability of human immunodeficiency virus type 1(HIV-1) to replicate in rhesus macaque cells is in part due to the failure of HIV-1 Vif to counteract the restriction factor APOBEC3G. However, in this study we demonstrate that several rhesus macaque APOBEC3 (rhAPOBEC3) proteins are capable of inhibiting HIV-1 infectivity. There was considerable variation in the ability of a panel of Vif proteins to induce degradation of rhAPOBEC3 proteins, and mutations within HIV-1 Vif that render it capable of degrading rhAPOBEC3G did not confer activity against other antiviral rhAPOBEC3 proteins. These findings suggest that multiple APOBEC3 proteins can contribute to primate lentivirus species tropism.  相似文献   

6.
Viral infectivity factor (Vif) is one of the human immunodeficiency virus (HIV) accessory proteins and is conserved in the primate lentivirus group. This protein is essential for viral replication in vivo and for productive infection of nonpermissive cells, such as peripheral blood mononuclear cells (PBMC). Vif counteracts an antiretroviral cellular factor in nonpermissive cells named CEM15/APOBEC3G. Although HIV type 1 (HIV-1) Vif protein (Vif1) can be functionally replaced by HIV-2 Vif protein (Vif2), its identity is very small. Most of the functional studies have been carried out with Vif1. Characterization of functional domains of Vif2 may elucidate its function, as well as differences between HIV-1 and HIV-2 infectivity. Our aim was to identify the permissivity of different cell lines for HIV-2 vif-minus viruses. By mutagenesis specific conserved motifs of HIV-2 Vif protein were analyzed, as well as in conserved motifs between Vif1 and Vif2 proteins. Vif2 mutants were examined for their stability, expression, and cellular localization in order to characterize essential domains of Vif2 proteins. Viral replication in various target cells (PBMC and H9, A3.01, U38, and Jurkat cells) and infectivity in single cycle assays in the presence of APOBEC3G were also analyzed. Our results of viral replication show that only PBMC have a nonpermissive phenotype in the absence of Vif2. Moreover, the HIV-1 vif-minus nonpermissive cell line H9 does not show a similar phenotype for vif-negative HIV-2. We also report a limited effect of APOBEC3G in a single-cycle infectivity assay, where only conserved domains between HIV-1 and HIV-2 Vif proteins influence viral infectivity. Taken together, these results allow us to speculate that viral inhibition by APOBEC3G is not the sole and most important determinant of antiviral activity against HIV-2.  相似文献   

7.
Viruses must overcome diverse intracellular defense mechanisms to establish infection. The Vif (virion infectivity factor) protein of human immunodeficiency virus 1 (HIV-1) acts by overcoming the antiviral activity of APOBEC3G (CEM15), a cytidine deaminase that induces G to A hypermutation in newly synthesized viral DNA. In the absence of Vif, APOBEC3G incorporation into virions renders HIV-1 non-infectious. We report here that Vif counteracts the antiviral activity of APOBEC3G by targeting it for destruction by the ubiquitin-proteasome pathway. Vif forms a complex with APOBEC3G and enhances APOBEC3G ubiquitination, resulting in reduced steady-state APOBEC3G levels and a decrease in protein half-life. Furthermore, Vif-dependent degradation of APOBEC3G is blocked by proteasome inhibitors or ubiquitin mutant K48R. A mutation of highly conserved cysteines or the deletion of a conserved SLQ(Y/F)LA motif in Vif results in mutants that fail to induce APOBEC3G degradation and produce non-infectious HIV-1; however, mutations of conserved phosphorylation sites in Vif that impair viral replication do not affect APOBEC3G degradation, suggesting that Vif is important for other functions in addition to inducing proteasomal degradation of APOBEC3G. Vif is monoubiquitinated in the absence of APOBEC3G but is polyubiquitinated and rapidly degraded when APOBEC3G is coexpressed, suggesting that coexpression accelerates the degradation of both proteins. These results suggest that Vif functions by targeting APOBEC3G for degradation via the ubiquitin-proteasome pathway and implicate the proteasome as a site of dynamic interplay between microbial and cellular defenses.  相似文献   

8.
To study how HIV-1 viral infectivity factor (Vif) mediates proteasome-dependent depletion of host factor APOBEC3G, functional and nonfunctional Vif-APOBEC3G interactions were correlated with subcellular localization. APOBEC3G localized throughout the cytoplasm and co-localized with gamma-tubulin, 20 S proteasome subunit, and ubiquitin at punctate cytoplasmic bodies that can be used to monitor the Vif-APOBEC3G interaction in the cell. Through immunostaining and live imaging, we showed that a substantial fraction of Vif localized to the nucleus, and this localization was impaired by deletion of amino acids 12-23. When co-expressed, Vif exhibited more pronounced localization to the cytoplasm and reduced the total cellular levels of APOBEC3G but rarely co-localized with APOBEC3G at cytoplasmic bodies. On the contrary, Vif(C114S), which is inactive but continues to interact with APOBEC3G, stably associated with APOBEC3G in the cytoplasm, resulting in complete co-localization at cytoplasmic bodies and a dose-dependent exclusion of Vif(C114S) from the nucleus. Following proteasome inhibition, cytoplasmic APOBEC3G levels increased, and both proteins co-accumulated nonspecifically into a vimentin-encaged aggresome. Furthermore in the presence or absence of APOBEC3G, Vif localization was significantly altered by proteasome inhibition, suggesting that aberrant localization may also contribute to the loss of Vif function. Finally mutations at Vif Ile(9) disrupted the ability of Vif or Vif(C114S) to coimmunoprecipitate and to co-localize with APOBEC3G, suggesting that the N terminus of Vif mediates interactions with APOBEC3G. Taken together, these results demonstrate that cytoplasmic Vif-APOBEC3G interactions are required but are not sufficient for Vif to modulate APOBEC3G and can be monitored by co-localization in vivo.  相似文献   

9.
Interaction between the HIV-1 Vif protein and the cellular host APOBEC3G protein is a promising target for inhibition of HIV-1 replication. Considering that human cells are a very complicated environment for the study of protein interactions, the goal of this study was to check whether fission yeast could be used as a model cell for studying the Vif-APOBEC3G interaction. Vif and APOBEC3G were expressed in fusion with GFP protein in the S. pombe SP223 strain. Subcellular localizations of Vif and APOBEC3G were observed with fluorescent microscopy. Codon optimization was used to over express the Vif protein in S. pombe cells. The degradation of APOBEC3G mediated by Vif was tested through expressing Vif and GFP-APOBEC3G proteins in the same cell. Western Blot analysis was used to measure the corresponding protein levels under different experimental conditions. The results showed that the Vif protein was predominantly localized in the nucleus of S.pombe cells, APOBEC3G was localized in the cytoplasm and concentrated at punctate bodies that were often in close proximity to the nucleus but were not necessarily restricted from other regions in the cytoplasm. Vif protein expression levels were increased significantly by using codon optimization and APOBEC3G was degraded when Vif was over-expressed in the same S. pombe cells. These results indicate that fission yeast is a good model for studying the interaction between the Vif and APOBEC3G proteins.  相似文献   

10.
The APOBEC3 cytidine deaminases are potent antiviral factors that restrict replication of human immunodeficiency virus type 1 (HIV-1). HIV-1 Vif binds APOBEC3G and APOBEC3F and targets these proteins for ubiquitination by forming an E3 ubiquitin ligase with cullin 5 and elongins B and C. The N-terminal region of Vif is required for APOBEC3G binding, but the binding site(s) is unknown. To identify the APOBEC3G binding site in Vif, we established a scalable binding assay in a format compatible with development of high-throughput screens. In vitro binding assays using recombinant proteins identified Vif peptides and monoclonal antibodies that inhibit Vif-APOBEC3G binding and suggested involvement of Vif residues 33 to 83 in APOBEC3G binding. Cell-based binding assays confirmed these results and demonstrated that residues 40 to 71 in the N terminus of Vif contain a nonlinear binding site for APOBEC3G. Mutation of the highly conserved residues His42/43 but not other charged residues in this region inhibited Vif-APOBEC3G binding, Vif-mediated degradation of APOBEC3G, and viral infectivity. In contrast, mutation of these residues had no significant effect on Vif binding and degradation of APOBEC3F, suggesting a differential requirement for His42/43 in Vif binding to APOBEC3G and APOBEC3F. These results identify a nonlinear APOBEC3 binding site in the N terminus of Vif and demonstrate that peptides or antibodies directed against this region can inhibit Vif-APOBEC3G binding, validating the Vif-APOBEC3 interface as a potential drug target.  相似文献   

11.
12.
Antiretroviral cytidine deaminase APOBEC3G, which is abundantly expressed in peripheral blood lymphocytes and macrophages, strongly protects these cells against HIV-1 infection. The HIV-1 Vif protein overcomes this antiviral effect by enhancing proteasome-mediated APOBEC3G degradation and is key for maintaining viral infectivity. The 579-bp-long vif gene displays high genetic diversity among HIV-1 subtypes. Therefore, it is intriguing to address whether Vif proteins derived from different subtypes differ in their viral defense activity against APOBEC3G. Expression plasmids encoding Vif proteins derived from subtypes A, B, C, CRF01_AE, and CRF02_AG isolates were created, and their anti-APOBEC3G activities were compared. Viruses produced from cells expressing APOBEC3G and Vif proteins from different subtypes showed relatively different viral infectivities. Notably, subtype C-derived Vif proteins tested had the highest activity against APOBEC3G that was ascribed to its increased binding activity, for which the N-terminal domain of the Vif protein sequences was responsible. These results suggest that the biological differences of Vif proteins belonging to different subtypes might affect viral fitness and quasispecies in vivo.  相似文献   

13.
Human APOBEC3 cytidine deaminases are intrinsic resistance factors to HIV-1. However, HIV-1 encodes a viral infectivity factor (Vif) that degrades APOBEC3 proteins. In vitro APOBEC3F (A3F) anti-HIV-1 activity is weaker than A3G but is partially resistant to Vif degradation unlike A3G. It is unknown whether A3F protein affects HIV-1 disease in vivo. To assess the effect of A3F gene on host susceptibility to HIV- acquisition and disease progression, we performed a genetic association study in six well-characterized HIV-1 natural cohorts. A common six-Single Nucleotide Polymorphism (SNP) haplotype of A3F tagged by a codon-changing variant (p. I231V, with allele (V) frequency of 48% in European Americans) was associated with significantly lower set-point viral load and slower rate of progression to AIDS (Relative Hazards (RH) = 0.71, 95% CI: 0.56, 0.91) and delayed development of pneumocystis pneumonia (PCP) (RH = 0.53, 95% CI: 0.37–0.76). A validation study in the International Collaboration for the Genomics of HIV (ICGH) showed a consistent association with lower set-point viral load. An in vitro assay revealed that the A3F I231V variant may influence Vif mediated A3F degradation. Our results provide genetic epidemiological evidence that A3F modulates HIV-1/AIDS disease progression.  相似文献   

14.
The human immunodeficiency virus type 1 virion infectivity factor (Vif) inhibits the innate viral immunity afforded by the APOBEC3 family of cytidine deaminases. Vif targets the APOBEC3 family for poly-ubiquitination and subsequent proteasomal degradation by linking the Elongin-BC-dependent ubiquitin ligase complex with the APOBEC3 proteins. The interaction between Vif and the heterodimeric Elongin BC complex, which is mediated by Vif's viral suppressor of cytokine signaling box, is essential for Vif function. The biophysical consequences of the full-length Vif:Elongin BC interaction have not been extensively reported. In this study, hydrogen exchange mass spectrometry was used to dissect the Vif:Elongin BC interaction. Elongin C was found to be highly dynamic in the Elongin BC complex while Elongin B was much more stable. Recombinant full-length Vif interacted with the Elongin BC complex in vitro with a Kd of 1.9 μM and resulted in observable changes in deuterium uptake in both Elongin C and B. Upon binding to Elongin BC, no significant global conformational changes were detected in Vif by hydrogen exchange mass spectrometry, but a short fragment of Vif that consisted of the viral suppressor of cytokine signaling box showed decreased deuterium incorporation upon Elongin BC incubation, suggesting that this region folds upon binding.  相似文献   

15.
The productive replication of human immunodeficiency virus type 1 (HIV-1) occurs exclusively in defined cells of human or chimpanzee origin, explaining why heterologous animal models for HIV replication, pathogenesis, vaccination, and therapy are not available. This lack of an animal model for HIV-1 studies prompted us to examine the susceptibility of feline cells in order to evaluate the cat (Felis catus) as an animal model for studying HIV-1. Here, we report that feline cell lines harbor multiple restrictions with respect to HIV-1 replication. The feline CD4 receptor does not permit virus infection. Feline T-cell lines MYA-1 and FeT-1C showed postentry restrictions resulting in low HIV-1 luciferase reporter activity and low expression of viral Gag-Pol proteins when pseudotyped vectors were used. Feline fibroblastic CrFK and KE-R cells, expressing human CD4 and CCR5, were very permissive for viral entry and HIV-long terminal repeat-driven expression but failed to support spreading infection. KE-R cells displayed a profound block with respect to release of HIV-1 particles. In contrast, CrFK cells allowed very efficient particle production; however, the CrFK cell-derived HIV-1 particles had low specific infectivity. We subsequently identified feline apolipoprotein B-editing catalytic polypeptide 3 (feAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity. CrFK cells express at least three different APOBEC3s: APOBEC3C, APOBEC3H, and APOBEC3CH. While the feAPOBEC3C did not significantly inhibit HIV-1, the feAPOBEC3H and feAPOBEC3CH induced G to A hypermutations of the viral cDNA and reduced the infectivity approximately 10- to approximately 40-fold.  相似文献   

16.
The Vif protein of HIV-1 allows virus replication by degrading several members of the host-encoded APOBEC3 family of DNA cytosine deaminases. Polymorphisms in both host APOBEC3 genes and the viral vif gene have the potential to impact the extent of virus replication among individuals. The most genetically diverse of the seven human APOBEC3 genes is APOBEC3H with seven known haplotypes. Overexpression studies have shown that a subset of these variants express stable and active proteins, whereas the others encode proteins with a short half-life and little, if any, antiviral activity. We demonstrate that these stable/unstable phenotypes are an intrinsic property of endogenous APOBEC3H proteins in primary CD4+ T lymphocytes and confer differential resistance to HIV-1 infection in a manner that depends on natural variation in the Vif protein of the infecting virus. HIV-1 with a Vif protein hypo-functional for APOBEC3H degradation, yet fully able to counteract APOBEC3D, APOBEC3F, and APOBEC3G, was susceptible to restriction and hypermutation in stable APOBEC3H expressing lymphocytes, but not in unstable APOBEC3H expressing lymphocytes. In contrast, HIV-1 with hyper-functional Vif counteracted stable APOBEC3H proteins as well as all other endogenous APOBEC3s and replicated to high levels. We also found that APOBEC3H protein levels are induced over 10-fold by infection. Finally, we found that the global distribution of stable/unstable APOBEC3H haplotypes correlates with the distribution a critical hyper/hypo-functional Vif amino acid residue. These data combine to strongly suggest that stable APOBEC3H haplotypes present as in vivo barriers to HIV-1 replication, that Vif is capable of adapting to these restrictive pressures, and that an evolutionary equilibrium has yet to be reached.  相似文献   

17.
18.
19.
Zhou X  Evans SL  Han X  Liu Y  Yu XF 《PloS one》2012,7(3):e33495
Human immunodeficiency virus-1 (HIV-1) viral infectivity factor (Vif) is essential for viral replication because of its ability to eliminate the host's antiviral response to HIV-1 that is mediated by the APOBEC3 family of cellular cytidine deaminases. Vif targets these proteins, including APOBEC3G, for polyubiquitination and subsequent proteasome-mediated degradation via the formation of a Cullin5-ElonginB/C-based E3 ubiquitin ligase. Determining how the cellular components of this E3 ligase complex interact with Vif is critical to the intelligent design of new antiviral drugs. However, structural studies of Vif, both alone and in complex with cellular partners, have been hampered by an inability to express soluble full-length Vif protein. Here we demonstrate that a newly identified host regulator of Vif, core-binding factor-beta (CBFβ), interacts directly with Vif, including various isoforms and a truncated form of this regulator. In addition, carboxyl-terminal truncations of Vif lacking the BC-box and cullin box motifs were sufficient for CBFβ interaction. Furthermore, association of Vif with CBFβ, alone or in combination with Elongin B/C (EloB/C), greatly increased the solubility of full-length Vif. Finally, a stable complex containing Vif-CBFβ-EloB/C was purified in large quantity and shown to bind purified Cullin5 (Cul5). This efficient strategy for purifying Vif-Cul5-CBFβ-EloB/C complexes will facilitate future structural and biochemical studies of Vif function and may provide the basis for useful screening approaches for identifying novel anti-HIV drug candidates.  相似文献   

20.
The human immunodeficiency virus type 1 (HIV-1) relies on Vif (viral infectivity factor) to overcome the potent antiviral function of APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G, also known as CEM15). Using an APOBEC3G-specific antiserum, we now show that Vif prevents virion incorporation of endogenous APOBEC3G by effectively depleting the intracellular levels of this enzyme in HIV-1-infected T cells. Vif achieves this depletion by both impairing the translation of APOBEC3G mRNA and accelerating the posttranslational degradation of the APOBEC3G protein by the 26S proteasome. Vif physically interacts with APOBEC3G, and expression of Vif alone in the absence of other HIV-1 proteins is sufficient to cause depletion of APOBEC3G. These findings highlight how the bimodal translational and posttranslational inhibitory effects of Vif on APOBEC3G combine to markedly suppress the expression of this potent antiviral enzyme in virally infected cells, thereby effectively curtailing the incorporation of APOBEC3G into newly formed HIV-1 virions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号