首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to demonstrate the metabolic and proteomic adaptation of Lactobacillus rhamnosus strains, which were isolated at different stages of Parmigiano Reggiano cheese ripening. Compared to de Man, Rogosa, and Sharpe (MRS) broth, cultivation under cheese‐like conditions (cheese broth, CB) increased the number of free amino acids used as carbon sources. Compared with growth on MRS or pasteurized and microfiltrated milk, all strains cultivated in CB showed a low synthesis of d,l ‐lactic acid and elevated levels of acetic acid. The proteomic maps of the five representative strains, showing different metabolic traits, were comparatively determined after growth on MRS and CB media. The amount of intracellular and cell‐associated proteins was affected by culture conditions and diversity between strains, depending on their time of isolation. Protein spots showing decreased (62 spots) or increased (59 spot) amounts during growth on CB were identified using MALDI‐TOF‐MS/MS or LC‐nano‐ESI‐MS/MS. Compared with cultivation on MRS broth, the L. rhamnosus strains cultivated under cheese‐like conditions had modified amounts of some proteins responsible for protein biosynthesis, nucleotide, and carbohydrate metabolisms, the glycolysis pathway, proteolytic activity, cell wall, and exopolysaccharide biosynthesis, cell regulation, amino acid, and citrate metabolism, oxidation/reduction processes, and stress responses.  相似文献   

2.
Increasing evidence shows that the succinylation of lysine residues mainly regulates enzymes involved in the carbon metabolism pathway, in both prokaryotic and eukaryotic cells. Deinococcus radiodurans is one of the most radioresistant organisms on earth and is famous for its robust resistance. A major goal in the current study of protein succinylation is to explore its function in D. radiodurans. High‐resolution LC–MS/MS is used for qualitative proteomics to perform a global succinylation analysis of D. radiodurans and 492 succinylation sites in 270 proteins are identified. These proteins are involved in a variety of biological processes and pathways. It is found that the enzymes involved in nucleic acid binding/processing are enriched in D. radiodurans compared with their previously reported levels in other bacteria. The mutagenesis studies confirm that succinylation regulates the enzymatic activities of species‐specific proteins PprI and DdrB, which belong to the radiation–desiccation response regulon. Together, these results provide insight into the role of lysine succinylation in the extreme resistance of D. radiodurans.  相似文献   

3.
Seed imbibition and radicle emergence are generally less affected by salinity in soybean than in other crop plants. In order to unveil the mechanisms underlying this remarkable salt tolerance of soybean at seed germination, a comparative label‐free shotgun proteomic analysis of embryonic axes exposed to salinity during germination sensu stricto (GSS) was conducted. The results revealed that the application of 100 and 200 mmol/L NaCl stress was accompanied by significant changes (>2‐fold, P<0.05) of 97 and 75 proteins, respectively. Most of these salt‐responsive proteins (70%) were classified into three major functional categories: disease/defense response, protein destination and storage and primary metabolism. The involvement of these proteins in salt tolerance of soybean was discussed, and some of them were suggested to be potential salt‐tolerant proteins. Furthermore, our results suggest that the cross‐protection against aldehydes, oxidative as well as osmotic stress, is the major adaptive response to salinity in soybean.  相似文献   

4.
5.
Tannerella forsythia is a Gram‐negative anaerobe that is one of the most prominent inhabitants of the sub‐gingival plaque biofilm, which is crucial for causing periodontitis. We have used iTRAQ proteomics to identify and quantify alterations in global protein expression of T. forsythia during growth in a biofilm. This is the first proteomic study concentrating on biofilm growth in this key periodontal pathogen, and this study has identified several changes in protein expression. Moreover, we introduce a rigorous statistical method utilising peptide‐level intensities of iTRAQ reporters to determine which proteins are significantly regulated. In total, 348 proteins were identified and quantified with the expression of 44 proteins being significantly altered between biofilm and planktonic cells. We identified proteins from all cell compartments, and highlighted a marked upregulation in the relative abundances of predicted outer membrane proteins in biofilm cells. These included putative transport systems and the T. forsythia S‐layer proteins. These data and our finding that the butyrate production pathway is markedly downregulated in biofilms indicate possible alterations in host interaction capability. We also identified upregulation of putative oxidative stress response proteins, and showed that biofilm cells are 10 to 20 fold more resistant to oxidative stress. This may represent an important adaptation of this organism to prolonged persistence and immune evasion in the oral cavity.  相似文献   

6.
Dou  Junfeng  Qin  Wei  Ding  Aizhong  Liu  Xiang  Zhu  Yi 《Applied microbiology and biotechnology》2017,101(23):8365-8377

This study focused on the protein expression of a Microbacterium sp. strain that utilized various concentrations of benzo(a)pyrene (BaP) as the sole source of carbon and energy under anaerobic conditions. A total of 1539 protein species were quantified by isobaric tags for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS. GO, COG, and pathway enrichment analysis showed that most proteins demonstrated catalytic and binding functions and were mainly involved in metabolic processes, cellular processes, and single-organism processes. Sixty-two proteins were found in their abundances in BaP-stress conditions different from normal conditions. These proteins function in the metabolic pathways; the biosynthesis of secondary metabolites, the biosynthesis of antibiotics, microbial metabolism in diverse environments, carbon metabolism, and the biosynthesis of amino acids were markedly altered. Furthermore, enoyl-CoA hydratase was proposed to be a key protein during BaP removal of the Microbacterium sp. strain. This study provides a powerful platform for the further exploration of BaP removal, and the differentially expressed proteins provide insight into the mechanism of the BaP removal pathway.

  相似文献   

7.
Staphylococcus aureus Clp ATPases (molecular chaperones) alter normal physiological functions including an aconitase‐mediated effect on post‐stationary growth, acetate catabolism, and entry into death phase (Chatterjee et al., J. Bacteriol. 2005, 187, 4488–4496). In the present study, the global function of ClpC in physiology, metabolism, and late‐stationary phase survival was examined using DNA microarrays and 2‐D PAGE followed by MALDI‐TOF MS. The results suggest that ClpC is involved in regulating the expression of genes and/or proteins of gluconeogenesis, the pentose‐phosphate pathway, pyruvate metabolism, the electron transport chain, nucleotide metabolism, oxidative stress, metal ion homeostasis, stringent response, and programmed cell death. Thus, one major function of ClpC is balancing late growth phase carbon metabolism. Furthermore, these changes in carbon metabolism result in alterations of the intracellular concentration of free NADH, the amount of cell‐associated iron, and fatty acid metabolism. This study provides strong evidence for ClpC as a critical factor in staphylococcal energy metabolism, stress regulation, and late‐stationary phase survival; therefore, these data provide important insight into the adaptation of S. aureus toward a persister state in chronic infections.  相似文献   

8.
9.
10.
Volatile fatty acids (VFAs) are an inexpensive and renewable carbon source that can be generated from gas fermentation and anaerobic digestion of fermentable wastes. The oleaginous yeast Yarrowia lipolytica is a promising biocatalyst that can utilize VFAs and convert them into triacylglycerides (TAGs). However, currently there is limited knowledge on the metabolism of Y. lipolytica when cultured on VFAs. To develop a better understanding, we used acetate as the sole carbon source to culture two strains, a control strain and a previously engineered strain for lipid overaccumulation. For both strains, metabolism during the growth phase and lipid production phase were investigated by metabolic flux analysis using two parallel sodium acetate tracers. The resolved flux distributions demonstrate that the glyoxylate shunt pathway is constantly active and the flux through gluconeogenesis varies depending on strain and phase. In particular, by regulating the activities of malate transport and pyruvate kinase, the cells divert only a portion of the glyoxylate shunt flux required to satisfy the needs for anaplerotic reactions and NADPH production through gluconeogenesis and the oxidative pentose phosphate pathway (PPP). Excess flux flows back to the tricarboxylic acid (TCA) cycle for energy production. As with the case of glucose as the substrate, the primary source for lipogenic NADPH is derived from the oxidative PPP.  相似文献   

11.
In this study, the catabolic pathway required for the degradation of the biogenic amine histamine (Hin) was genetically and biochemically characterized in Pseudomonas putida U. The 11 proteins (HinABCDGHFLIJK) that participate in this pathway are encoded by genes belonging to three loci hin1, hin2 and hin3 and by the gene hinK. The enzymes HinABCD catalyze the transport and oxidative deamination of histamine to 4‐imidazoleacetic acid (ImAA). This reaction is coupled to those of other well‐known enzymatic systems (DadXAR and CoxBA‐C) that ensure both the recovery of the pyruvate required for Hin deamination and the genesis of the energy needed for Hin uptake. The proteins HinGHFLKIJ catalyze the sequential transformation of ImAA to fumaric acid via N2‐formylisoasparagine, formylaspartic acid and aspartic acid. The identified Hin pathway encompasses all the genes and proteins (transporters, energizing systems, catabolic enzymes and regulators) needed for the biological degradation of Hin. Our work was facilitated by the design and isolation of genetically engineered strains that degrade Hin or ImAA and of mutants that accumulate Ala, Asp and Hin catabolites. The implications of this research with respect to potential biotechnological applications are discussed.  相似文献   

12.
The aim of this work was the functional and proteomic analysis of a mutant, W3110 Bgl+/10, isolated from a batch culture of an Escherichia coli K‐12 strain maintained at room temperature without addition of nutrients for 10 years. When the mutant was evaluated in competition experiments in co‐culture with the wild‐type, it exhibited the growth advantage in stationary phase (GASP) phenotype. Proteomes of the GASP mutant and its parental strain were compared by using a 2DE coupled with MS approach. Several differentially expressed proteins were detected and many of them were successful identified by mass spectrometry. Identified expression‐changing proteins were grouped into three functional categories: metabolism, protein synthesis, chaperone and stress responsive proteins. Among them, the prevalence was ascribable to the “metabolism” group (72%) for the GASP mutant, and to “chaperones and stress responsive proteins” group for the parental strain (48%).  相似文献   

13.
A previous study showed that the contents of caffeoylquinic acids and iridoids, the major bioactive components in the postharvest Lonicera japonica Thunb., were induced by enhanced ultraviolet (UV)‐A or UV‐B irradiation. To clarify the UV‐responsive key enzymes in the bioactive metabolites biosynthetic pathway and the related plant defense mechanism in L. japonica, 2DE in combination with MALDI‐TOF/TOF MS was employed. Seventy‐five out of 196 differential proteins were positively identified. Based on the functions, these proteins were grouped into nine categories, covering a wide range of molecular processes including the secondary metabolites (caffeoylquinic acids and iridoids) biosynthetic‐related proteins, photosynthesis, carbohydrate and energy metabolism, stress, DNA, transport‐related proteins, lipid metabolism, amino acid metabolism, cell wall. Of note is the increasing expression of 1‐deoxy‐d ‐xylulose 5‐phosphate reductoisomerase and 5‐enol‐pyruvylshikimate‐phosphate synthase, which was crucial to supply more precursor for the secondary metabolites including caffeoylquinic acids and iridoids. Thus, this study provides both the clues at the protein level for the increase of the two bioactive components upon UV irradiation and the profile of UV‐responsive proteins in L. japonica.  相似文献   

14.
The helminth Ascaris causes ascariasis in both humans and pigs. Humans, especially children, experience significant morbidity including respiratory complications, growth deficits and intestinal obstruction. Given that 800 million people worldwide are infected by Ascaris, this represents a significant global public health concern. The severity of the symptoms and associated morbidity are related to the parasite burden and not all hosts are infected equally. While the pathology of the disease has been extensively examined, our understanding of the molecular mechanisms underlying resistance and susceptibility to this nematode infection is poor. In order to investigate host differences associated with heavy and light parasite burden, an experimental murine model was developed utilising Ascaris-susceptible and -resistant mice strains, C57BL/6J and CBA/Ca, respectively, which experience differential burdens of migratory Ascaris larvae in the host lungs. Previous studies identified the liver as the site where this difference in susceptibility occurs. Using a label free quantitative proteomic approach, we analysed the hepatic proteomes of day four post infection C57BL/6J and CBA/Ca mice with and without Ascaris infection to identify proteins changes potentially linked to both resistance and susceptibility amongst the two strains, respectively. Over 3000 proteins were identified in total and clear intrinsic differences were elucidated between the two strains. These included a higher abundance of mitochondrial proteins, particularly those associated with the oxidative phosphorylation pathway and reactive oxygen species (ROS) production in the relatively resistant CBA/Ca mice. We hypothesise that the increased ROS levels associated with higher levels of mitochondrial activity results in a highly oxidative cellular environment that has a dramatic effect on the nematode’s ability to successfully sustain a parasitic association with its resistant host. Under infection, both strains had increased abundances in proteins associated with the oxidative phosphorylation pathway, as well as the tricarboxylic acid cycle, with respect to their controls, indicating a general stress response to Ascaris infection. Despite the early stage of infection, some immune-associated proteins were identified to be differentially abundant, providing a novel insight into the host response to Ascaris. In general, the susceptible C57BL/6J mice displayed higher abundances in immune-associated proteins, most likely signifying a more active nematode cohort with respect to their CBA/Ca counterparts. The complement component C8a and S100 proteins, S100a8 and S100a9, were highly differentially abundant in both infected strains, signifying a potential innate immune response and the importance of the complement pathway in defence against macroparasite infection. In addition, the signatures of an early adaptive immune response were observed through the presence of proteins, such as plastin-2 and dipeptidyl peptidase 1. A marked decrease in proteins associated with translation was also observed in both C57BL/6J and CBA/Ca mice under infection, indicative of either a general response to Ascaris or a modulatory effect by the nematode itself. Our research provides novel insights into the in vivo host-Ascaris relationship on the molecular level and provides new research perspectives in the development of Ascaris control and treatment strategies.  相似文献   

15.
16.
Abstract

Calcium is an important macronutrient for both prokaryotes and eukaryotes. It acts as an important second messenger mediating rapid response to environmental conditions. The present investigation deals with proteome profiling of Anabaena 7120 and its derivative ntcA mutant in response to varied calcium doses (0, 1 and 10?mM CaCl2). Concentration of 1?mM CaCl2 salt was the optimum concentration whereas 10?mM CaCl2 was the inhibitory concentration for both the wild type and mutant strains. The results showed highly significant alteration in terms of protein abundance and differential response related to key processes of photosynthesis, energy and metabolism, nitrogen metabolism, oxidative and antioxidative defence, transport and signalling and fatty acid metabolism. In the wild type proteins related to photosynthesis and nitrogen metabolism showed upregulation at 1?mM CaCl2 concentration while antioxidative defence related proteins were down-regulated. In the mutant however, proteins related to photosynthesis and nitrogen metabolism exhibited severe down-regulation. Some hypothetical proteins were also realized during proteome analysis. Overall, our results suggested that NtcA have a potential role in regulation of calcium ion dependent key processes underlying in various metabolic activities of the cyanobacterium Anabaena 7120.  相似文献   

17.
Crude proteins and pigments were extracted from different microalgae strains, both marine and freshwater. The effectiveness of enzymatic pre‐treatment prior to protein extraction was evaluated and compared to conventional techniques, including ultrasonication and high‐pressure water extraction. Enzymatic pre‐treatment was chosen as it could be carried out at mild shear conditions and does not subject the proteins to high temperatures, as with the ultrasonication approach. Using enzymatic pre‐treatment, the extracted proteins yields of all tested microalgae strains were approximately 0.7 mg per mg of dry cell weight. These values were comparable to those achieved using a commercial lytic kit. Ultrasonication was not very effective for proteins extraction from Chlorella sp., and the extracted proteins yields did not exceed 0.4 mg per mg of dry cell weight. For other strains, similar yields were achieved by both treatment methods. The time‐course effect of enzymatic incubation on the proteins extraction efficiency was more evident using laccase compared to lysozyme, which suggested that the former enzyme has a slower rate of cell disruption. The crude extracted proteins were fractionated using an ion exchange resin and were analyzed by the electrophoresis technique. They were further tested for their antioxidant activity, the highest of which was about 60% from Nannochloropsis sp. The total phenolic contents in the selected strains were also determined, with Chlorella sp. showing the highest content reaching 17 mg/g. Lysozyme was also found to enhance the extraction of pigments, with Chlorella sp. showing the highest pigments contents of 16.02, 4.59 and 5.22 mg/g of chlorophyll a, chlorophyll b and total carotenoids, respectively.  相似文献   

18.
As an important second messenger, calcium is involved in plant cold stress response, including chilling (<20 °C) and freezing (<0 °C). In this study, exogenous application of calcium chloride (CaCl2) improved both chilling and freezing stress tolerances, while ethylene glycol‐bis‐(β‐aminoethyl) ether‐N,N,N,N‐tetraacetic acid (EGTA) reversed CaCl2 effects in bermudagrass (Cynodon dactylon (L.) Pers.). Physiological analyses showed that CaCl2 treatment alleviated the reactive oxygen species (ROS) burst and cell damage triggered by chilling stress, via activating antioxidant enzymes, non‐enzymatic glutathione antioxidant pool, while EGTA treatment had the opposite effects. Additionally, comparative proteomic analysis identified 51 differentially expressed proteins that were enriched in redox, tricarboxylicacid cycle, glycolysis, photosynthesis, oxidative pentose phosphate pathway, and amino acid metabolisms. Consistently, 42 metabolites including amino acids, organic acids, sugars, and sugar alcohols were regulated by CaCl2 treatment under control and cold stress conditions, further confirming the common modulation of CaCl2 treatment in carbon metabolites and amino acid metabolism. Taken together, this study reported first evidence of the essential and protective roles of endogenous and exogenous calcium in bermudagrass response to cold stress, partially via activation of the antioxidants and modulation of several differentially expressed proteins and metabolic homeostasis in the process of cold acclimation.  相似文献   

19.
A lot of studies have been carried out on Saccharomyces cerevisiae, an yeast with a predominant fermentative metabolism under aerobic conditions, which allows exploring the complex response induced by oxidative stress. S. cerevisiae is considered a eukaryote model for these studies. We propose Kluyveromyces lactis as a good alternative model to analyse variants in the oxidative stress response, since the respiratory metabolism in this yeast is predominant under aerobic conditions and it shows other important differences with S. cerevisiae in catabolic repression and carbohydrate utilization. The knowledge of oxidative stress response in K. lactis is still a developing field. In this article, we summarize the state of the art derived from experimental approaches and we provide a global vision on the characteristics of the putative K. lactis components of the oxidative stress response pathway, inferred from their sequence homology with the S. cerevisiae counterparts. Since K. lactis is also a well-established alternative host for industrial production of native enzymes and heterologous proteins, relevant differences in the oxidative stress response pathway and their potential in biotechnological uses of this yeast are also reviewed.  相似文献   

20.
Chicory (Cichorium intybus) roots contain high amounts of inulin, a fructose polymer used as a storage carbohydrate by the plant and as a human dietary and prebiotic compound. We performed 2‐D electrophoretic analysis of proteins from root material before the first freezing period. The proteins were digested with trypsin and the peptides analyzed by MS (MALDI‐TOF/TOF). From the 881 protein spots analyzed, 714 proteins corresponded to a database accession, 619 of which were classified into functional categories. Besides expected proteins (e.g. related to metabolism, energy, protein synthesis, or cell structure), other well‐represented categories were proteins related to folding and stability (49 spots), proteolysis (49 spots), and the stress response (67 spots). The importance of abiotic stress response was confirmed by the observation that 7 of the 21 most intense protein spots are known to be involved in cold acclimation. These results suggest a major effect of the low temperature period that preceded root harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号