首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pertussis is a highly infectious respiratory disease of humans caused by the bacterium Bordetella pertussis. Despite high vaccination coverage, pertussis has re-emerged globally. Causes for the re-emergence of pertussis include limited duration of protection conferred by acellular pertussis vaccines (aP) and pathogen adaptation. Pathogen adaptations involve antigenic divergence with vaccine strains, the emergence of strains which show enhanced in vitro expression of a number of virulence-associated genes and of strains that do not express pertactin, an important aP component. Clearly, the identification of more effective B. pertussis vaccine antigens is of utmost importance. To identify novel antigens, we used proteomics to identify B. pertussis proteins regulated by the master virulence regulatory system BvgAS in vitro. Five candidates proteins were selected and it was confirmed that they were also expressed in the lungs of naïve mice seven days after infection. The five proteins were expressed in recombinant form, adjuvanted with alum and used to immunize mice as stand-alone antigens. Subsequent respiratory challenge showed that immunization with the autotransporters Vag8 and SphB1 significantly reduced bacterial load in the lungs. Whilst these antigens induced strong opsonizing antibody responses, we found that none of the tested alum-adjuvanted vaccines - including a three-component aP - reduced bacterial load in the nasopharynx, suggesting that alternative immunological responses may be required for efficient bacterial clearance from the nasopharynx.  相似文献   

2.
Recent clinical trials have shown that the new generation of acellular pertussis vaccines (Pa) can confer protection against whooping cough with negligible adverse reactions. We have compared the effects of pertussis whole cell and acellular vaccines on pulmonary immune responses after aerosol challenge in a murine model of infection. Mice were vaccinated with PBS, Pw or Pa and challenged with Bordetella pertussis by the aerosol route. Cytokine gene expression was analysed from lung tissue and cells; lung lymphocytes were re-stimulated in vitro and cytokines produced measured. The results obtained are consistent with the proposal that a strong Th-1 response is associated with bacterial clearance in both the non-vaccinated and Pw vaccinated mice. The acellular vaccine treated mice cleared the bacterial challenge (with an intermediate efficacy) in the presence of low levels of any of the cytokines assessed. This suggests that Pa protects via a Th-2 independent mechanism.  相似文献   

3.

Background  

Bordetella pertussis is a causative agent of pertussis or whooping cough in humans. Pertactin (Prn), fimbriae 2 (Fim2) and fimbriae 3 (Fim3) of B. pertussis are important virulence factors and immunogens which have been included in some acellular pertussis vaccines. In this present study, we cloned, expressed and purified Prn, Fim2 and Fim3, respectively. The immunogeniCity and protective efficacy of the three recombinant proteins (rPrn, rFim2 and rFim3) were investigated in mouse model.  相似文献   

4.
Protections against Fasciola gigantica infection in mice immunized with the individual and combined cathepsin L1H and cathepsin B3 vaccines were assessed. The vaccines comprised recombinant (r) pro-proteins of cathepsin L1H and B3 (rproFgCatL1H and rproFgCatB3) and combined proteins which were expressed in Pichia pastoris. The experimental trials were performed in ICR mice (n = 10 per group) by subcutaneous injection with 50 μg of the recombinant proteins combined with Alum or Freund's adjuvants. At two weeks after the third immunization, mice were infected with 15 F. gigantica metacercariae per mouse by oral route. The percents of protection of rproFgCatL1H, rproFgCatB3 and combined vaccines against F. gigantica were approximately 58.8 to 75.0% when compared with adjuvant-infected control. These protective effects were similar among groups receiving vaccines with Alum or Freund's adjuvants. By determining the levels of IgG1 and IgG2a in the immune sera, which are indicative of Th1 and Th2 immune responses, it was found that both Th1 and Th2 humoral immune responses were significantly increased in vaccinated groups compared with the control groups, with higher levels of IgG1 (Th2) than IgG2a (Th1). Mice in vaccinated groups showed reduction in liver pathological lesions when compared with control groups. This study indicates that the combined rproFgCatB3 and rproFgCatL1H vaccine had a high protective potential than a single a vaccine, with Alum and Freund's adjuvants showing similar level of protection. These results can serve as guidelines for the testing of this F. gigantica vaccine in larger economic animals.  相似文献   

5.
6.
Whooping cough due to Bordetella pertussis is increasing in incidence, in part due to accumulation of mutations which increase bacterial fitness in highly vaccinated populations. Polymorphisms in the pertussis toxin, ptxA and ptxB genes, and the pertactin, prn genes of clinical isolates of Bordetella pertussis collected in Cincinnati from 1989 through 2005 were examined. While the ptxA and prn genotypes were variable, all 48 strains had the ptxB2 genotype; ptxB1 encodes glycine at amino acid 18 of the S2 subunit of pertussis toxin, while ptxB2 encodes serine. We investigated antigenic and functional differences of PtxB1 and PtxB2. The S2 protein was not very immunogenic. Only a few vaccinated or individuals infected with B. pertussis developed antibody responses to the S2 subunit, and these sera recognized both polymorphic forms equally well. Amino acid 18 of S2 is in a glycan binding domain, and the PtxB forms displayed differences in receptor recognition and toxicity. PtxB1 bound better to the glycoprotein, fetuin, and Jurkat T cells in vitro, but the two forms were equally effective at promoting CHO cell clustering. To investigate in vivo activity of Ptx, one μg of Ptx was administered to DDY mice and blood was collected on 4 days after injection. PtxB2 was more effective at promoting lymphocytosis in mice.  相似文献   

7.
Background: Tumor necrosis factor (TNF)‐α‐inducing protein (Tipα) is a newly identified carcinogenic factor present in Helicobacter pylori. Tipα has the unique function of inducing TNF‐α production by gastric cells in vitro and is assumed to be related with the development of gastritis and gastric cancer. We investigated the effects of vaccination with Tipα against H. pylori infection and analyzed the immune responses. Methods: C57BL/6 mice were immunized via the intranasal route with CpG, recombinant Tipα + CpG, and recombinant del‐Tipα (a mutant of Tipα) + CpG. Eight weeks after the mice were infected with H. pylori (5 × 107 CFU), the number of colonizing bacteria in the stomach was calculated, and the histological severity of gastritis was evaluated. Levels of Tipα‐specific IgG and IgA antibodies in mouse serum were measured by an enzyme‐linked immunosorbent assay (ELISA). Local production of cytokines including Interleukin (IL)‐10, TNF‐α and Interferon (IFN)‐γ in gastric mucosa was also measured by real time‐PCR. Results: Levels of Tipα‐specific antibodies were significantly higher in Tipα‐immunized and del‐Tipα‐immunized mice than in the infection control group. The numbers of colonizing bacteria were significantly reduced in Tipα‐immunized mice (4.29 × 105 CFU/g) and del‐Tipα immunized mice (2.5 × 105 CFU/g) compared with infection control mice (5.7 × 106 CFU/g). The levels of IFN‐γ and IL‐10 were significantly higher in del‐Tipα‐immunized mice than the infection control group. Conclusion: Vaccinations with Tipα and del‐Tipα were effective against H. pylori infection. The inhibition of H. pylori colonization is associated mainly with Th1 cell‐mediated immunity.  相似文献   

8.
Infection by the bacterium Bordetella pertussis continues to cause considerable morbidity and mortality worldwide. Many current acellular pertussis vaccines include the antigen pertactin, which has presumptive adhesive and immunomodulatory activities, but is rapidly lost from clinical isolates after the introduction of these vaccines. To better understand the contributions of pertactin antibodies to protection and pertactin''s role in pathogenesis, we isolated and characterized recombinant antibodies binding four distinct epitopes on pertactin. We demonstrate that four of these antibodies bind epitopes that are conserved across all three classical Bordetella strains, and competition assays further showed that antibodies binding these epitopes are also elicited by B. pertussis infection of baboons. Surprisingly, we found that representative antibodies binding each epitope protected mice against experimental B. pertussis infection. A cocktail of antibodies from each epitope group protected mice against a subsequent lethal dose of B. pertussis and greatly reduced lung colonization levels after sublethal challenge. Each antibody reduced B. pertussis lung colonization levels up to 100-fold when administered individually, which was significantly reduced when antibody effector functions were impaired, with no antibody mediating antibody-dependent complement-induced lysis. These data suggest that antibodies binding multiple pertactin epitopes protect primarily by the same bactericidal mechanism, which overshadows contributions from blockade of other pertactin functions. These antibodies expand the available tools to further dissect pertactin''s role in infection and understand the impact of antipertactin antibodies on bacterial fitness.  相似文献   

9.
An ELISA that measures anti‐PT IgG antibody has been used widely for the serodiagnosis of pertussis; however, the IgG‐based ELISA is inadequate for patients during the acute phase of the disease because of the slow response of anti‐PT IgG antibodies. To solve this problem, we developed a novel IgM‐capture ELISA that measures serum anti‐Bordetella pertussis Vag8 IgM levels for the accurate and early diagnosis of pertussis. First, we confirmed that Vag8 was highly expressed in all B. pertussis isolates tested (n = 30), but little or none in other Bordetella species, and that DTaP vaccines did not induce anti‐Vag8 IgG antibodies in mice (i.e. the antibody level could be unaffected by the vaccination). To determine the immune response to Vag8 in B. pertussis infection, anti‐Vag8 IgM levels were compared between 38 patients (acute phase of pertussis) and 29 healthy individuals using the anti‐Vag8 IgM‐capture ELISA. The results revealed that the anti‐Vag8 IgM levels were significantly higher in the patients compared with the healthy individuals (P < 0.001). ROC analysis also showed that the anti‐Vag8 IgM‐capture ELISA has higher diagnostic accuracy (AUC, 0.92) than a commercial anti‐PT IgG ELISA kit. Moreover, it was shown that anti‐Vag8 IgM antibodies were induced earlier than anti‐PT IgG antibodies on sequential patients’ sera. These data indicate that our novel anti‐Vag8 IgM‐capture ELISA is a potentially useful tool for making the accurate and early diagnosis of B. pertussis infection.  相似文献   

10.
The aim of the study reported here was to investigate the production of Bordetella pertussis outer membrane vesicles (OMVs). Numerous vesicles released from cells grown in Stainer-Scholte liquid medium were observed. The formation of similar vesicle-like structures could also be artificially induced by sonication of concentrated bacterial suspensions. Immunoblot analysis showed that OMVs contain adenylate cyclase-hemolysin (AC-Hly), among other polypeptides, as well as the lipopolysaccharide (LPS). Experiments carried out employing purified AC-Hly and OMVs isolated from B. pertussis AC-Hly showed that AC-Hly is an integral component of the vesicles. OMVs reported here contain several protective immunogens and might be considered a possible basic material for the development of acellular pertussis vaccines. Received: 22 October 1998 / Accepted: 17 December 1998  相似文献   

11.
Individual susceptibility differences to fungal infection following invasive and/or immunosuppressive medical interventions are an important clinical issue. In order to explore immune response‐related factors that may be linked to fungal infection susceptibility, we have compared the response of inbred C57BL/6J and outbred CD1 mouse strains to different experimental models of fungal sepsis. The challenge of animals with the zymosan‐induced generalised inflammation model revealed poorer survival rates in C57BL/6J, consistent with lower Th1 cytokine interferon (IFN)‐γ serum levels, compared with CD1 mice. Likewise, ex vivo exposure of C57BL/6J splenocytes to zymosan but also bacterial lipopolisaccharide or lipoteichoic acid, resulted in lower IFN‐γ secretion compared with CD1 mice. C57BL/6J susceptibility could be reverted by rescue infusion of relative low IFN‐γ doses (0.2 μg/kg) either alone or in combination with the ß‐glucan‐binding CD5 protein (0.7 mg/kg) leading to improved post zymosan‐induced generalised inflammation survival. Similarly, low survival rates to systemic Candida albicans infection (2.86 × 104 CFU/gr) were ameliorated by low‐dose IFN‐γ infusion in C57BL/6J but not CD1 mice. Our results highlight the importance of strain choice in experimental fungal infection models and provide a susceptibility rationale for more specific antifungal immunotherapy designs.  相似文献   

12.
Many respiratory pathogens establish persistent infection or a carrier state in the human nasopharynx without overt disease symptoms but the presence of these in the lungs usually results in disease. Although the anatomy and microenvironments between nasopharynx and lungs are different, a virulence factor with an organ‐specific function in the colonization of the nasopharynx is unknown. In contrast to the severity of pertussis and mortality in non‐vaccinated young children, Bordetella pertussis results in milder and prolonged cough in vaccinated adolescents and adults. Individuals harbouring bacteria in the nasopharynx serve as reservoirs for intrafamilial and nosocomial transmission. We show that the Bps polysaccharide of B. pertussis is critical for initial colonization of the mouse nose and the trachea but not of the lungs. Our data reveal a biofilm lifestyle for B. pertussis in the nose and the requirement of Bps in this developmental process. Bps functions as an adhesin by promoting adherence of B. pertussis and Escherichia coli to human nasal but not to human lung epithelia. Patient serum specifically recognized Bps suggesting its expression during natural human infections. We describe the first bacterial factor that exhibits a differential role in colonization and adherence between the nasopharynx and the lungs.  相似文献   

13.
Platycodin D2 ( 1 ), a less hemolytic saponin from the root of Platycodon grandiflorum than platycodin D ( 2 ), was evaluated for the potential to enhance specific cellular and humoral immune responses to hepatitis B surface antigen (HBsAg) in mice. It significantly increased the concanavalin A (Con A)‐, lipopolysaccharide (LPS)‐, and HBsAg‐induced splenocyte proliferation in HBsAg‐immunized mice (P<0.05, P<0.01, and P<0.001, resp.). HBsAg‐specific IgG, IgG1, IgG2a, and IgG2b antibody titers in the serum were also markedly enhanced by 1 compared to the HBsAg control group (P<0.01 or P<0.001). Moreover, 1 significantly promoted the production of Th1 (IL‐2 and IFN‐γ) and Th2 (IL‐4 and IL‐10) cytokines from splenocytes in the HBsAg‐immunized mice (P<0.001). The adjuvant potential of 1 on splenocyte proliferation, serum HBsAg‐specific IgG2a and IgG2b antibody response, as well as Th1‐cytokine secretion from splenocytes in the HBsAg‐immunized mice was higher than that of Alum. The results suggest that 1 could improve both cellular and humoral immune responses to HBsAg in mice. Hence, 1 might be a promising adjuvant for hepatitis B vaccine with dual Th1‐ and Th2‐potentiating activity.  相似文献   

14.
Abstract

Tetracycline‐controlled expression plasmids that allow inducible expression of proteins in mammalian cells (Gossen & Bujard, 1992), have been used to express porcine interferon‐γ in the RK‐13 rabbit kidney cell line. Following neomycin selection, stable clones produced recombinant, glycosylated porcine interferon‐γ (rGPoIFN‐γ) only after removal of tetracycline (Tc). Southern blot analysis of one clone showed that approximately 50 copies of IFN‐γ cDNA were present in the cell genome. In the absence of Tc, stable clones secreted large amounts of rGPoIFN‐γ (up to 16 μg/ml) into the medium supplemented with 10% FCS and high glucose concentration. Molecular weight comparison of 35S‐Methionine, labelled rGPoIFN‐γ with natural leukocytic IFN‐γ after immunoprecipitation, revealed 4 major glycoforms with apparent Mr of 27,000; 25,000; 20,000 and 18,500, that are almost identical in both IFN‐γ species. In both cases, all 4 glycoforms resolved into 2 polypeptide monomers with apparent Mr of 16,500 and 14,500 upon deglycosylation with N‐glycosydase F. The biological activity of rGPoIFN‐γ was in the same range as that of natural leukocytic PoIFN‐γ (2 × 106 U/mg). Eventually, this recombinant mammalian IFN‐γ should constitute a very useful substitute for leukocyte PoIFN‐γ in in vitro or in vivo experiments.  相似文献   

15.
Interleukin-12 protein has been widely used experimentally in therapeutic and adjuvant settings in the treatment of different diseases including intra-cellular bacterial infections. The in vivo clearance of Bordetella pertussis infections in naive mice and in animals vaccinated with whole cell vaccine is considered to be a Th-1 dependent mechanism. Furthermore, the addition of IL-12 protein to an acellular pertussis vaccine increases the efficacy of this vaccine. Whilst the use of IL-12 protein is often beneficial, a number of problems there are associated with this cytokine including toxicities and down regulation of normal immune functions. The use of DNA constructs encoding this cytokine may be a way of achieving maximum therapeutic benefit with minimum toxicity. The aims of this study were to optimise the effects of two IL-12 DNA constructs, especially with respect to augmenting pulmonary immune responsiveness and to compare the effect of IL-12 DNA and IL-12 protein on bacterial colonisation of lungs following aerosol challenge with B. pertussis. We found that IL-12 DNA constructs augmented the activity of pulmonary NK cells but had little effect on the course of B. pertussis infections in mice. In contrast to IL-12 protein, the DNA constructs had no immunosuppressive effects on splenic lymphocyte mitogen responses.  相似文献   

16.
Toxoplasma gondii (T. gondii) rhoptry proteins (TgROPs) have been considered main targets and indicator molecules for immune diagnosis and prophylaxis since they initially present during the process of invasion. In this study, the effect of intramuscularly injecting the genetic vaccine pVAX‐ROP22 was evaluated, made by inserting the TgROP22 sequence into the eukaryotic expression vector of pVAX I, into BALB/c mice. The levels of IgG, IgG1, and IgG2a in pVAX‐ROP22 vaccinated animals were integrally increased. It was uncovered by cytokine profile analyses that the levels of IFN‐γ and IL‐2 were significantly increased, while no significant changes were detected in IL‐4 and IL‐10 levels. In addition, we found that immunization with pVAX‐ROP22 significantly prolonged the survival time (13.80 ± 1.75 d) of mice after challenge infection with the virulent T. gondii RH strain, in comparison with those of control animals (died within 10 d). Moreover, the number of brain cysts (1,406 ± 277) in the animals subjected to pVAX‐TgROP22 vaccination decreased remarkably (< 0.05) compared with the blank control mice (2,333 ± 473), and the size of brain cysts in pVAX‐TgROP22 group was significantly smaller than the groups of blank, PBS and pVAXI. These results suggested that TgROP22 as DNA vaccine could trigger strong humoral and cellular responses and induce partial protection against toxoplasmosis.  相似文献   

17.
Whooping cough remains a significant disease worldwide and its re-emergence in highly vaccinated populations has been attributed to a combination of imperfect vaccines and evolution of the pathogen. The focus of this study was to examine the role of IL-1α/β and the inflammasome in generation of the interleukin-1 (IL-1) response, which is required for the clearance of Bordetella pertussis. We show that IL-1β but not IL-1α is required for mediating the clearance of B. pertussis from the lungs of mice. We further found that IL-1β and IL-1R deficient mice, compared to wild-type, have similar but more persistent levels of inflammation, characterized by immune cell infiltration, with significantly increased IFNγ and a normal IL-17A response during B. pertussis infection. Contrary to expectations, the cleavage of precursor IL-1β to its mature form did not require caspase-1 during primary infections within the lung despite being required by bone marrow-derived macrophages exposed to live bacteria. We also found that the caspase-1 inflammasome was not required for protective immunity against a B. pertussis challenge following vaccination with heat-killed whole cell B. pertussis, despite IL-1R signaling being required. These findings demonstrate that caspase-1-independent host factors are involved in the processing of protective IL-1β responses that are critical for bacterial clearance and vaccine-mediated immunity.  相似文献   

18.
Aims: We sought to develop a new method that enables the assessment of the immune response of guinea pigs during TB vaccine evaluation studies, without the need to cull or anaesthetize animals. Method and Results: Guinea pigs were vaccinated with five different formulations of oral BCG. One week prior to challenge with Mycobacterium bovis, blood (50–200 μl) was taken from the ears of vaccinated subjects. Host RNA was isolated and amplified following antigenic restimulation of PBMCs for 24 h with 30 μg of bovine PPD. The up‐ or down‐regulation of γ‐interferon (IFN‐γ), a key cytokine involved in protection against tuberculosis, was assessed using real‐time PCR. The relative expression of prechallenge IFN‐γ mRNA in the vaccinated groups (n = 5) correlated (P < 0·001) with protection against M. bovis challenge. Conclusion: We have demonstrated that it is possible to take blood samples and track IFN‐γ responses in guinea pigs that then go on to be exposed to M. bovis, thus providing prechallenge vaccine uptake information. Significance and Impact of the Study: This methodology will also be applicable for tracking the immune responses of vaccinated guinea pigs over time that then go on to be challenged with M. tuberculosis during human TB vaccine evaluation studies.  相似文献   

19.

Background

Despite the extensive use of efficacious vaccines, pertussis still ranks among the major causes of childhood mortality worldwide. Two types of pertussis vaccines are currently available, whole-cell, and the more recent acellular vaccines. Because of reduced reactogenicity and comparable efficacy acellular vaccines progressively replace whole-cell vaccines. However, both types require repeated administrations for optimal efficacy. We have recently developed a live attenuated vaccine candidate, named BPZE1, able to protect infant mice after a single nasal administration.

Methodology/Principal Findings

We determined the protective mechanism of BPZE1-mediated immunity by using passive transfer of T cells and antibodies from BPZE1-immunized mice to SCID mice. Clearance of Bordetella pertussis from the lungs was mediated by both BPZE1-induced antibodies and CD4+, but not by CD8+ T cells. The protective CD4+ T cells comprised IFN-γ-producing and IL-17-producing subsets, indicating that BPZE1 induces both Th1 and Th17 CD4+ T cells. In addition, and in contrast to acellular pertussis vaccines, BPZE1 also cross-protected against Bordetella parapertussis infection, but in this case only the transfer of CD4+ T cells conferred protection. Serum from BPZE1-immunized mice was not able to kill B. parapertussis and did not protect SCID mice against B. parapertussis infection.

Conclusions/Significance

The novel live attenuated pertussis vaccine BPZE1 protects in a pre-clinical mouse model against B. pertussis challenge by both BPZE1-induced antibodies and CD4+ T cell responses. It also protects against B. parapertussis infection. However, in this case protection is only T cell mediated.  相似文献   

20.
The apical complex of Toxoplasma gondii enables it to invade virtually all nucleated cells in warm‐blooded animals, including humans, making it a parasite of global importance. Anti‐T. gondii cellular defence mechanisms depend largely on interferon (IFN)‐γ production by immune cells. However, the molecular mechanism of IFN‐β‐mediated defence remains largely unclear. Here, mouse peritoneal macrophages and murine embryonic fibroblasts (MEFs) primed with recombinant IFN‐β and IFN‐γ showed different pathways of activation. Treatment of these cells with IFN‐β or IFN‐γ inhibited T. gondii (type II PLK strain) growth. Priming macrophages with IFN‐β had no effect on inflammatory cytokine expression, inducible nitric oxide synthase or indoleamine 2,3‐dioxygenase, nor did it have an effect on their metabolites, nitric oxide and kynurenine respectively. In contrast, IFN‐γ stimulation was characterized by classical macrophage activation and T. gondii elimination. IFN‐β activation recruited the immunity‐related GTPase M1 (IRGM1) to the parasitophorous vacuole in the macrophages and MEFs. Anti‐toxoplasma activities induced by IFN‐β were significantly reduced after IRGM1 knockdown in murine macrophages and in IRGM1‐deficient MEFs. Thus, this study unravels an alternative pathway of macrophage activation by IFN‐β and provides a mechanistic explanation for the contribution of IRGM1 induced by IFN‐β to the elimination of T. gondii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号