首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mollugo nudicaulis Lam., commonly known as John’s folly or naked-stem carpetweed, is an ephemeral species of tropical regions. The plant is ideal to study the eco-physiological adaptations of C3–C4 intermediate plants. In the present report, in vitro growth profiling of the plant and comparative leaf anatomy under in vitro and ex vitro conditions were studied. In vitro propagation of the plant was carried out on Murashige and Skoog (MS) basal medium augmented with additives and solidified with 0.8% (w/v) agar-agar or 0.16% (w/v) Phytagel?. The concentration of plant growth regulators (PGRs) in the basal medium was optimized for callus induction, callus proliferation, shoot regeneration, and in vitro rooting. The optimum callus induction was obtained from M. nudicaulis seedling hypocotyls. The highest regeneration induction of about 88% or nearly 41 shoots with about 142 leaves per culture vessel was observed from friable callus on MS basal medium solidified with Phytagel? and containing 4.44 μM 6-benzylaminopurine, 4.65 μM kinetin, 2.69 μM naphthaleneacetic acid, and 0.91 μM thidiazuron. In leaf anatomy, differences related to photosynthetic tissue organization were observed in leaves of in vitro and ex vitro plants, which indicated that changes in the environment affected the anatomy of subsequent leaves in plants. This is the first report of an efficient micropropagation protocol for M. nudicaulis, using an indirect organogenesis method. Efforts were made to optimize the concentrations of various PGRs and organic compounds for in vitro growth of regenerated shoots.  相似文献   

2.
Cytisus aeolicus Guss. ex Lindl. (Fabaceae family, subfamily Faboideae) is an endangered endemic species of the Aeolian Islands, Sicily. In vitro multiplication of C. aeolicus shoots was described in this work and cell cultures were established from cotyledons and hypocotyls to investigate their potential production of isoflavones. Aseptically germinated seeds, cultivated on LS modified basal medium, gave the initial explants used both to induce axillary propagation and callus cultures. The LS (Linsmaier and Skoog) basal medium, supplemented with 0.1 mg L?1 of 6-benzylaminopurine were used to induce axillary propagation. The callus induction was performed using the basal medium added with 5 mg L?1 2,4-dichlorophenoxy acetic acid and 5 mg L?1 kinetin (control medium). Basal medium was also added with 2000 mg L?1 casein hydrolysate (CH) or 900 mg L?1myo-inositol (MI). C. aeolicus callus cultures on CH and MI media produced an unique compound, the isoflavone genistein 7-O-ß-D-glucopyranoside (genistin), which has not previously been isolated from wild plants. Callus cultures grown on the medium containing myo-inositol produced the greatest amount of genistin. C. aeolicus tissue culture procedures could provide suitable plant material both for germplasm preservation (by micropropagation) and for biotechnological selective isoflavone production (by callus culture).  相似文献   

3.
Phlomis armeniaca Willd. is a medicinal plant in the Lamiaceae family endemic to Turkey. The present study describes efficient plant regeneration and callus induction protocols for P. armeniaca and compares phenolic profiles, total phenol and flavonoid contents, and free radical scavenging activity of in vitro-derived tissues. Stem node explants from germinated seedlings were cultured on Murashige and Skoog medium (MS) supplemented with 75 plant growth regulator (PGR) combinations. The highest shoot number per explant, frequency of shoot proliferation, and frequency of highly proliferated, green, compact callus were obtained on MS medium containing 0.25 mg L?1 thidiazuron (TDZ) and 0.25 mg L?1 indole-3-acetic acid (IAA). The best root formation was on MS basal medium (control). Methanol extract of leaves obtained from regenerants contained higher total phenol and flavonoid contents than the callus extract. The callus extract showed stronger free radical scavenging activity than leaves with IC50 [concentration inhibiting 50% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical] values of 4.30 ± 0.08 and 2.21 ± 0.04 mg g?1 dry weight in leaves and callus, respectively. Apigenin, caffeic acid, p-coumaric acid, luteolin, rutin hydrate, vanillic acid, ferulic acid, salicylic acid, sinapic acid, and chlorogenic acid were detected by liquid chromatography–electrospray ionization multistage tandem mass spectrometry (LC-ESI-MS/MS) analysis in in vitro-grown leaves and callus tissue. Rutin hydrate, p-coumaric acid, and vanillic acid were found at approximately tenfold higher levels in callus than in leaves. This new micropropagation protocol, the first for P. armeniaca, could be used in industrial production for new herbal tea and germplasm conservation.  相似文献   

4.
Italian ryegrass (Lolium multiflorum) is an annual grass considered as one of the most important temperate forage grasses in the world. However, it is recalcitrant to plant tissue culture techniques hindering its genetic manipulation. Epichloë occultans is an endophytic fungus associated with L. multiflorum. This symbiosis causes improvements in physiological and ecological traits of the host plants. The objective of this work was to study the effect of E. occultans on L. multiflorum micropropagation. We compared the response of endophyte-infected (E+) and endophyte-free (E?) seeds in different micropropagation stages. The E+ seeds were more successful than E? seeds in in vitro germination (83?±?5 vs. 63?±?6%), callus induction (78?±?5 vs. 57?±?6%), callus proliferation (average diameter of 21.5?±?1.3 mm in two subcultures vs 17.3?±?0.8 mm in three subcultures) and plant regeneration from callus (83?±?7 vs. 30?±?8%). These results indicate that E. occultans enhances significantly L. multiflorum micropropagation. The use of endophyte-infected (E+) seeds can be a solution to make this grass more amenable to different biotechnological tools, such as the genetic transformation.  相似文献   

5.
Invasive plants have wide-ranging impacts on native systems including reducing native plant richness and altering soil chemistry, microbes, and nutrient cycling. Increasingly, these effects are found to linger long after removal of the invader. We examined how soil chemistry, bacterial communities, and litter decomposition varied with cover of Euonymus fortunei, an invasive evergreen liana, in two central Kentucky deciduous forests. In one forest, E. fortunei invaded in the late 1990s but invasion remained patchy and we paired invaded and uninvaded plots to examine the associations between E. fortunei cover and our response variables. In the second forest, E. fortunei had completely invaded the forest by 2005; areas where it had been selectively removed by 2010 were paired with an adjacent invaded plot. Where E. fortunei had patchily invaded, E. fortunei patches had up to 3.5× nitrogen, 2.7× carbon, and 1.9× more labile glomalin in soils than uninvaded plots, whereas there were no differences in soil characteristics between invaded and removal plots. In the patchily invaded forest, bacterial community composition varied among invaded and non-invaded plots, whereas bacterial communities did not vary among invaded and removal plots. Finally, E. fortunei leaf litter decomposed faster (k = 4.91 year?1) than the native liana (k = 3.77 year?1), Vitis vulpina; decomposition of both E. fortunei and V. vulpina was faster in invaded (k = 7.10 year?1) than removal plots (k = 4.77 year?1). Our findings suggest that E. fortunei invasion increases the rate of leaf litter decomposition via high-quality litter, alters the decomposition environment, and shifts in the soil biotic communities associated with a dense mat of wintercreeper. Land managers with limited resources should target the densest mats for the greatest restoration potential and remove wintercreeper patches before they establish dense mats.  相似文献   

6.
An efficient transformation system for high-throughput functional genomic studies of kiwifruit has been developed to overcome the problem of necrosis in Actinidia arguta explants. The system uses Agrobacterium tumefaciens strain EHA105 harbouring the binary vector pART27-10 to inoculate leaf strips. The vector contains neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) (uidA) genes. A range of light intensities and different strengths of Murashige and Skoog (MS) basal salt media was used to overcome the problem of browning and/or necrosis of explants and calli. Callus browning was significantly reduced, resulting in regenerated adventitious shoots when the MS basal salt concentration in the culture medium was reduced to half-strength at low light intensity (3.4 μmol m?2 s?1) conditions. Inoculated leaf strips produced putative transformed shoots of Actinidia arguta on half-MS basal salt medium supplemented with 3.0 mg l?1 zeatin, 0.5 mg l?1 6-benzyladenine, 0.05 mg l?1 naphthalene acetic acid, 150 mg l?1 kanamycin and 300 mg l?1 Timentin®. All regenerated plantlets were deemed putative transgenic by histochemical GUS assay and polymerase chain-reaction analysis.  相似文献   

7.
Approaches for in vitro regeneration and fabrication of synthetic seeds were formulated to support restoration in the wild and genetic manipulation of Ceropegia barnesii (categorized as endemic and endangered). MS medium augmented with 4 mg L?1 benzyl adenine was most advantageous for the production of multiple shoots from nodal explants. Fabrication of synthetic seeds was accomplished by sodium alginate encapsulation of nodes from microshoots. The most favorable medium combination for the induction of multiple shoots from synthetic seeds was MS medium complemented with 4 mg L?1 benzyl adenine and 1 mg L?1 gibberelic acid. Following root induction promoted by half strength MS basal medium augmented with indolebutyric acid, multiple shoots were subjected to hardening. Influence of vesicular-arbuscular mycorrhizal fungi on the hardening trials was investigated and it was observed that dual inoculation of Glomus aggregatum and G. intraradices enhanced the survival rate. The encapsulated nodes of C. barnesii were tested for their capability to endure different temperatures during storage and the optimal temperature for storage was found to be 4°C. A methodology for initiation of somatic embryogenesis from C. barnesii is also reported here, but embryos could not be induced to develop further. The micropropagated plants were reintroduced in to their natural habitat. This is the first report on micropropagation of C. barnesii.  相似文献   

8.
Myzus persicae (Sulzer) is a polyphagous aphid that causes chlorosis, necrosis, stunting, and reduce growth rate of the host plants. In this research, the effects of Zinc sulfate and vermicompost (30%), Bacillus subtilis, Pseudomonas fluorescens, Glomus intraradices, G. intraradices × B. subtilis, and G. intraradices × P. fluorescens compared to control was investigated on the growth characters of Capsicum annuum L. and biological parameters of M. persicae. Different fertilizers caused a significant effect on growth characters of C. annuum and biological parameters of M. persicae. The highest plant growth was observed on Zinc sulfate and B. subtilis treated plants, and the lowest was on control. Increase in the amount of specific leaf area (SLA) (0.502 mm2 mg?1) was significantly higher in the B. subtilis than other fertilizer treatments. The longest (10.3 days) and the shortest (5.3 days) developmental times of M. persicae nymphs were observed on 30% vermicompost and Zinc sulfate treatments, respectively. The lowest adult longevity periods of M. persicae (11.2 and 11.3 days) were observed on G. intraradices × B. subtilis and 30% vermicompost treatments, respectively, and the longest ones (16.4 days) on Zinc sulfate. The highest rate of nymphal mortality and the lowest amount of nymphal growth index (NGI) were recorded on 30% vermicompost. The nymphs reared on Zinc sulfate treatment had the lowest rate of nymphal mortality and the highest amount of NGI. Thus, amending the soil with 30% vermicompost had a significantly negative effect on the biological parameters of M. persicae that can be used as an ecological control tactic for this pest.  相似文献   

9.
Powdery mildew caused by Erysiphe euonymi-japonici (Eej) is an increasingly serious fungal disease on Euonymus japonicus that is an important ornamental plant. However, little is currently known about infection and pathogenesis of Eej on E. japonicus. Here, we report plant infection by Eej at the histological and cytological levels. Eej caused severe disease symptoms with white and snow-like colonies on leaf surfaces of E. japonicus. Microscopic observations were conducted continuously to define infection process of Eej on E. japonicus. Eej conidia germinated to produce appressorial germ tubes on leaf surfaces and formed irregular haustoria in plant epidermal cells at 6 h post-inoculation (hpi) and 12 hpi, respectively. After uptaking nutrients from host cells by haustoria, Eej formed numerous hyphae and extensive colonization on leaf surfaces at 96 hpi and finally produced abundant conidiophores and new conidia on leaf surfaces at 168 hpi. In addition, there was consistently a single nucleus in different Eej infection structures and haustorial development could be divided into three major stages, including formation of penetration peg, formation of haustorial neck and initial haustorium, and maturation of haustorium. These results provide useful information for further determination of Eej pathogenesis and finally controlling the disease.  相似文献   

10.
Twenty four rhizobial strains were isolated from root nodules of Melilotus, Medicago and Trigonella plants growing wild in soils throughout Egypt. The nearly complete 16S rRNA gene sequence from each strain showed that 12 strains (50 %) were closely related to the Ensifer meliloti LMG6133T type strain with identity values higher than 99.0 %, that 9 (37.5 %) strains were more than 99 % identical to the E. medicae WSM419T type strain, and that 3 (12.5 %) strains showed 100 % identity with the type strain of N. huautlense S02T. Accordingly, the diversity of rhizobial strains nodulating wild Melilotus, Medicago and Trigonella species in Egypt is marked by predominance of two genetic types, E. meliloti and E. medicae, although the frequency of isolation was slightly higher in E. meliloti. Sequencing of the symbiotic nodC gene from selected Medicago and Melilotus strains revealed that they were all similar to those of the E. meliloti LMG6133T and E. medicae WSM419T type strains, respectively. Similarly, nodC sequences of strains identified as members of the genus Neorhizobium were more than 99 % identical to that of N. galegae symbiovar officinalis HAMBI 114.  相似文献   

11.
The effects of plant growth regulators (PGRs) and organic elicitors (OEs) on in vitro propagation of Eucomis autumnalis was established. Three-year-old ex vitro grown plants from organogenesis of E. autumnalis and somatic embryogenesis (previously reported protocol) of Drimia robusta were investigated for antibacterial activity. In vitro propagation from leaf explants of E. autumnalis was established using different PGRs and OE treatments for mass propagation, biomass production and bioactivity analysis to supplement the use of wild plant material. Prolific shoots (16.0?±?0.94 shoots per explant) were obtained with MS (Murashige and Skoog in Physiol Plant 15:473–497, 1962) medium containing 100 mg l?1 haemoglobin (HB), 10 µM benzyladenine (BA) and 2 µM naphthaleneacetic acid (NAA). The shoots were rooted effectively with a combination of 2.5 µM indole-3-acetic acid and 5.0 µM indole-3-butyric acid. The plantlets were successfully acclimatized in a vermiculite-soil mixture (1:1 v/v) in the greenhouse. Three-year-old ex vitro-grown E. autumnalis and D. robusta plants derived via organogenesis and somatic embryogenesis respectively exhibited antibacterial activity and varied with PGR and OE treatments, plant parts and bacteria. The leaves of E. autumnalis ex vitro-derived from a combination of HB, BA and NAA followed by the individual treatments of BA and HB gave the best antibacterial activities (<?1 mg ml?1: minimum inhibitory concentration from 0.098 to 0.78 mg ml?1) against all tested pathogenic bacteria (Bacillus subtilis, Enterococcus faecalis, Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa). The bulbs of D. robusta ex vitro-derived from solid culture with 10 µM picloram, 1 µM thidiazuron and 20 µM glutamine exhibited good antibacterial activity against E. faecalis, M. luteus and S. aureus when compared with other treatments and mother plants. The ex vitro-grown E. autumnalis and D. robusta biomass produced with PGRs along with OE treatments confirmed a good potent bioresource and can be used as antibacterial agents. The in vitro plant regeneration of E. autumnalis and D. robusta protocols and ex vitro plants could be used for conservation strategies, bioactivity and traditional medicinal use.  相似文献   

12.
The aim of the present study was to establish a regeneration system via de novo organogenesis from different types of non-meristematic explants of Passiflora cristalina. Leaf, hypocotyl, root segments, cotyledons, and endosperm of P. cristalina seeds were inoculated in Murashige and Skoog (MS)-basal medium, supplemented with different concentrations of 6-Benzyladenine (BA), Thidiazuron (TDZ), or Kinetin (KIN). BA was found to be the most efficient cytokinin in induction of de novo organogenesis from most the explants used in the study. The highest frequencies of adventitious bud formation in the hypocotyl and cotyledon explants were observed in medium supplemented with 1.0 mg L?1 BA. For leaf and endosperm segments, the best concentration was 2.0 mg L?1 BA; while for root segments, the highest mean values were observed with 1.0 mg L?1 KIN. The different morphogenetic responses obtained from each explant source were characterized using light microscopy. P. cristalina revealed a remarkable organogenic potential, with superior production of adventitious shoots compared with the other Passiflora species evaluated elsewhere. These results will be helpful to establish a reproducible and reliable micropropagation protocol, as well as to implement conservationist and biotechnological-based genetic breeding strategies for this wild Passiflora species.  相似文献   

13.
Songnen meadow grassland is a typical saline-alkaline land majorly comprised of carbonate soil. Salix mongolica, a woody species with high adaptability to carbonate soil, is an important supplementary feed in the grassland. Therefore, it is necessary to cultivate new varieties of S. mongolica by using genetic engineering methods to reveal the functions of the plant’s related genes and to construct a plant regeneration and genetic transformation system. In this study, we used leaves of S. mongolica as the explants for induction of leaf-based callus, differentiation of adventitious buds and rooting of adventitious by adding different ratios of 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzyl aminopurine and naphthaleneacetic acid into the Murashige and Skoog medium. Under the screening conditions of 7.5 mg L?1 hygromycin B and transformation period of 2–5 min using a specific Agrobacterium containing pCXSN-gus plasmids infection concentration (ODλ600?=?0.5), we obtained transgenic strains. PCR detected exogenous gus gene integrated into the chromosome of S. mongolica, Southern blot analysed the T0 transgenic strains single copy inserted into the chromosome, Northern hybridization signals indicated that gus gene mRNA was expressed in the five contemporary transgenic strains. The infected callus, adventitious buds, and regenerated plants displayed a blue color through detection by GUS staining, which reflected the activity of ß-glucuronidase enzyme. This result demonstrated the successful establishment of an Agrobacterium-mediated genetic transformation system from the callus (S. mongolica leaf as a transformation receptor).  相似文献   

14.
In this study, a novel engineering Escherichia coli strain (CBMG111) with the expression of mgtCB gene was constructed for the enhanced fermentative production of succinic acid by utilizing the synergetic effect of mgtC gene to improve the growth of strains at the environment of low Mg2+ concentration and mgtB to enhance the transport of Mg2+ into cells. After the effect of the expression of the individual genes (mgtA, mgtB, mgtC) on the growth of E. coli was clarified, the fermentative production of succinic acid by CBMG111 was studied with the low-price mixture of Mg(OH)2 and NH3·H2O as the alkaline neutralizer and the biomass hydrolysates as the carbon sources, which demonstrated that the expression of mgtCB gene can significantly increase the productivity of succinic acid (2.97 g L?1 h?1) compared with that by using the engineering strain with the overexpression of mgtA gene.  相似文献   

15.
We previously demonstrated efficient transformation of the thermophile Geobacillus kaustophilus HTA426 using conjugative plasmid transfer from Escherichia coli BR408. To evaluate the versatility of this approach to thermophile transformation, this study examined genetic transformation of various thermophilic Bacillus and Geobacillus spp. using conjugative plasmid transfer from E. coli strains. E. coli BR408 successfully transferred the E. coliGeobacillus shuttle plasmid pUCG18T to 16 of 18 thermophiles with transformation efficiencies between 4.1 × 10?7 and 3.8 × 10?2/recipient. Other E. coli strains that are different from E. coli BR408 in intracellular DNA methylation also generated transformants from 9 to 15 of the 18 thermophiles, including one that E. coli BR408 could not transform, although the transformation efficiencies of these strains were generally lower than those of E. coli BR408. The conjugation was performed by simple incubation of an E. coli donor and a thermophile recipient without optimization of experimental conditions. Moreover, thermophile transformants were distinguished from abundant E. coli donor only by high temperature incubation. These observations suggest that conjugative plasmid transfer, particularly using E. coli BR408, is a facile and versatile approach for plasmid introduction into thermophilic Bacillus and Geobacillus spp., and potentially a variety of other thermophiles.  相似文献   

16.
Edwardsiella tarda is one of the leading fish pathogens for the aquaculture industry. To realize efficient disease control of edwardsiellosis, a predictive model for E. tarda in seawater was developed. The modified logistic model was used to regress the growth curves of E. tarda JN at five different temperatures (range from 10 to 30 °C) and four organic nutrient concentrations (range from 5 to 40 mg l?1 measured by chemical oxygen demand (COD)). The modeling effects of temperature and COD on the specific growth rate (μ) were developed by square-root model and saturation-growth rate model, respectively. The growth model was validated in turbot aquaculture tanks by estimating the dynamics of inoculated E. tarda. The accurate feeding of probiotic Bacillus pumilus strain H2 was calculated based on the estimation of E. tarda. Results showed that the logistic model produced a good fit to the growth curves of E. tarda JN (average R2?=?0.962). The overall predictions based on above models agreed well with the growth curve of E. tarda JN observed by plate counting in the validation tests (average Af?=?1.16; average Bf?=?1.32). The use of predicted amount of B. pumilus (5.66 log CFU ml?1) successfully prevent the deterioration of disease for turbot with 13.3% mortality rate in a recirculating aquaculture system (RAS), while the feeding of 0 and 3.0 log CFU ml?1 of B. pumilus resulted in 53.7 and 75.3% of turbot mortality rate, respectively. In conclusion, accurate estimation of E. tarda realized the precise feeding of probiotics, which successfully prevent the rapid progression of the edwardsiellosis.  相似文献   

17.
Geranyl diphosphate (GPP), the unique precursor for all monoterpenoids, is biosynthesized from isopentenyl diphosphate and dimethylallyl diphosphate via the head-to-tail condensation reaction catalyzed by GPP synthase (GPPS). Herein a homomeric GPPS from Camptotheca acuminata, a camptothecin-producing plant, was obtained from 5′- and 3′-rapid amplification of cDNA ends and subsequent overlap extension and convenient PCR amplifications. The truncate CaGPPS was introduced to replace ispA of pBbA5c-MevT(CO)-MBIS(CO, ispA), a de novo biosynthetic construct for farnesyl diphosphate generation, and overexpressed in Escherichia coli, together with the truncate geraniol synthase-encoding gene from C. acuminata (tCaGES), to confirm CaGPPS-catalyzed reaction in vivo. A 24.0 ± 1.3 mg L?1 of geraniol was produced in the recombinant E. coli. The production of GPP was also validated by the direct UPLC-HRMSE analyses. The tCaGPPS and tCaGES genes with different copy numbers were introduced into E. coli to balance their catalytic potential for high-yield geraniol production. A 1.6-fold increase of geraniol production was obtained when four copies of tCaGPPS and one copy of tCaGES were introduced into E. coli. The following fermentation conditions optimization, including removal of organic layers and addition of new n-decane, led to a 74.6 ± 6.5 mg L?1 of geraniol production. The present study suggested that the gene copy number optimization, i.e., the ratio of tCaGPPS and tCaGES, plays an important role in geraniol production in the recombinant E. coli. The removal and addition of organic solvent are very useful for sustainable high-yield production of geraniol in the recombinant E. coli in view of that the solubility of geraniol is limited in the fermentation broth and/or n-decane.  相似文献   

18.
Clinacanthus nutans (Burm.F.) Lindau is an herbaceous plant that has long been used for traditional medicinal purposes in Asia. It has recently gained popularity as an alternative treatment for cancer. The aim of this study was to establish cell suspension cultures of C. nutans and to identify targeted bioactive compounds in the cultures. Young leaf explants were cultured on Murashige and Skoog medium supplemented with various combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin to identify a suitable medium for callus induction and proliferation. Proliferated, friable calluses were cultured in different combinations of plant growth regulators (2,4-D, naphthaleneacetic acid [NAA], picloram, kinetin, and 6-benzylaminopurine) in liquid medium to establish cell suspension cultures. Three cell lines of suspension culture, callus, and intact plant parts were subjected to ethyl acetate extraction followed by thin layer chromatography for identification of selected bioactive compounds. Medium supplemented with 0.25 mg L?1 2,4-D and 0.75 mg L?1 kinetin was found to be optimal for callus induction, whereas supplementation with 0.50 mg L?1 2,4-D was efficient for callus proliferation. Liquid medium supplemented with 0.25 mg L?1 2,4-D and 0.50 mg L?1 NAA produced the highest growth index (2.52). Quercetin, catechin, and luteolin were present together in the callus and cell suspension cultures of C. nutans, but all three compounds were detected separately in young leaves, mature leaves, and stems. This study is the first to report the establishment of cell suspension culture of C. nutans with both cell and callus cultures producing quercetin, catechin, and luteolin.  相似文献   

19.
Platycladus orientalis is a widespread conifer, which is native in eastern Asia, and has recently attracted much attention due to its ornamental value for landscape and gardens. However, native P. orientalis populations have been in decline over the past century. Here, we established an in vitro propagation and cryopreservation system for P. orientalis via somatic embryogenesis (SE). Whole megagametophytes with four development stages (Early embryogeny: E1 and late embryogeny: L1, L2, and L3) of zygotic embryos from immature P. orientalis cones were used as initial explants and cultured on three different basal media such as initiation medium (IM), Litvay (LV), and Schenk and Hildebrandt (SH). Both the developmental stage of zygotic embryos and kind of basal medium had a significant effect on embryogenesis induction with IM (P?<?0.001, respectively). The highest frequency of embryogenic callus induction was obtained in megagametophytes with zygotic embryos at L2 stage, which ranged as high as 30%. The maturation medium containing IM basal salts, vitamins and amino acids, 15 g l?1 abscisic acid (ABA), 50 g l?1 maltose, and 100 g l?1 polyethylene glycol 4000 (PEG) was found to be the suitable medium for production of somatic embryos. The frequency of somatic embryo formation from both non-cryopreserved and cryopreserved cell lines was also tested. There were no statistical differences on the production of somatic embryos between non-cryopreserved and cryopreserved cells (P?=?0.523). Genetic fidelity of the plantlets regenerated from non-cryopreserved and cryopreserved embryogenic cell lines was assessed by both random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analysis. There was no genetic instability in the regenerated plantlets from cryopreserved embryogenic cell lines. Both the SE protocol and cryopreservation protocols described here have the potential to contribute the conservation and clonal propagation of P. orientalis germplasm.  相似文献   

20.
In spite of the recent advancements in oncology, the overall survival rate for pancreatic cancer has not improved over the last five decades. Eucalypts have been linked with cytotoxic and anticancer properties in various studies; however, there is very little scientific evidence that supports the direct role of eucalypts in the treatment of pancreatic cancer. This study assessed the anticancer properties of aqueous and ethanolic extracts of four Eucalyptus species using an MTT assay. The most promising extracts were further evaluated using a CCK-8 assay. Apoptotic studies were performed using a caspase 3/7 assay in MIA PaCa-2 cells. The aqueous extract of Eucalyptus microcorys leaf and the ethanolic extract of Eucalyptus microcorys fruit inhibited the growth of glioblastoma, neuroblastoma, lung and pancreatic cancer cells by more than 80% at 100 μg/mL. The E. microcorys and Eucalyptus saligna extracts showed lower GI50 values than the ethanolic Eucalyptus robusta extract in MIA PaCa-2 cells. Aqueous E. microcorys leaf and fruit extracts at 100 μg/mL exerted significantly higher cell growth inhibition in MIA PaCa-2 cells than other extracts (p < 0.05). Statistically similar IC50 values (p > 0.05) were observed in aqueous E. microcorys leaf (86.05 ± 4.75 μg/mL) and fruit (64.66 ± 15.97 μg/mL) and ethanolic E. microcorys leaf (79.30 ± 29.45 μg/mL) extracts in MIA PaCa-2 cells using the CCK-8 assay. Caspase 3/7-mediated apoptosis and morphological changes of cells were also witnessed in MIA PaCa-2 cells after 24 h of treatment with the extracts. This study highlighted the significance of E. microcorys as an important source of phytochemicals with efficacy against pancreatic cancer cells. Further studies are warranted to purify and structurally identify individual compounds and elucidate their mechanisms of action for the development of more potent and specific chemotherapeutic agents for pancreatic cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号