首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
* Theoretical and empirical research has supported the hypothesis that plant-plant interactions change from competition to facilitation with increasing abiotic stress. However, the consistency of such changes has been questioned in arid and semiarid ecosystems. * During a drought in the semiarid south-western USA, we used observations and a field experiment to examine the interactions between juveniles of a foundation tree (Pinyon pine, Pinus edulis) and a common shrub (Apache plume, Fallugia paradoxa) in replicated areas of high and low stress. * The presence of F. paradoxa reduced P. edulis performance at low-stress sites, but had the opposite effect at high-stress sites. However, the intensity of the interactions depended on temporal variation in climate and age of P. edulis. Both above- and below-ground factors contributed to competition, while only above-ground factors contributed to facilitation. * These results support the hypothesis that interactions can change from competition to facilitation as abiotic stress increases in semiarid environments. A shift from competition to facilitation may be important for the recovery of P. edulis and other foundation species that have experienced large-scale mortality during recent droughts.  相似文献   

2.
In soybean (Glycine max (L.) Merr.) the uninfected cells of the root nodule are responsible for the final steps in ureide production from recently fixed nitrogen. Stereological methods and an original quantitative method were used to investigate the organization of these cells and their spatial relationships to infected cells in the central region of nodules of soybean inoculated with Rhizobium japonicum strain USDA 3I1B110 and grown with and without nitrogen (as nitrate) in the nutrient medium. The volume occupied by the uninfected tissue was 21% of the total volume of the central infected region for nodules of plants grown without nitrate, and 31% for nodules of plants grown with nitrate. Despite their low relative volume, the uninfected cells outnumbered the much larger infected cells in nodules of plants grown both without and with nitrate. The surface density of the interface between the ininfected and infected tissue in the infected region was similar for nodules in both cases also, the total range being from 24 to 26 mm2/mm3. In nodules of plants grown without nitrate, all sampled infected cells were found to be in contact with at least one uninfected cell. The study demonstrates that although the uninfected tissue in soybean nodules occupies a relatively small volume, it is organized so as to produce a large surface area for interaction with the infected tissue.  相似文献   

3.
Anyango  Beatrice  Wilson  Kate  Giller  Ken 《Plant and Soil》1998,202(1):69-78
The contribution of appropriate inoculum strains to more efficient nitrogen fixation by legumes has been difficult to assess due to the laborious nature of the assays involved in assessing establishment of inoculum strains in the field. The use of marker genes, in particular the GUS system, changes this, making it possible to assess occupancy by the inoculum strain in large numbers of nodules on whole root systems. Here we used the GUS system to evaluate the competitive ability of two rhizobial strains, Rhizobium leguminosarum bv. phaseoli strain Kim5 and R. tropici strain CIAT899 in two soil types from Kenya. The results confirm that Kim5 is a highly competitive strain, forming 86% of the nodules in a near-neutral pH soil. Although the competitiveness of CIAT899 is enhanced in an acid (pH 4.5) soil it still only formed 35% of the nodules. There were no differences between inoculum strains in their efficiency of nitrogen fixation in either soil type, and virtually no N2-fixation occurred in the acid soil due to the lack of tolerance of the Phaseolus genotype to soil acidity.  相似文献   

4.
Water potential, osmotic potential and turgor measurements obtained by using a cell pressure probe together with a nanoliter osmometer were compared with measurements obtained with an isopiestic psychrometer. Both types of measurements were conducted in the mature region of Tradescantia virginiana L. leaves under non-transpiring conditions in the dark, and gave similar values of all potentials. This finding indicates that the pressure probe and the osmometer provide accurate measurements of turgor, osmotic potentials and water potentials. Because the pressure probe does not require long equilibration times and can measure turgor of single cells in intact plants, the pressure probe together with the osmometer was used to determine in-situ cell water potentials, osmotic potentials and turgor of epidermal and mesophyll cells of transpiring leaves as functions of stomatal aperture and xylem water potential. When the xylem water potential was-0.1 MPa, the stomatal aperture was at its maximum, but turgor of both epidermal and mesophyll cells was relatively low. As the xylem water potential decreased, the stomatal aperture became gradually smaller, whereas turgor of both epidermal and mesophyll cells first increased and afterward decreased. Water potentials of the mesophyll cells were always lower than those of the epidermal cells. These findings indicate that evaporation of water is mainly occurring from mesophyll cells and that peristomatal transpiration could be less important than it has been proposed previously, although peristomatal transpiration may be directly related to regulation of turgor in the guard cells.  相似文献   

5.
Population fluctuations of the Mediterranean fruit fly Ceratitis capitata (Wiedemann) and the peach fly Bactrocera zonata (Saunders) were monitored with lure trap collections in three provinces in the New Valley oases, Western Desert, Egypt. Results showed marked temporal differences in peak trap catches of the two flies in the selected sites all over the entire studied areas. One annual peak of C. capitata was recorded during both October 2005 and February 2006 and coincided with the ripening period of citrus trees in Kharga oases. However, two annual peaks were recorded during June and September 2005 in Bodkholow province and coincided with the ripening period of apple and mango. On the other hand, two annual peaks of B. zonata were recorded in Kharga oases throughout May and September and coincided with the ripening periods of apricot, mango and guava. One annual peak only was recorded in the round up of September and/or October in both Moot and Bodkholow in Dakhla oases and coincided with the ripening period of mango, guava and citrus. The occurrence of C. capitata was very limited in comparison with B. zonata. Population fluctuations of the two pests in the studied sites were significantly different. The ability of the traps used in capturing both C. capitata and B. zonata indicated that the yellow sticky trap was more effective in capturing C. capitata. However, the Abdel-Kawi trap was significantly efficient at trapping B. zonata. The occurrence of B. zontata in high numbers all over the study period compared to C. capitata is considered as good proof that this invading fly may be considered as a vigorous competitive tephritid fly to the native fly C. capitata.  相似文献   

6.
Influences of plant density and time after seeding on the growth of two horticultural forms of perilla (Perilla frutescens var.crispa), green shrunk perilla (f.viridi-crispa) and red shrunk perilla (f.crispa), were examined in a mixed culture experiment. Relationships between mean individual plant weight and plant density in mixed populations were approximated by Ogawa's non-interaction type (NI-type) reciprocal equation. The density conversion factors in the equation for green and red perillas were always, respectively, smaller and larger than unity, suggesting that effects of a green perilla on the other individuals were always stronger than those of a red one in a mixed population. All coefficients in the NI-type reciprocal equation were expressed as functions of time after seeding. As a result, time trends of mean individual plant weights for both species in mixed populations could be reasonably estimated for different plant densities and mixed proportions. The results were also applied to Lotka-Volterra's equation. Time trends of Lotka-Volterra's competition coefficients for both plants could be calculated and were compared with those of density conversion factors.  相似文献   

7.
Model of gas exchange and diffusion in legume nodules   总被引:6,自引:0,他引:6  
A mathematical model is described which allows the estimation of rates of O2, CO2, N2, and H2 exchange from legume nodules under steady state conditions of N2 fixation. Calculated rates of gas exchange under defined conditions of nodule size, relative growth rate (RGR), specific total nitrogenase activity (TNA), nitrogenase electron allocation coefficient (EAC), uptake-hydrogenase activity (HUP) and nature of the N export product compared favorably with experimentally-obtained rates reported in the literature. Therefore the model was used to predict the effects of varying each of these nodule characteristics on the rates of gas exchange, and on the apparent respiratory cost (CO2/NH3) and sucrose cost (sucrose consumed/NH3) of N2 fixation.The model predicted that, all other characters being equal, ureide-producing nodules would consume 8% less sucrose per N fixed than asparagine-producing nodules, but would display an apparent respiratory cost which would be 5% higher than that in asparagine-producing nodules. In both ureide-producing and asparagine-producing nodules, the major factor affecting the apparent respiratory cost of N2 fixation was predicted to be EAC, followed by TNA, nodule RGR and nodule size. The relative importance of HUP in improving the apparent respiratory cost of N2 fixation was predicted to be largely dependent upon its potential role in the regulation of EAC. Abbreviations: See Appendix 1.  相似文献   

8.
Serine hydroxymethyltransferase 1 (SHMT1) expression limits rates of de novo dTMP synthesis in the nucleus. Here we report that SHMT1 is ubiquitinated at the small ubiquitin-like modifier (SUMO) consensus motif and that ubiquitination at that site is required for SHMT1 degradation. SHMT1 protein levels are cell cycle-regulated, and Ub-SHMT1 levels are lowest at S phase when SHMT1 undergoes SUMO modification and nuclear transport. Mutation of the SUMO consensus motif increases SHMT1 stability. SHMT1 interacts with components of the proteasome in both the nucleus and cytoplasm, indicating that degradation occurs in both compartments. Ubc13-mediated ubiquitination is required for SHMT1 nuclear export and increases stability of SHMT1 within the nucleus, whereas Ubc9-mediated modification with Sumo2/3 is involved in nuclear degradation. These data demonstrate that SUMO and ubiquitin modification of SHMT1 occurs on the same lysine residue and determine the localization and accumulation of SHMT1 in the nucleus.  相似文献   

9.
Whole-canopy measurements of water flux were used to calculate stomatal conductance (g s ) and transpiration (E) for seedlings of western water birch (Betula occidentalis Hook.) under various soil-plant hydraulic conductances (k), evaporative driving forces (ΔN; difference in leaf-to-air molar fraction of water vapor), and soil water potentials (Ψs). As expected, g s dropped in response to decreased k or ΨS, or increased ΔN(> 0.025). Field data showed a decrease in mid-day g s with decreasing k from soil-to-petiole, with sapling and adult plants having lower values of both parameters than juveniles. Stomatal closure prevented E and Ψ from inducing xylem cavitation except during extreme soil drought when cavitation occurred in the main stem and probably roots as well. Although all decreases in g s were associated with approximately constant bulk leaf water potential (ψl), this does not logically exclude a feedback response between ΨL and g s . To test the influence of leaf versus root water status on g s , we manipulated water status of the leaf independently of the root by using a pressure chamber enclosing the seedling root system; pressurizing the chamber alters cell turgor and volume only in the shoot cells outside the chamber. Stomatal closure in response to increased ΔN, decreased k, and decreased ΨS was fully or partially reversed within 5 min of pressurizing the soil. Bulk ΨL remained constant before and after soil pressurizing because of the increase in E associated with stomatal opening. When ΔN was low (i.e., < 0.025), pressurizing the soil either had no effect on g s , or caused it to decline; and bulk ΨL increased. Increased Ψl may have caused stomatal closure via increased backpressure on the stomatal apparatus from elevated epidermal turgor. The stomatal response to soil pressurizing indicated a central role of leaf cells in sensing water stress caused by high ΔN, low k, and low ΨS. Invoking a prominent role for feedforward signalling in short-term stomatal control may be premature.  相似文献   

10.
Annett Hertel  Ernst Steudle 《Planta》1997,202(3):324-335
Using the cell pressure probe, the effects of temperature on hydraulic conductivity (Lp; osmotic water permeability), solute permeability (permeability coefficient, Ps), and reflection coefficients (σs) were measured on internodes of Chara corallina, Klein ex Willd., em R.D.W.. For the first time, complete sets of transport coefficients were obtained in the range between 10 and 35 °C which provided evidence about pathways of water and solutes as they move across the plasma membrane (water channel and bilayer arrays). Test solutes used to check for the selectivity of water channels were monohydric alcohols of different molecular size and shape (ethanol, n-propanol, iso-propanol, and tert-butanol) and heavy water (HDO). Within the limits of accuracy, Q10 values for Lp and for the diffusive water permeability (Pd) were identical (Q10 for Lp = 1.29 ± 0.17 (± SD; n = 15 cells) and Q10 for Pd = 1.25 ± 0.16 (n = 5 cells)). The Q10 values were equivalent to activation energies of Ea = 16.8 ± 6.4 and 16.6 ± 10.0 kJ · mol−1, respectively, which is similar to that of self-diffusion or of viscous flow of water. The Q10 values and activation energies for Ps of the alcohols were significantly larger (ethanol: Q10 = 1.68 ± 0.16, Ea = 37.1 ± 5.9 kJ · mol−1; n-propanol: Q10 =  1.75 ± 0.40, Ea = 43.1 ± 15.3 kJ · mol−1; iso-propanol: Q10 = 2.12 ± 0.42, Ea =  52.2 ± 14.6 kJ · mol−1; tert-butanol: Q10 = 2.13 ± 0.56, Ea = 51.6 ± 17.1 kJ · mol−1; ±SD; n = 5 to 6 cells). Effects of temperature on reflection coefficients were most pronounced. With increasing temperature, σs values of the alcohols decreased and those of HDO increased. The data indicate that water and solutes use different pathways when crossing the membrane. Ordinary and isotopic water use water channels and the other test solutes use the bilayer array (composite transport model of membrane). Changes in σs values with temperature were found to be a sensitive measure for the open/closed state of water channels. The decrease of σs with temperature was theoretically predicted from the temperature dependence of Ps and Lp. Differences between predicted and measured values of σs allowed estimation of the bypass flow (slippage) of solutes through water channels which did not completely exclude test solutes. The permeability of channels depended on the structure and size of test solutes. It is concluded that water channels are much less selective than is usually thought. Since water channels represent single-file or no-pass pores, solutes drag along considerable amounts of water as they diffuse across channels. This results in low overall values of σs. The σs of HDO was extremely low. Its response to temperature was opposite to that for the σs of the alcohols. This suggested a stronger effect of temperature on the hydraulic (osmotic) than on the diffusive water flow across individual water channels, i.e. a differential sensitivity of different mechanisms to temperature. Received: 10 October 1996 / Accepted: 2 December 1996  相似文献   

11.
The hydraulic conductivities of excised whole root systems of wheat (Triticum aestivum L. cv. Atou) and of single excised roots of wheat and maize (Zea mays L. cv. Passat) were measured using an osmotically induced back-flow technique. Ninety minutes after excision the values for single excised roots ranged from 1.6·10-8 to 5.5·10-8 m·s-1·MPa-1 in wheat and from 0.9·10-8 to 4.8·10-8 m·s-1·MPa-1 in maize. The main source of variation was a decrease in the value as root length increased. The hydraulic conductivities of whole root systems, but not of single excised roots, were smaller 15 h after excision. This was not caused by occlusion of the xylem at the cut end of the coleoptile. The hydraulic conductivities of epidermal, cortical and endodermal cells were measured using a pressure probe. Epidermal and cortical cells of both wheat and maize roots gave mean values of 1.2·10-7 m·s-1·MPa-1 but in endodermal cells (measured only in wheat) the mean value was 0.5·10-7 m·s-1·MPa-1. The cellular hydraulic conductivities were used to calculate the root hydraulic conductivities expected if water flow across the root was via transcellular (vacuole-to-vacuole), apoplasmic or symplasmic pathways. The results indicate that, in freshly excised roots, the bulk of water flow is unlikely to be via the transcellular pathway. This is in contrast to our previous conclusion (H. Jones, A.D. Tomos, R.A. Leigh and R.G. Wyn Jones 1983, Planta 158, 230–236) which was based on results obtained with whole root systems of wheat measured 14–15 h after excision and which probably gave artefactually low values for root hydraulic conductivity. It is now concluded that, near the root tip, water flow could be through a symplasmic pathway in which the only substantial resistances to water flow are provided by the outer epidermal and the inner endodermal plasma membranes. Further from the tip, the measured hydraulic conductivities of the roots are consistent with flow either through the symplasmic or apoplasmic pathways.Symbols L p, cell cell hydraulic conductivity - L p, root root hydraulic conductivity - L p, root calculated root hydraulic conductivity - root reflection coefficient  相似文献   

12.
13.
The interaction of fatty-acid synthesis with starch synthesis has been studied in intact amyloplasts isolated from floral buds of cauliflower (Brassica oleracea L.). These amyloplasts perform acetate-dependent fatty acid synthesis at maximum rates only at high external ATP concentrations. Neither pyruvate nor malate inhibit acetate-dependent fatty-acid synthesis. In contrast, acetate is inhibitory to the low pyruvate-dependent fatty acid synthesis. These observations indicate that neither pyruvate nor malate are used as natural precursors of fatty-acid synthesis. In contrast to fatty-acid synthesis, the rate of glucose-6-phosphate-dependent starch synthesis is already saturated in the presence of much lower ATP concentrations. Rising rates of starch synthesis influence negatively the process of acetate-dependent fatty acid synthesis. This inhibition appears to occur under both limiting and saturating concentrations of external ATP, indicating that the rate of ATP uptake is limiting when both biochemical pathways are active. The rate of starch synthesis is modulated specifically by the concentration of 3-phosphoglycerate in the incubation medium. This observation leads to the conclusion that the activity of ADP-glucose pyrophosphorylase is of primary importance for the control of both, starch and fatty-acid synthesis. Using the modified approach of Kacser and Burns (1973; Symp. Soc. Exp. Biol.27, 65–104) we have quantified the contribution of the rate of starch synthesis to the control of the metabolic flux through fatty-acid synthesis.Abbreviations ADPGlc-PPase ADPglucose pyrophosphorylase - Glc6P glucose-6-phosphate - PGA 3-phosphoglyceric acid  相似文献   

14.
Abstract. In a highly saline environment high rates of ion uptake are required to generate sufficient osmotic pressure to maintain the turgor that is needed for the continued growth of plants. We estimate the rates of net uptake of Cl and Na+ required by growing cells to sustain cell expansion at an external NaCl concentration of 500 mol m−3. We also estimate the ion fluxes required to regulate turgor of expanding and fully expanded cells during diurnal changes in transpiration. Passive fluxes could contribute significantly to osmotic regulation, but active fluxes are still essential and would consume a substantial amount of energy. We discuss whether a limitation to growth at high salinity would arise from lack of energy, or from insufficient capacity for ion uptake. There is insufficient evidence to choose between these possibilities.  相似文献   

15.
用胱蛋白酶抑制剂C与肌酐、内生肌酐清除率评价儿童肾小球滤过功能,并将其作用进行比较,确定胱蛋白酶抑制剂C在儿童中的正常参考范围。采用颗粒增强散射免疫比浊法检测150例出生后2d~13岁正常儿童及90例1~16岁患不同程度肾脏疾病的儿童血清中胱蛋白酶抑制剂C和血肌酐的浓度,并比较胱蛋白酶抑制剂C与血肌酐的相关性。结果发现胱蛋白酶抑制剂C在出生后四个月内水平明显高于成人,但在出生5个月以后下降至接近成人参考范围。血清胱蛋白酶抑制剂浓度C与尿素清除率之间有显著相关性(P<0.01)。此外,在内生肌酐清除率CCr>80(属于正常参考范围)的肾脏疾病的患儿中有56%胱蛋白酶抑制剂C异常,说明胱蛋白酶抑制剂C比血肌酐更能够敏感地反应儿童肾小球滤过功能的损伤,建议用胱蛋白酶抑制剂C作为儿童肾脏疾病的患者肾小球滤过功能的损伤指标。  相似文献   

16.
The dielectric behavior of the aqueous solutions of three widely differing macromolecules has been investigated: myoglobin, polyvinylpyrrolidone (PVP), and human serum low-density lipoprotein (LDL). It was not possible to interpret unambiguously the dielectric properties of the PVP solution in terms of water structure. The best interpretation of the dielectric data on the myoglobin and LDL solutions was that, in both cases, the macromolecule attracts a layer of water of hydration one or two water molecules in width. For LDL, this corresponds to a hydration factor of only 0.05 g/g, whereas for myoglobin the figure is nearer 0.6 g/g. With myoglobin, part of the water of hydration exhibits its dispersion at frequencies of a few GHz, and the rest disperses at lower frequencies, perhaps as low as 10-12 MHz. The approximate constancy of the width of the hydration shell for two molecules as dissimilar in size as LDL and myoglobin confirms that the proportion of water existing as water of hydration in a biological solution depends critically on the size of the macromolecules as well as on their concentration.  相似文献   

17.
CTP synthase catalyses the reaction: glutamine+UTP+ATP --> glutamate+CTP+ADP+P(i). The reaction is greatly stimulated by the allosteric binding of GTP. In addition to glutamine that is hydrolysed by the enzyme to ammonia and glutamate, CTP synthase will also utilise external sources of amino donors such as NH(4)Cl. This reaction is no longer dependent on allosteric activation by GTP. Hydroxylamine is also a substrate for Lactococcus lactis CTP synthase and results in the formation of N4-OH CTP. This product has the feature that it absorbs at 300nm where CTP absorption was shown to be greatly reduced and enabled the determination of N4-OH CTP formation in the presence of CTP synthesis derived from glutamine hydrolysis. Differences in initial rates determined for the hydroxylamine dependent reaction at 291nm in the presence and absence of glutamine and GTP were ascribed to simultaneous CTP and N4-OH CTP synthesis in the presence of these compounds. A characterisation of the apparent inhibition by GTP and glutamine of N4-OH CTP synthesis determined at 300nm showed that glutamine dependent CTP synthesis occurs at a rate of about 60% of that in the absence of hydroxylamine. GTP dependent inhibition of the ammonium chloride dependent reaction of L. lactis CTP synthase by the glutamine analog glutamate gamma-semialdehyde showed a partial inhibition with a maximum inhibition of about 60%. These results are interpreted in terms of a half of the sites mechanism for glutamine hydrolysis on CTP synthase.  相似文献   

18.
In this study, the genetic diversity and identification of Bradyrhizobium symbionts of Crotalaria zanzibarica, the most widely-distributed invasive legume in Taiwan, and other sympatric legume species growing along riverbanks of Taiwan were evaluated for the first time. In total, 59 and 54 Bradyrhizobium isolates were obtained from C. zanzibarica and its coexisting legume species, respectively. Based on the multilocus sequence analysis (MLSA) of concatenated four housekeeping genes (dnaK-glnII-recA-rpoB gene sequences, 1901 bp), the 113 isolates displayed 53 unique haplotypes and grouped into 21 clades. Of these clades, 11 were found to be congruent to already defined Bradyrhizobium species, while the other 10 clades were found to not be congruent to any defined species. In particular, the C. zanzibarica isolates belong to 14 MLSA clades, six of which overlapped with the isolates of coexisting legumes. According to the nodA gene sequences (555 bp) obtained from the 105 isolates, these isolates were classified into three known nodA clades, III.2, III.3 and VII and were further clustered into 10 groups. Furthermore, the C. zanzibarica isolates were clustered into 8 nodA groups, five of which overlapped with the isolates from coexisting legumes. Additionally, the nodA genes of the isolates from native species were dominated by Asian origin, while those from C. zanzibarica were dominated by American origin. In conclusion, C. zanzibarica is a promiscuous host capable of recruiting diverse Bradyrhizobium symbionts, some of which are phylogenetically similar to the symbionts of coexisting legumes in Taiwan.  相似文献   

19.
细胞生长和表面精蛋白的N-糖链中核心岩藻糖的关系董素才,杨小平,陈惠黎(上海医科大学生物化学教研室,200032)关键词精蛋白N—糖链,核心岩藻糖,小扁豆凝集素,细胞生长细胞表面精蛋白N一糖链的结构与细胞生长、分化、恶变有密切关系,除糖链的类型和天线...  相似文献   

20.
The response of halophyte arrowleaf saltbush(Atriplex triangularis Willd)plants to a gradient of salt stress were investigatedwith hydroponically cultured seedlings.Under salt stress,both the Na~ uptake into root xylem and negative pressures inxylem vessels increased with the elevation of salinity(up to 500 mol/m~3)in the root environment.However,the increment innegative pressures in root xylem far from matches the decrease in the osmotic potential of the root bathing solutions,evenwhen the osmotic potential of xylem sap is taken into consideration.The total water potential of xylem sap in arrowleafsaltbush roots was close to the osmotic potential of root bathing solutions when the salt stress was low,but a progressivelyincreased gap between the water potential of xylem sap and the osmotic potential of root bathing solutions was observedwhen the salinity in the root environment was enhanced.The maximum gap was 1.4 MPa at a salinity level of 500 mol/m~3without apparent dehydration of the tested plants.This discrepancy could not be explained with the current theories inplant physiology.The radial reflection coefficient of root in arrowleaf saltbush decreased with the enhanced salt stress wasand accompanied by an increase in the Na~ uptake into xylem sap.However,the relative Na~ in xylem exudates based onthe corresponding NaCl concentration in the root bathing solutions showed a tendency of decrease.The results showedthat the reduction in the radial reflection coefficient of roots in the arrowleaf saltbush did not lead to a mass influx of NaClinto xylem when the radial reflection coefficient of the root was considerably small;and that arrowleaf saltbush could usesmall xylem pressures to counterbalance the salt stresses,either with the uptake of large amounts of salt,or with thedevelopment of xylem pressures dangerously negative.This strategy could be one of the mechanisms behind the highresistance of arrowleaf saltbush plants to salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号