首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of an oral administration of carbon tetrachloride on various liver microsomal and supernatant components were studied 1hr. and 2hr. after dosing. The modifications of such early changes resulting from a concomitant administration of promethazine together with the carbon tetrachloride were also investigated. The microsomal components studied were: cytochromes P-450 and b(5); inorganic pyrophosphatase; NADH- and NADPH-cytochrome c reductases; NADH- and NADPH-neotetrazolium reductases; a lipid-peroxidation system associated with the oxidation of NADPH and stimulated by ADP and Fe(2+). NAD- and NADP- DT-diaphorases were measured in the supernatant solution remaining after isolation of liver microsomes, and the distribution of RNA phosphorus between the microsomes and supernatant solution was also determined. Carbon tetrachloride produced a rapid fall in inorganic pyrophosphatase activity, a rather slower decrease in cytochrome P-450 content of the microsomes and small increases in the activities of NADH-cytochrome c reductase and neotetrazolium reductases. The activities of NADPH-cytochrome c reductase, the NADPH-ADP/Fe(2+)-linked lipid-peroxidation system, DT-diaphorases and the content of cytochrome b(5) in the microsomes were unchanged. There was also a loss of RNA phosphorus from the microsomes into the supernatant solution. The RNA phosphorus redistribution, the decrease in inorganic pyrophosphatase and the increases in neotetrazolium reductase activities were at least partially prevented by a concomitant dosing with promethazine. However, the decrease in cytochrome P-450 was not affected by promethazine treatment. These early changes are discussed in terms of the liver necrosis produced by carbon tetrachloride and which is greatly retarded in its onset by the administration of promethazine.  相似文献   

2.
The effect of diet on carbon tetrachloride metabolism   总被引:4,自引:1,他引:3       下载免费PDF全文
1. Blood and liver concentrations of carbon tetrachloride were measured, at intervals after an oral dose, in rats given stock and protein-free diets. The values did not correlate with the resistance to poisoning found in the rats on protein-free diets. 2. The metabolism of carbon tetrachloride to carbon dioxide in vivo and in liver microsomal preparations was depressed in animals given protein-free diets. 3. Rats given a single dose of DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] were highly sensitive to carbon tetrachloride poisoning. The livers of such animals had an increased microsomal protein content and greatly increased microsomal activity in the demethylation of Pyramidon (aminopyrine) and in the conversion of 14CCl4 into 14CO2. 4. The incorporation of [14C]leucine into protein by liver slices was depressed by carbon tetrachloride. This effect was decreased by addition of SKF525A (2-diethylaminoethyl 2,2-diphenyl-2-propylacetate) and in slices from rats given protein-free diets. It is suggested that the toxicity of carbon tetrachloride is closely linked to its metabolism.  相似文献   

3.
Rat liver microsomal membranes contain a reduced-glutathione-dependent protein(s) that inhibits lipid peroxidation in the ascorbate/iron microsomal lipid peroxidation system. It appears to exert its protective effect by scavenging free radicals. The present work was carried out to assess the effect of this reduced-glutathione-dependent mechanism on carbon tetrachloride-induced microsomal injury and on carbon tetrachloride metabolism because they are known to involve free radicals. Rat liver microsomes were incubated at 37 degrees C with NADPH, EDTA and carbon tetrachloride. The addition of 1 mM-reduced glutathione (GSH) markedly inhibited lipid peroxidation and glucose 6-phosphatase inactivation and, to a lesser extent, inhibited cytochrome P-450 destruction. GSH also inhibited covalent binding of [14C]carbon tetrachloride-derived 14C to microsomal protein. These results indicate that a GSH-dependent mechanism functions to protect the microsomal membrane against free-radical injury in the carbon tetrachloride system as well as in the iron-based systems. Under anaerobic conditions, GSH had no effect on chloroform formation, carbon tetrachloride-induced destruction of cytochrome P-450 or covalent binding of [14C]carbon tetrachloride-derived 14C to microsomal protein. Thus, the GSH protective mechanism appears to be O2-dependent. This suggests that it may be specific for O2-based free radicals. This O2-dependent GSH protective mechanism may partly underlie the observed protection of hyperbaric O2 against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity.  相似文献   

4.
1. Protein-depleted rats are resistant to the lethal effects of carbon tetrachloride. The LD50 is 6·4ml./kg. in stock rats and 14·7ml./kg. in rats fed on protein-free diets. 2. Protein-depleted rats are resistant to carbon tetrachloride in its effect on the liver as judged by histology, accumulation of liver water, and plasma enzyme and bilirubin measurement. 3. The protection is present after feeding rats on a no-protein diet for 4 days. It is present after feeding rats on a 3%-casein diet, and partly found after feeding rats on a 6%-casein diet. 4. The activities of the microsomal enzymes that demethylate Pyramidon and hydroxylate benzopyrene in the liver fall by over 80% in rats fed on the no-protein diet for 4 days or more, or in rats fed on a 3%-casein diet. A 50% fall is found in rats fed on a 6%-casein diet. 5. A single dose of DDT or three doses of phenobarbitone cause increased microsomal enzyme activity in protein-depleted rats. 6. The animals are then sensitive to the lethal and liver-damaging effects of carbon tetrachloride. 7. DDT dosage also leads to increased sensitivity to carbon tetrachloride in rats fed on stock diets. 8. These findings support the hypothesis that carbon tetrachloride is metabolized by microsomal enzymes to form the true toxic compound.  相似文献   

5.
The effect of administration of carbon tetrachloride and dimethylnitrosamine in vivo on hepatic microsomal function related to drug metabolism was measured. It was found that the capacity of isolated microsomes to demethylate dimethylaniline was diminished during the first hour after carbon tetrachloride poisoning and during the second hour after dimethylnitrosamine poisoning. Thereafter the microsomes from carbon tetrachloride-poisoned livers showed a continuous decline in activity so that at 24hr. there was little residual capacity to undertake demethylation. Microsomes from dimethylnitrosamine-poisoned animals were not different from controls at 24hr. During the first 3hr. there was a transient rise in the accumulation of the N-oxide intermediate in carbon tetrachloride-poisoned livers, with a subsequent fall to below control values. In dimethylnitrosamine poisoning there was a parallel decrease in N-oxide accumulation with decreased demethylation. In the latter part of the first 24hr. the ratio of N-oxide accumulation to demethylation was increased in both instances. At 2hr. after poisoning with either compound there was no evidence of altered NADPH(2)-dependent neotetrazolium reduction or lipid peroxidation. NADPH(2)-dependent azo-dye cleavage was decreased. There was no difference in microsomal cytochrome b(5) content, but there was a decrease in the amount of cytochrome P-450. This latter change was correlated with the decreased capacity for NADPH(2)-dependent oxidative demethylation. It is suggested that dimethylnitrosamine is associated with a defect in microsomal NADPH(2)-dependent electron transport at the level of cytochrome P-450. In addition to affecting cytochrome P-450, carbon tetrachloride is associated with a second severe block involving the release of formaldehyde from the N-oxide intermediate.  相似文献   

6.
1. The general features of the reaction by which carbon tetrachloride stimulates lipid peroxidation have been elucidated in rat liver microsomal suspensions and in mixtures of microsomes plus cell sap. The production of lipid peroxides has been correlated with malonaldehyde production in the systems used. 2. The stimulation of malonaldehyde production by carbon tetrachloride requires a source of reduced NADP(+) and is dependent on the extent of the endogenous peroxidation of the microsomal membranes: if extensive endogenous peroxidation occurs during incubation then no stimulation by carbon tetrachloride is apparent. 3. The stimulation of malonaldehyde production by carbon tetrachloride has been shown to be proportional to the square root of the carbon tetrachloride concentration in the incubation mixture. It is concluded that the stimulation of malonaldehyde production by carbon tetrachloride results from an initiation process that is itself dependent on the homolytic dissociation of carbon tetrachloride to free-radical products. 4. The increased production of malonaldehyde due to carbon tetrachloride is accompanied by a decreased activity of glucose 6-phosphatase in rat liver microsomal suspensions. 5. The relative activities of bromotrichloromethane, fluorotrichloromethane and chloroform have been evaluated in comparison with the effects of carbon tetrachloride in increasing malonaldehyde production and in decreasing glucose 6-phosphatase activity. Bromotrichloromethane was more effective, and fluorotrichloromethane and chloroform were less effective, than carbon tetrachloride in producing these two effects. It is concluded that homolytic bond fission of the halogenomethanes is a requisite for the occurrence of the two effects observed in the endoplasmic reticulum.  相似文献   

7.
Because serum albumin is specifically produced by mature hepatocytes, detection system of albumin producing cells could be a valuable tool to visualize liver regeneration or development. We have developed here an albumin enhancer/promoter-driven Alb-DsRed2 Tg rat that expresses DsRed2, having liver-specific reporter gene expression of red fluorescent protein. To study the transdifferentiation of bone marrow cells (BMCs) into albumin producing cells, BMCs from the Alb-DsRed2 Tg rat were injected into rats having acute liver damage caused by 2-acetylaminofluorene plus carbon tetrachloride and chronic liver damage by repeated administration of CCl(4). DsRed2-positive cells were generated in the recipient liver after BMC injection. The number of transdifferentiated DsRed2-positive cells in chronic liver injury model was increased comparing with that in acute injury model. We propose that the Alb-DsRed2 Tg rat is well suited to studying in vivo liver regeneration.  相似文献   

8.
Changes in lysosomal enzymes in acute experimental liver injury   总被引:10,自引:3,他引:7       下载免费PDF全文
1. An investigation has been made of the changes occurring in lysosomal enzyme activities during the early development of experimentally produced liver injury in the rat. Three enzymes have been studied: acid phosphatase, acid ribonuclease and β-glucuronidase. Four different methods of inducing liver injury have been used: administration of carbon tetrachloride, thioacetamide, dimethylnitrosamine and the fungal toxin sporidesmin. 2. The majority of the data presented concern alterations produced by carbon tetrachloride. Despite the extensive central necrosis and accompanying fat accumulation which this poison produced in the liver, only small changes in the activity and latency of lysosomal enzymes could be detected. In the early (pre-necrotic) period of injury these changes were insignificant. At a late stage of injury, when extensive centrilobular necrosis was present, there were indications of lysosomal rupture. 3. The results obtained with the other three hepatotoxins were similar to those described for carbon tetrachloride in that no evidence of early lysosomal rupture was obtained during the pre-necrotic period. It is concluded that lysosomes probably play no role in the early development of the four types of liver injury studied but, instead, are involved in later scavenging processes.  相似文献   

9.
1. The metabolic activation of carbon tetrachloride to free-radical intermediates is an important step in the sequence of disturbances leading to the acute liver injury produced by this toxic agent. Electron-spin-resonance (e.s.r.) spin-trapping techniques were used to characterize the free-radical species involved. 2. Spin trapping was applied to the activation of carbon tetrachloride by liver microsomal fractions in the presence of NADPH, and by isolated intact rat hepatocytes. The results obtained with the spin trap N-benzylidene-2-methylpropylamine N-oxide ('phenyl t-butyl nitrone') (PBN) and [13C]carbon tetrachloride provide unequivocal evidence for the formation and trapping of the trichloromethyl free radical in these systems. 3. With the spin trap 2-methyl-2-nitrosopropane, however, the major free-radical species trapped are unsaturated lipid radicals produced by the initiating reaction of lipid peroxidation. 4. Although pulse radiolysis and other evidence support the very rapid formation of the trichloromethyl peroxy radical from the trichloromethyl radical and oxygen, no clear evidence for the trapping of the peroxy radical was obtainable. 5. The effects of a number of free-radical scavengers and metabolic inhibitors on the formation of the PBN-trichloromethyl radical adduct were studied, as were the influences of changing the concentration of PBN and incubation time. 6. High concentrations of the spin traps used were found to have significant effects on cytochrome P-450-mediated reactions; this requires caution in interpreting results of experiments done in the presence of PBN at concentrations greater than 50 mM.  相似文献   

10.
Liver tissues were isolated from rats acutely intoxicated with carbon tetrachloride, and Na-23 NMR signals were analyzed to investigate the T1 relaxation times of intracellular sodium ions under pathological conditions in presence of the paramagnetic shift reagent (dysprosium tripolyphosphate). We studied the significant increase of T1 found in CCl4 treated rats with respect to controls, which was elsewhere demonstrated as being independent of cell necrosis. Evidence is given that neither fat accumulation nor proliferative processes affect the observed T1 lengthening. When T1 relaxation times were measured in the liver of vitamin E treated rats subsequently intoxicated with carbon tetrachloride, a significative shortening of T1 with respect to CCl4-intoxicated rats was observed. These results were discussed in terms of the antioxidant action exerted by vitamin E, taking into account that peroxidation of microsomal lipids is the key factor in the process of carbon tetrachloride induced liver injury. Furthermore, the observed T1 changes were discussed in terms of the interactions of Na+ with cell membranes and/or the occurrence of viscosity changes.  相似文献   

11.
Oxidative stress (OS) plays an important role in the progression of chronic liver disease including organ injury and hypoalbuminemia. Long-term oral supplementation with branched-chain amino acids (BCAAs) can inhibit liver dysfunction but their role in the prevention of liver fibrosis and injury to the liver is unclear. The aim of this study was to assess how BCAAs preserve liver function from OS. To investigate how BCAAs specifically prevent OS, we evaluated the effect of oral supplementation with BCAAs on OS using a rat liver cirrhosis model. Liver cirrhosis was induced in ten male Sprague–Dawley rats by administering carbon tetrachloride for 12?weeks. Five of the ten carbon tetrachloride-treated rats were assigned to a control group and five to a BCAA group. BCAA-supplementation significantly preserved plasma albumin concentrations and significantly inhibited the occurrence of organ injury as determined by blood chemistry analysis. Hepatic expression of OGG1 mRNA was increased in the BCAA group compared to the control group. In the BCAA group, increased hepatic levels of OGG1 protein were found by western blot. On the other hand, the number of 8-OHdG-positive cells was significantly higher in liver sections taken 1?month after carbon tetrachloride treatment. Furthermore, OGG1-positive cells were significantly increased in the hepatocytes around the central vein. BCAA was found to reduce OS, which could possibly lead to a decrease in the occurrence of hypoalbuminemia and organ injury. Our results indicate that BCAA-enriched nutrients stimulate antioxidant DNA repair in a rat model of liver injury induced by carbon tetrachloride.  相似文献   

12.
The effects of carbon tetrachloride, methylene chloride and chloroform on phosphorylation of PO was examined. The results of the dose response curve revealed that carbon tetrachloride (0.67%), methylene chloride (2%) and chloroform (1%) induced phosphorylation of PO by approximately 4, 6, and 12-fold, respectively. PO was found to be phosphorylated on the serine residue, and the phosphorylation of the serine residue was markedly increased when PO was phosphorylated in the presence of these compounds. Since tumor promoters, carbon tetrachloride and chloroform, have been shown to activate protein kinase C in platelets it is postulated that the increased phosphorylation of PO may result from the activation of myelin associated protein kinase C. The presence of phospholipid sensitive Ca2+-dependent protein kinase (protein kinase C) in purified nerve myelin was demonstrated by increased phosphorylation of PO in the presence of Ca2+ and phosphatidylserine.  相似文献   

13.
The change in calcium-binding protein regucalcin, mainly localized in liver, in the liver and serum of rats received a single oral administration of carbon tetrachloride (50%; 1.0 ml/100 g body weight) was investigated. The change of regucalcin mRNA levels in the liver was analyzed by Northern blotting using liver regucalcin cDNA (0.6 kb). At 10 and 24 h after the administration, liver regucalcin mRNA levels were reduced markedly. Moreover, regucalcin concentration in the liver and serum was estimated by enzyme-linked immunoadsorbent assay (ELISA) with rabbit-anti-regucalcin IgG. Administration of carbon tetrachloride (CCl4) induced a significant decrease in liver regucalcin concentration and a corresponding elevation of serum regucalcin concentration at 24 h after the administration. An appreciable increase in serum regucalcin concentration was seen at 2 h after the administration. Meanwhile, serum transaminases (GOT and GPT) activities were significantly increased by CCl4 administration, indicating that liver injury is induced. The present study demonstrates that hepatic regucalcin is released into the serum of rats administered orally CCl4, suggesting that the estimation of serum regucalcin is a useful tool for diagnosis of liver injury.  相似文献   

14.
Liver fibrosis is associated with infiltrating immune cells and activation of hepatic stellate cells. We here aimed to investigate the effects of the CC chemokine CCL3, also known as macrophage inflammatory protein-1α, in two different fibrosis models. To this end, we treated mice either with carbon tetrachloride or with a methionine- and choline-deficient diet to induce fibrosis in CCL3 deficient and wild-type mice. The results show that the protein expression of CCL3 is increased in wild-type mice after chronic liver injury. Deletion of CCL3 exhibited reduced liver fibrosis compared to their wild-type counterparts. We could validate these results by treating the two mouse groups with either carbon tetrachloride or by feeding a methionine- and choline-deficient diet. In these models, lack of CCL3 is functionally associated with reduced stellate cell activation and liver immune cell infiltration. In vitro, we show that CCL3 leads to increased proliferation and migration of hepatic stellate cells. In conclusion, our results define the chemokine CCL3 as a mediator of experimental liver fibrosis. Thus, therapeutic modulation of CCL3 might be a promising target for chronic liver diseases.  相似文献   

15.
The effects of lipid peroxidation on latent microsomal enzyme activities were examined in NADPH-reduced microsomes from phenobarbital-pretreated male rats. Lipid peroxidation, stimulated by iron or carbon tetrachloride, was assayed as malondialdehyde formation. Independent of the stimulating agent of lipid peroxidation, latency of microsomal nucleoside diphosphatase activity remained unaffected up to microsomal peroxidation equivalent to the formation of about 12 nmol malondialdehyde/mg microsomal protein. However, above this threshold a close correlation was found between lipid peroxidation and loss of latent enzyme activity. The loss of latency evoked by lipid peroxidation was comparable to the loss of latency attainable by disrupting the microsomal membrane by detergent. Loss of latent enzyme activity produced by lipid peroxidation was also observed for microsomal glucose-6-phosphatase and UDPglucuronyltransferase. In contrast to nucleoside diphosphatase, however, both enzymes were inactivated by lipid peroxidation, as indicated by pronounced decreases of their activities in detergent-treated microsomes. According to the respective optimal oxygen partial pressure (po2) for lipid peroxidation, the iron-mediated effects on enzyme activities were maximal at a po2 of 80 mmHg and the one mediated by carbon tetrachloride at a po2 of 5 mmHg. Under anaerobic conditions no alterations of enzyme activities were detected. These results demonstrate that loss of microsomal latency only occurs when peroxidation of the microsomal membrane has reached a certain extent, and that beyond this threshold lipid peroxidation leads to severe disintegration of the microsomal membrane resulting in a loss of its selective permeability, a damage which should be of pathological consequences for the liver cell. Because of its resistance against lipid peroxidation nucleoside diphosphatase is a well-suited intrinsic microsomal parameter to estimate this effect of lipid peroxidation on the microsomal membrane.  相似文献   

16.
Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6 -/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6 -/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6 -/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6 -/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis.  相似文献   

17.
In recent years, chemical liver injury cases increased significantly in Asian countries, and the imbalance in redox system was believed to be the main cause. Purple sweet potato anthocyanins (PSPA) have been shown to exert antioxidant activity and oxidative-stress-associated functional protein modulation through various signaling pathways, so it is considered to have the potential of liver injury preventive activity. In order to evaluate the hepatoprotective potency of PSPA according to its free radical scavenging and antioxidant effects, three acute chemical liver injury models were set up with ethanol, acetaminophen and carbon tetrachloride. PSPA at moderate and high doses obviously attenuated the tested serum biomarker levels and liver index in our experiments. Besides, one chronic liver injury model set up with carbon tetrachloride was also applied, in which PSPA was orally administrated after the liver damage had been formed. Both the serum biomarker levels and histopathological analysis showed that PSPA was able to attenuated chronic liver injury. Our experimental results demonstrated the potential of PSPA as an oral hepatoprotective agent against chemical liver injury from food plant.  相似文献   

18.
Autophagy is a lysosomal degradation pathway of cellular components that displays antiinflammatory properties in macrophages. Macrophages are critically involved in chronic liver injury by releasing mediators that promote hepatocyte apoptosis, contribute to inflammatory cell recruitment and activation of hepatic fibrogenic cells. Here, we investigated whether macrophage autophagy may protect against chronic liver injury. Experiments were performed in mice with mutations in the autophagy gene Atg5 in the myeloid lineage (Atg5fl/fl LysM-Cre mice, referred to as atg5−/−) and their wild-type (Atg5fl/fl, referred to as WT) littermates. Liver fibrosis was induced by repeated intraperitoneal injection of carbon tetrachloride. In vitro studies were performed in cultures or co-cultures of peritoneal macrophages with hepatic myofibroblasts. As compared to WT littermates, atg5−/− mice exposed to chronic carbon tetrachloride administration displayed higher hepatic levels of IL1A and IL1B and enhanced inflammatory cell recruitment associated with exacerbated liver injury. In addition, atg5−/− mice were more susceptible to liver fibrosis, as shown by enhanced matrix and fibrogenic cell accumulation. Macrophages from atg5−/− mice secreted higher levels of reactive oxygen species (ROS)-induced IL1A and IL1B. Moreover, hepatic myofibroblasts exposed to the conditioned medium of macrophages from atg5−/− mice showed increased profibrogenic gene expression; this effect was blunted when neutralizing IL1A and IL1B in the conditioned medium of atg5−/− macrophages. Finally, administration of recombinant IL1RN (interleukin 1 receptor antagonist) to carbon tetrachloride-exposed atg5−/− mice blunted liver injury and fibrosis, identifying IL1A/B as central mediators in the deleterious effects of macrophage autophagy invalidation. These results uncover macrophage autophagy as a novel antiinflammatory pathway regulating liver fibrosis.  相似文献   

19.
The binding of products derived from the peroxidation of liver microsomal lipids to the non-lipid constituents of the microsomes was studied. To this end arachidonic acid labelled with tritium at the positions of the double bonds was given to rats and allowed to incorporate into the membrane lipids of the liver cell. When liver microsomes containing labelled arachidonic acid were incubated aerobically in the NADPH-dependent system, a marked production of malonic dialdehyde (MDA) occurred and, concomitantly, there was a consistent release of radioactivity from the microsomes into the incubation medium. The addition of EDTA to the incubation medium prevented, to a large extent, both the MDA formation and the release of radioactivity. Chromatographic studies showed that the bulk of the radioactivity released from the incubated microsomes is not MDA. In the incubated microsomes, the radioactivity decreased in total lipids, while it increased by about 15 times in the non-lipoidal residue. A similar increase in radioactivity was seen in microsomal protein, while no increase was observed in microsomal RNA (the radioactivity was negligible in both the incubated and the non-incubated samples). It seems therefore that products originating from lipoperoxidation of arachidonic acid covalently bind to the microsomal protein. In order to investigate whether alterations similar to those observed in the in vitro peroxidation of liver microsomes could be detected in the in vivo intoxication with carbon tetrachloride, rats given labelled arachidonic acid as above, were poisoned with CCl4. Sixty minutes after poisoning, the radioactivity present in the microsomal lipids was generally lower in the intoxicated rats than in the controls, while the labelling of the non-lipoidal residue and of the protein was higher in the CCl4-poisoned rats.  相似文献   

20.
Incubation of trichlorofluoromethane with a liver microsomal fraction and an NADPH generating system under anaerobic conditions produced a metabolite dichlorofluoromethane, characterised by gas chromatography and mass spectrometry. The metabolic reaction was carried out by liver microsomes from the mouse, rabbit, hamster and rat and was increased by phenobarbitone pre-treatment. The formation of dichlorofluoromethane in vitro was enhanced by the addition of FMN, but partially inhibited by the presence of air, oxygen, SK&F 525-A, metyrapone and carbon tetrachloride and totally inhibited by carbon monoxide. The consumption of NADPH in the reaction was greater than could be accounted for by the production of dichlorofluoromethane indicating the possible formation of other metabolic products. It is suggested that trichlorofluoromethane interacts with the reduced form of cytochrome P-450 at the oxygen binding site and a possible mechanism for its subsequent reductive dechlorination is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号