首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— A nuclear fraction has been obtained from large spinal neurons previously isolated from bovine ventral spinal cord in bulk suspensions. The fraction contained an average of 5.3 ± 0.9 pg DNA/nucleus, indicating a high incidence of diploid nuclei. This conclusion was confirmed by distribution analysis of DNA in propidium iodide-stained nuclei examined by flow microfluorometry. That technique showed that at least 90% of the nuclei from large spinal neurons are diploid. Mixed, mostly non-neuronal nuclei derived from many types of cells in the ventral spinal cord contained an average of 5.9 ± 0.6 pg DNA/nucleus, 19% of which possibly possess more than diploid amounts of DNA. The uniform DNA content in nuclei of large spinal neurons and most other types of cells in the ventral spinal cord contrasts sharply with a wide variation (av 26-fold) in the nuclear volumes of the same cells.  相似文献   

2.
The ultrastructural and morphometrical synaptology of the spinal motoneurons in Carassius auratus (goldfish) was analyzed based on profiles of 23 photomontages of large motoneurons and 25 putative small motoneurons with a semiautomatic digitizing system connected with a computer. In the 23 large motoneurons (mean circumference, 142.45 ± 39.76 μm) the total linear perikaryal circumference was 3,276.28 μm, of which 1,548.9 μm (46.1 ± 13.9%) was covered by terminal boutons. In contrast, a total linear perikaryal circumference of 1,375.24 μm (55.01 ± 14.34 μm) of the 25 putative small motoneurons was covered with terminal boutons only occupying a length of 287.45 μm (19.8 ± 11.9%). There were a total of 1,045 boutons on the large motoneurons and 204 on the small ones. The distribution of S- and F-type boutons may reflect excitatory and inhibitory synapses. The relative number of S-type boutons (58%) was larger than that of F-type boutons (42%) in the large neurons and showed similar values (S-type, 57%; F type, 43%) in the small ones. This is in contrast to mammalian spinal motoneurons in which F-type boutons are more prevalent than the S-type. The total numbers of the axosomatic boutons in large and small neurons were estimated, based on geometrical assumptions and found to differ substantially (840 vs. 59). This indicates large quantitative differences in the total number of synaptic inputs with the large motoneurons having a greater more axo-somatic bouton density. No large M- and C-type boutons occur on the spinal motoneurons of goldfish, suggesting a synaptic organization which is simple compared to that of terrestrial vertebrates. © 1993 Wiley-Liss, Inc.  相似文献   

3.
The localization of choline acetyltransferase (ChAT) protein and mRNA was investigated in large motor neurons of the lumbar spinal cord of 10 autopsied individuals without neurological diseases, by immunohistochemistry and in situ hybridization. In the immunohistochemistry using 20 serial tissue sections with a total thickness of 80 microm, about approximately 58-85% (average 67%) of the large motor neurons (30 microm and more in somal minimal diameter) in the ventral horn were stained with the anti-human ChAT antibody. In the positive neurons, most immunoreactive products were observed focally in the perikarya. Occasionally, the perikarya of some neurons were stained diffusely. In situ hybridization with a single 4 microm-thick tissue section showed that almost all large motor neurons had positive signals (approximately 93-100%, average 98%), which were distributed diffusely in the perikarya. The positivity rate in the in situ hybridization was higher than that in the immunohistochemistry for all 10 cases. These results indicate that ChAT mRNA is transcribed in almost all large motor neurons in the ventral horn of the human spinal cord, but ChAT protein cannot always be detected in the cytoplasm by immunohistochemistry.  相似文献   

4.
CHOLINE ACETYLTRANSFERASE ACTIVITY IN LARGE VENTRAL SPINAL NEURONS   总被引:4,自引:2,他引:2  
Abstract— Up to approx 3 pmol of acetylcholine (ACh)/h/cell body was synthesized by perikarya of large spinal neurons isolated in bulk fractions from bovine ventral spinal cord. Many of the cell bodies are probably derived from motoneurons. A medium of low ionic strength and pH was used to minimize losses of soluble acetyl CoA:choline- o -acetyltransferase (ChAc; EC 2.3.1.6) from the neurons, whose permeability properties were altered. Such a medium also increased the retention of other soluble proteins by the cell bodies. The maximal rate of hydrolysis of ACh by the isolated neurons exceeded that of its synthesis by a factor of at least 100. It was estimated that ChAc and acetylcholinesterase (AChE; EC 3.1.1.7) each represent less than 0.01% by weight of the total protein in these cell bodies and that as little as 10% of each enzyme in the ventral spinal cord is located within the large neuronal somata and their proximal processes.  相似文献   

5.
The origin of the axon was studied in Golgi-Kopsch impregnated specimens prepared from the spinal cord and brain of adult rats. Five types of neurons were sampled: large ventral horn neurons, neurons in the intermediate zone and ventral horn of the spinal cord, antenna-type neurons in the spinal dorsal horn, neurons in the thalamus, and neurons in the hypothalamus. The axon originated from the perikaryon in 76% of the large ventral horn neurons and in 64% of the neurons in the thalamus. In contrast, the axon emerged from one of the dendrites in 75% of the neurons in the intermediate zone and the ventral horn of the spinal cord and in 68% of the neurons in the hypothalamus. In the case of the antenna-type neurons in the spinal dorsal horn, the axon often originated from one of the dendrites, but never from a dorsally oriented dendrite. The mean distance of the axon hillock of dendritic origin was the longest in the neurons in the intermediate zone and the ventral horn of the spinal cord. The size of the axon hillock was proportional to the size of the perikaryon. The impregnated portion of the axon was longest in the large ventral horn neurons.  相似文献   

6.
Parasympathetic preganglionic neurons in the cat sacral spinal cord innervate intraspinal neurons and pelvic target organs. Retrograde tracing studies have revealed little of the morphology of their axons including their origin, initial segments, or their myelin, due to methodological limitations. Intracellular labeling of single neurons with neurobiotin or HRP has overcome these problems. Axons were studied in 24 preganglionic neurons. In 21 neurons the axon originated as a branch of a dendrite, without a detectable axon hillock, at distances from the soma ranging from 10 to 110 μm (average 34.1 μm ). In 3 neurons the axon was derived from the soma. Initial segments, present in all cells, ranged from 15 to 40 μm (average 26.8 μm). Nearly all axons followed the initial segment with unmyelinated segments that varied between 59 to 630 μm, followed by myelin and nodes of Ranvier. Internodal distances were variable and relatively short (average 93 μm). Axonal diameters measured over the intraspinal course in 18 axons averaged 1.3 μm (range 0.6–2.4 μm) and were relatively constant compared with other neurons. Spine-like protrusions were observed on the initial segments of 12 cells. Axon collaterals originated from unmyelinated sections and nodes of Ranvier. Antidromic action potentials showing initial segment, soma-dendritic inflections, did not differentiate between soma-derived and dendrite-derived axons. The data suggest that axons originating from a dendrite are the normal structure of preganglionic neurons in the lateral sacral parasympathetic nucleus. It is proposed that the particular structure of these axons may be part of a timing mechanism that coordinates preganglionic neurons with other spinal neurons involved in target organ reflexes.  相似文献   

7.
The brainstem reticular formation has been studied in 16 genera representing 11 families of reptiles. Measurements of Nissl-stained reticular neurons revealed that they are distributed along a continuum, ranging in length from 10 μm to 95 μm. Reticular neurons in crocodilians and snakes tend to be larger than those found in lizards and turtles. Golgi studies revealed that reticular neurons posess long, rectilinear, sparsely branching dendrites. Small reticular neurons ( > 31 μm length) possess fusiform or triangular somata which bear two or three primary dendrites. These dendrites have a somewhat simpler ramification pattern when compared with those of large reticular neurons (< 30 μm length). Large reticular neurons generally possess perikarya which are triangular or polygonal in shape. The somata of large reticular neurons bear an average of four primary dendrites. The dendrites of reptilian reticular neurons ramify predominantly in the transverse plane and are devoid of spines or excrescences. The dendritic ramification patterns observed in the various repitilian reticular nuclei were correlated with known input and output connections of these nuclei. Nissl and Golgi techniques were used to divide the reticular formation into seven nuclei. A nucleus reticularis inferior (RI) is found in the myelencephalon, a reticularis medius (RM) in the caudal two-thirds of the metencephalon, and a reticularis superior (RS) in the rostral metencephalon and caudal mesencephalon. Reticularis inferior can be subdivided into a dorsal portion (RID) and a ventral portion (RIV). All reptilian groups possess RID and RM but RIV is lacking in turtles. Reticularis superior can be subdivided into a large-celled lateral portion (RSL) and a small-celled medial portion (RSM). All reptilian groups possess RSM and RSL, but RSL is quite variable in appearance, being best developed in snakes and crocodilians. The myelencephalic raphe nucleus is also quite variable in its morphology among the different reptilian families. A seventh reticular nucleus, reticularis ventrolateralis (RVL), is found only in snakes and in teiid lizards. It was noted that the reticular formation is simpler (fewer numbers of nuclei) in the representatives of older reptilian lineages and more complex (greater numbers of nuclei) in the more modern lineages. Certain reticular nuclei are present or more extensive in those families which have prominent axial musculature.  相似文献   

8.
Morgan  Charles W. 《Brain Cell Biology》2001,30(9-10):767-787
Axon collaterals were identified in 21 of 24 preganglionic neurons in the lateral band of the sacral parasympathetic nucleus of the cat. Following the intracellular injection of HRP or neurobiotin the axons from 20 of these neurons were followed and 53 primary axon collaterals were found to originate from unmyelinated segments and from nodes of Ranvier. Detailed mapping done in the five best labeled cells showed bilateral axon collaterals distributions up to 25,000 μm in length with 950 varicosities and unilateral distributions up to 12,561 μm with 491 varicosities. The axon collaterals appeared to be unmyelinated, which was confirmed at EM, and were small in diameter (average 0.3 μm). Varicosities were located mostly in laminae I, V, VII, VIII and X and in the lateral funiculi. Most varicosities were not in contact with visible structures but some were seen in close apposition to Nissl stained somata and proximal dendrites. Varicosities had average minor diameters of 1.3 μm and major diameters of 2.3 μm. Most were boutons en passant while 10–20% were boutons termineaux. EM revealed axodendritic and axoaxonic synapses formed by varicosities and by the axons between varicosities. It is estimated that the most extensive of these axon collaterals systems may contact over 200 spinal neurons in multiple locations. These data lead to the conclusion that sacral preganglionic neurons have multiple functions within the spinal cord in addition to serving their target organ. As most preganglionic neurons in this location innervate the urinary bladder, it is possible that bladder preganglionic neurons have multiple functions.  相似文献   

9.
Ong  W.Y.  Mackie  K. 《Brain Cell Biology》1999,28(1):39-45
The distribution of cannabinoid receptors was studied in the monkey spinal cord by immunocytochemistry and electron microscopy, using an antibody to the CB1 brain cannabinoid receptor. Large numbers of labelled neurons were observed in all portions of the grey matter of the spinal cord. These included small diameter 9–16µm neurons in the dorsal horn, larger (40–60µm) neurons in the intermediate grey, and very large (60–100µm), motor neurons in the ventral horn. Reaction product was observed in dendrites postsynaptic to unlabelled axon terminals. Since cannabinoid receptor activation decreases neuronal excitability by several mechanisms, including inhibition of voltage dependent calcium channels, the dense staining of CB1 in dorsal horn neurons suggests that CB1 could reduce calcium influx through such channels in these neurons. This, in turn, could decrease calcium-dependent changes in synaptic transmission and decrease sensitisation to nociceptive stimuli in these neurons. Similarly, the dense staining of CB1 in ventral horn cells suggests that cannabinoid receptors could limit calcium influx through voltage dependent calcium channels in these neurons, and could be significant in terms of neuroprotection to these neurons.  相似文献   

10.
In order to search for the relationship between the structure and the function of the nervous system, the spinal cord provides suitable material. We devised a procedure for isolation of large ventral and small dorsal horn neurons. Then we examined the -aminobutyric acid (GABA) system in both neurons isolated using our procedure. Glutamic decarboxylase (GAD) activity in dorsal horn neurons was much higher than that in ventral horn neurons. Further, GABA uptake activity by the dorsal horn neurons was also somewhat higher than that by the ventral horn neurons, although some properties of GABA uptake were found to be almost the same in both neuronal fractions. However, we could not find any difference of GABA--ketoglutarate transaminase (GABA-T) activity between the dorsal and ventral horn neurons. These results suggest that GAD and GABA uptake may be indicators for cell specificity to some extent.  相似文献   

11.
Abstract— A sensitive method for measuring γ-aminobutyric acid (GABA) has been developed. This method consists of a combination of the enzymic GABA assay of J akoby and S cott (1959) with the enzymic cycling technique of L owry , P assonneau , S chulz and R ock (1961) and permits the measurement of as little as 2 × 10−14 mol of GABA. Using this method, GABA analyses were made on single isolated nerve cell bodies of different types from the CNS of the cat. Average GABA concentrations in these cell bodies were: spinal ganglion cells, 0.2 m m ; spinal mononeurons, 0.9 m m ; large cells of the ventral part of Deiters' nucleus, 2.7 m m ; large cells of the dorsal part of Deiters' nucleus, 6.3 m m ; cerebellar nuclei cells, 6.0 m m ; cerebellar Purkinje cells, 6.6mM; cerebral Betz cells, 2.5 m m .
The GABA concentrations in the isolated dorsal Deiters' cells were greatly reduced (1.7 m m ) after the removal of the cerebellar vermis while those of the ventral Deiters' cells were unaffected by the denervation. These results suggest that GABA is concentrated within axon terminals, probably of Purkinje neurons, synapsing with the dorsal Deiters' cells. The results of GABA analyses on isolated nerve cells are discussed in relation to the relevant neuronal functions and the possible role of GABA as an inhibitory transmitter.  相似文献   

12.
We developed an isolation technique for motor neurons from adult rat spinal cord. Spinal cord enlargements were discretely microdissected into ventral horn tissue columns that were trypsin-digested and subjected to differential low-speed centrifugation to fractionate ventral horn cell types. A fraction enriched in alpha-motor neurons was isolated. Motor neuron enrichment was verified by immunofluorescence for choline acetyltransferase and prelabeling axon projections to skeletal muscle. Adult motor neurons were isolated from na?ve rats and were exposed to oxidative agents or were isolated from rats with sciatic nerve lesions (avulsions). We tested the hypothesis, using single-cell gel electrophoresis (comet assay), that hydrogen peroxide, nitric oxide, and peroxynitrite exposure in vitro and axotomy in vivo induce DNA damage in adult motor neurons early during their degeneration. This study contributes three important developments in the study of motor neurons. It demonstrates that mature spinal motor neurons can be isolated and used for in vitro models of motor neuron degeneration. It shows that adult motor neurons can be isolated from in vivo models of motor neuron degeneration and evaluated on a single-cell basis. This study also demonstrates that the comet assay is a feasible method for measuring DNA damage in individual motor neurons. Using these methods, we conclude that motor neurons undergoing oxidative stress from reactive oxygen species and axotomy accumulate DNA damage early in their degeneration.  相似文献   

13.
We have re-investigated the organization of ocelli in honeybee workers and drones. Ocellar lenses are divided into a dorsal and a ventral part by a cusp-shaped indentation. The retina is also divided, with a ventral retina looking skywards and a dorsal retina looking at the horizon. The focal plane of lenses lies behind the retina in lateral ocelli, but within the dorsal retina in the median ocellus of both workers and drones. Ventral retinula cells are ca. 25 μm long with dense screening pigments. Dorsal retinula cells are ca. 60 μm long with sparse pigmentation mainly restricted to their proximal parts. Pairs of retinula cells form flat, non-twisting rhabdom sheets with elongated, straight, rectangular cross-sections, on average 8.7 μm long and 1 μm wide. Honeybee ocellar rhabdoms have shorter and straighter cross-sections than those recently described in the night-active bee Megalopta genalis. Across the retina, rhabdoms form a fan-shaped pattern of orientations. In each ocellus, ventral and dorsal retinula cell axons project into two separate neuropils, converging on few large neurons in the dorsal, and on many small neurons in the ventral neuropil. The divided nature of the ocelli, together with the particular construction and arrangement of rhabdoms, suggest that ocelli are not only involved in attitude control, but might also provide skylight polarization compass information.  相似文献   

14.
Sonic hedgehog (Shh) is thought to control the generation of motor neurons and interneurons in the ventral CNS. We show here that a Shh-independent pathway of interneuron generation also operates in the ventral spinal cord. Evidence for this parallel pathway emerged from an analysis of the induction of ventral progenitors that express the Dbx homeodomain proteins and of Evx1/2 (V0) and En1 (V1) neurons. Shh signaling is sufficient to induce Dbx cells and V0 and V1 neurons but is not required for their generation in vitro or in vivo. Retinoids appear to mediate this parallel pathway. These findings reveal an unanticipated Shh-independent signaling pathway that controls progenitor cell identity and interneuron diversity in the ventral spinal cord.  相似文献   

15.
Abdominal distention accelerates the release of a factor from the head of blood-fed Aedes aegypti mosquitoes. The critical period during which the head is required for oögenesis following blood ingestion is approx 6 h with a 5 μl meal, but small blood meals of 1 μl require the head to be present for significantly longer. Increasing the abdominal distention by supplementing the 1 μl meal with saline results in a critical period similar to that with 5 μl of blood. The information from the distended abdomen appears to travel via the ventral nerve cord. Transection of the ventral nerve cord prevents oögenesis from occurring after small blood meals, but not with larger blood volumes. Topical application of 100 pg of juvenile hormone III can substitute for the distention message.  相似文献   

16.
Amyotrophic lateral sclerosis is characterized by selective motor neuron degeneration. An apoptotic pathway is thought to be involved. It is difficult, however, to analyze the molecular pathogenic mechanism in single motor neurons because of complexity in the neural tissue, which consists of multiple lineages of cells neighboring motor neurons. We quantified the caspase-1 and -3 mRNA in single motor neurons and neighboring glial cells isolated from the spinal ventral horn of mutant SOD1 transgenic (Tg) mice and littermates. Motor neurons and neighboring glial cells were isolated from spinal sections by laser microdissection, and the mRNAs were quantified by RT-PCR. In the Tg mice, caspase-1 mRNA was first upregulated in motor neurons and second in glial cells. The caspase-3 mRNA was increased in motor neurons following the caspase-1 mRNA. These results indicated that caspase-1 and -3 mRNAs are differentially upregulated in motor neurons and glial cells of the Tg mice, and that mRNAs in isolated cells can be accurately assessed using our procedures.  相似文献   

17.
A thecate dinoflagellate (Peridiniales, Dinophyceae) was cultured from individual non-calcareous cysts, isolated from surface sediment samples collected in Okinawa, Japan. Two isolates (CAWD188 and CAWD190) from two different sampling sites, each cultured from an individual cyst, produced ca. 11.9 and 15 pg cell−1 pinnatoxin G, respectively, as determined by liquid chromatography–mass spectrometric (LC–MS). No other pinnatoxins were detected. The motile cells and cysts appeared morphologically identical to those of pinnatoxins E and F producers isolated from New Zealand waters and pinnatoxins E, F, and G producers isolated from Australian waters. Motile and cysts cells measured an average of 25 μm long × 21.3 μm wide and 29 μm long × 25.5 μm wide, respectively. Analysis of the large subunit ribosomal DNA sequence data showed two well supported strains with slight differences between the Japanese and the Australasian isolates.  相似文献   

18.
The corticospinal tract (CST) of the rat is a widely used model system in developmental, physiological, and regeneration studies. The CST of the rat consists of a main tract, that runs in the dorsomedial funiculus and several minor components. We have shown earlier that one of the minor components, the ipsilateral, ventral CST, projects all the way down the spinal cord in the adult rat and single fibers form large terminal arbors in their spinal target areas. Here we investigated its ultrastructure and compared it to that of CST fibers of the main tract. By the use of anterograde axonal tracing with biotin dextran-amine (BDA) and pre-embedding avidin-peroxidase histochemistry we investigated axon diameters and myelination using electron microscopy. Ipsilateral, ventral CST fibers were found to run in the ventral funiculus close to the midline. They were intermingled with heavily myelinated large diameter axons, presumably reticulospinal, vestibulospinal, or tectospinal fibers. Ipsilateral, ventral CST fibers were of small diameter (0.68 μm, ±0.04) and about [frac34] of them were moderately myelinated (9.64 ± 0.7 layers of myelin). Co-localization of a rhodamine-dextrane anterograde tracer with the presynaptic marker synaptophysin using confocal microscopy and electron microscopy revealed varicosities on terminal arborisations to be presynaptic boutons and clearly demonstrated contacts to neurons in intermediate laminae of the spinal cord at lumbar spinal levels. This study extends our earlier work indicating that the ipsilateral, ventral CST component of the adult rat is a morphologically complete CST component and may perform similar functions to the main CST component.  相似文献   

19.
Single cell bodies of spinal motor neurons were isolated from freeze-dried sections of fresh spinal cords from six species of vertebrates. Single human neurons were also isolated from the spinal cords of three autopsy cases without neurological diseases. Choline acetyltransferase activity of these single neurons was determined by measuring acetyl-CoA formation from CoASH and acetylcholine by use of the enzymatic amplification reactions, CoA and NADP cyclings. The enzyme activity was unevenly distributed in the cytosol of spinal motor neurons of all species, but not measurable in rabbit dorsal root ganglion cells. The specific activity on a dry weight basis varied widely among the individual neurons from the species studied. The average activity was highest with rat neurons and lowest with yellowtail neurons. The neurons from cold-blooded animals (bullfrog and yellowtail) had about one-tenth the activity compared with the warm-blooded animals (cat, rabbit, rat, and hen). Human neurons, obtained under different morbid and post-mortem conditions with three autopsy cases, had very low activities corresponding to those of cold-blooded animals. Since the choline acetyltransferase activity lost from mouse brain after 11 h at 38 degrees C was 50%, the activity in human neurons was believed to actually be low in vivo.  相似文献   

20.
Distribution of dipeptidyl peptidase II (Dpp II) in rat spinal cord   总被引:1,自引:0,他引:1  
The histochemical localization of dipeptidyl peptidase II (Dpp II; E.C. 3.4.14.2) activity was demonstrated at the light microscope level in the rat spinal cord. Prominent staining was observed in motoneurons of the ventral horn and in medium to large neurons in the deep laminae of the dorsal horn, the intermediate gray, and in lamina X surrounding the spinal canal. Within neurons, Dpp II was localized largely in cell perikarya and large primary dendrites with no staining observed in cell nuclei. Neurons in the superficial dorsal horn lack Dpp II enzyme activity. Nonneuronal elements which also stained prominently were pericytes associated with blood vessels and ependymal cells lining the lumen of the spinal canal. A few oligodendrocytes and astrocytes were also stained, but they represented a minor component of the total amount of Dpp II activity. Following ventral root injury, Dpp-II-containing motoneurons degenerate; some glial cells in the region of degenerating neurons become Dpp II positive. The localized distribution of Dpp II in spinal cord neurons suggests that this proteolytic enzyme may play a role in the metabolism of an unidentified neuropeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号