首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The short stem and midrib (ssm) mutants of Arabidopsis thaliana show both semi-dwarf and wavy leaf phenotypes due to defects in the elongation of the stem internodes and leaves. Moreover, these abnormalities cannot be recovered by exogenous phytohormones. ssm was originally identified as a single recessive mutant of the ecotype Columbia (Col-0), but genetic crossing experiments have revealed that this mutant phenotype is restored by another gene that is functional in the ecotype Landsberg erecta (Ler) and not in Col-0. Map-based cloning of the gene that is defective in ssm mutants has uncovered a small deletion in the sixth intron of a gene encoding a syntaxin, VAM3/SYP22, which has been implicated in vesicle transport to the vacuole. This mutation appears to cause a peptide insertion in the deduced VAM3/SYP22 polypeptide sequence due to defective splicing of the shortened sixth intron. Significantly, when compared with the wild-type Ler genome, the wild-type Col-0 genome has a single base pair deletion causing a frameshift mutation in SYP23, a gene with the highest known homology to VAM3/SYP22. These findings suggest that VAM3/SYP22 and SYP23 have overlapping functions and that the vesicle transport mediated by these syntaxins is important for shoot morphogenesis.  相似文献   

3.
Zhai J  Liu J  Liu B  Li P  Meyers BC  Chen X  Cao X 《PLoS genetics》2008,4(4):e1000056
Progress in epigenetics has revealed mechanisms that can heritably regulate gene function independent of genetic alterations. Nevertheless, little is known about the role of epigenetics in evolution. This is due in part to scant data on epigenetic variation among natural populations. In plants, small interfering RNA (siRNA) is involved in both the initiation and maintenance of gene silencing by directing DNA methylation and/or histone methylation. Here, we report that, in the model plant Arabidopsis thaliana, a cluster of approximately 24 nt siRNAs found at high levels in the ecotype Landsberg erecta (Ler) could direct DNA methylation and heterochromatinization at a hAT element adjacent to the promoter of FLOWERING LOCUS C (FLC), a major repressor of flowering, whereas the same hAT element in ecotype Columbia (Col) with almost identical DNA sequence, generates a set of low abundance siRNAs that do not direct these activities. We have called this hAT element MPF for Methylated region near Promoter of FLC, although de novo methylation triggered by an inverted repeat transgene at this region in Col does not alter its FLC expression. DNA methylation of the Ler allele MPF is dependent on genes in known silencing pathways, and such methylation is transmissible to Col by genetic crosses, although with varying degrees of penetrance. A genome-wide comparison of Ler and Col small RNAs identified at least 68 loci matched by a significant level of approximately 24 nt siRNAs present specifically in Ler but not Col, where nearly half of the loci are related to repeat or TE sequences. Methylation analysis revealed that 88% of the examined loci (37 out of 42) were specifically methylated in Ler but not Col, suggesting that small RNA can direct epigenetic differences between two closely related Arabidopsis ecotypes.  相似文献   

4.
Genger RK  Peacock WJ  Dennis ES  Finnegan EJ 《Planta》2003,216(3):461-466
Demethylation of DNA promotes flowering in plants from the vernalization-responsive ecotype C24 of Arabidopsis thaliana (L.) Heynh., but delays flowering in the ecotype Landsberg erecta which is not responsive to vernalization. To investigate these contrasting effects of low methylation we have monitored flowering times and expression of two repressors of flowering, FLC and FWA, in low-methylation plants from three late-flowering mutants in the ecotype Landsberg erecta. Demethylation of DNA decreased FLC expression in the vernalization-responsive mutants, but was not associated with a promotion of flowering; rather, in some lines, demethylation delayed flowering. The opposing effects of demethylation could be explained by its differential effect on the expression of two repressors of flowering. FLC was down-regulated in plants with low methylation, promoting flowering, while FWA was activated in response to demethylation, which probably delays the transition to flowering. Expression of the FWA gene did not delay flowering in plants of ecotype C24; our data suggest that the FWA protein of C24 may be non-functional.  相似文献   

5.
The HUA2 gene acts as a repressor of floral transition. Lesions in hua2 were identified through a study of natural variation and through two mutant screens. An allele of HUA2 from Landsberg erecta (Ler) contains a premature stop codon and acts as an enhancer of early flowering 4 (elf4) mutants. hua2 single mutants, in the absence of the elf4 lesion, flower earlier than wild type under short days. hua2 mutations partially suppress late flowering in FRIGIDA (FRI )-containing lines, autonomous pathway mutants, and a photoperiod pathway mutant. hua2 mutations suppress late flowering by reducing the expression of several MADS genes that act as floral repressors including FLOWERING LOCUS C (FLC ) and FLOWERING LOCUS M (FLM ).  相似文献   

6.
In the pathosystem of turnip mosaic virus (TuMV) and Arabidopsis thaliana, two distinct symptoms (mosaic symptom and veinal necrosis) were observed that were dependent upon the combination of the TuMV isolate and the Arabidopsis ecotype. The Col-0 ecotype developed mosaic symptoms after infection with the TuMV isolate Azu while the Ler ecotype developed veinal necrosis after infection with the same TuMV isolate. The Ler phenotype is controlled by a single dominant gene TuNI (TuMV necrosis inducer) which is located on chromosome 1. The TuNI gene was precisely mapped to the ~105 kb interval between the two markers of mXF41 and mRF28 by using several types of DNA polymorphism markers. Within this region, which included largely duplicated sequences, a total of 19 putative genes were predicted and 15 of these were classified into five gene families. The genes belonging to the gene families At1g58480 and At1g58602 may function in response to infection by pathogens. The gene family At1g58480 encodes lipase-like proteins, which might be involved in the induction of defence responses that are mediated by salicylic acid. The gene family At1g58602 encodes the CC-NBS-LRR (CNL) proteins, which are known to function as one of the plant resistance (R) proteins against pathogens. In the present study, the possibility that TuNI might function as an R gene was discussed.Y.K. and T.I. contributed equally to this study  相似文献   

7.
The time of flowering in Arabidopsis is controlled by multiple endogenous and environmental signals. Some of these signals promote the onset of flowering, whereas others repress it. We describe here the isolation and characterization of two allelic mutations that cause early flowering and define a new locus, EARLY BOLTING IN SHORT DAYS (EBS). Acceleration of flowering time in the ebs mutants is especially conspicuous under short-day photoperiods and results from a reduction of the adult vegetative phase of the plants. In addition to the early flowering phenotype, ebs mutants show a reduction in seed dormancy, plant size, and fertility. Double mutant analysis with gibberellin-deficient mutants indicates that both the early-flowering and the precocious-germination phenotypes require gibberellin biosynthesis. Analysis of the genetic interactions among ebs and several mutations causing late flowering shows that the ft mutant phenotype is epistatic over the early flowering of ebs mutants, suggesting that the precocious flowering of ebs requires the FT gene product. Finally, the ebs mutation causes an increase in the level of expression of the floral homeotic genes APETALA3 (AP3), PISTILLATA (PI), and AGAMOUS (AG) and partially rescues the mutant floral phenotype of leafy-6 (lfy-6) mutants. These results suggest that EBS participates as a negative regulator in developmental processes such as germination, flowering induction, and flower organ specification.  相似文献   

8.
fld and co, both with significantly delayed flowering, are characterized as late-flowering mutations in Arabidopsis thaliana. Double mutants between fld-2 and co-3 were generated and the phenotypes characterized. Double mutants flower later than both single mutant parents, suggesting that there is an additive effect. In addition, the formation of flowers in double mutants was altered and showed a novel phenotype. Double mutant flowers contained a much longer stalk (pedicel). Sepals and petals were absent. Several leaf-like structures were produced in the position normally occupied by sepals and the organ numbers were reduced. The carpels were morphologically normal. The stamens produced were usually aborted in the early stage, thus, the flowers were sterile. The additive phenotype observed in double mutants provides evidence to support that these two genes, FLD and CO, are not only involved in rosette-to-inflorescence transition but also involved in the flower formation. This result also indicates that FLD and CO promote the reproductive program through two different pathways.  相似文献   

9.
In Arabidopsis ecotype Landsberg erecta (Ler), RPP5 confers resistance to the pathogen Peronospora parasitica. RPP5 is part of a clustered multigene family encoding nucleotide binding-leucine-rich repeat (LRR) proteins. We compared 95 kb of DNA sequence carrying the Ler RPP5 haplotype with the corresponding 90 kb of Arabidopsis ecotype Columbia (Col-0). Relative to the remainder of the genome, the Ler and Col-0 RPP5 haplotypes exhibit remarkable intraspecific polymorphism. The RPP5 gene family probably evolved by extensive recombination between LRRs from an RPP5-like progenitor that carried only eight LRRs. Most members have variable LRR configurations and encode different numbers of LRRs. Although many members carry retroelement insertions or frameshift mutations, codon usage analysis suggests that regions of the genes have been subject to purifying or diversifying selection, indicating that these genes were, or are, functional. The RPP5 haplotypes thus carry dynamic gene clusters with the potential to adapt rapidly to novel pathogen variants by gene duplication and modification of recognition capacity. We propose that the extremely high level of polymorphism at this complex resistance locus is maintained by frequency-dependent selection.  相似文献   

10.
Despite much effort, a robust protocol for in vitro germination of Arabidopsis thaliana pollen has been elusive. Here we show that controlled temperatures, a largely disregarded factor in previous studies, and a simple optimized medium, solidified or liquid, yielded pollen germination rates above 80% and pollen tube lengths of hundreds of microns, with both Columbia and Landsberg erecta (Ler) ecotypes. We found that pollen germination and tube growth were dependent on pollen density in both liquid and solid medium. Pollen germination rates were not substantially affected by flower or plant age. The quartet1 mutation negatively affected pollen germination, especially in the Ler ecotype. This protocol will facilitate functional analyses of insertional mutants affecting male gametophyte function, and should allow detailed gene expression analyses during pollen tube growth. Arabidopsis thaliana can now be included on the list of plant species that are suitable models for physiological studies of pollen tube elongation and tip growth.  相似文献   

11.
Soil microorganisms found in the root zone impact plant growth and development, but the potential to harness these benefits is hampered by the sheer abundance and diversity of the players influencing desirable plant traits. Here, we report a high level of reproducibility of soil microbiomes in altering plant flowering time and soil functions when partnered within and between plant hosts. We used a multi-generation experimental system using Arabidopsis thaliana Col to select for soil microbiomes inducing earlier or later flowering times of their hosts. We then inoculated the selected microbiomes from the tenth generation of plantings into the soils of three additional A. thaliana genotypes (Ler, Be, RLD) and a related crucifer (Brassica rapa). With the exception of Ler, all other plant hosts showed a shift in flowering time corresponding with the inoculation of early- or late-flowering microbiomes. Analysis of the soil microbial community using 16 S rRNA gene sequencing showed distinct microbiota profiles assembling by flowering time treatment. Plant hosts grown with the late-flowering-associated microbiomes showed consequent increases in inflorescence biomass for three A. thaliana genotypes and an increase in total biomass for B. rapa. The increase in biomass was correlated with two- to five-fold enhancement of microbial extracellular enzyme activities associated with nitrogen mineralization in soils. The reproducibility of the flowering phenotype across plant hosts suggests that microbiomes can be selected to modify plant traits and coordinate changes in soil resource pools.  相似文献   

12.
We have tested whether the promotion of flowering by long days(LD) in Arabidopsis thaliana is a consequence of photoperiodicinduction. To achieve this, the flowering responses of Arabidopsisthaliana (L.) Heynh. Landsberg erecta (Ler) and the long-hypocotylmutants hy2, hy3 and hy4 were determined with respect to age,daylength and light quality. Ler was capable of distinguishingbetween short days (SD) and long days (LD) from about 4 d aftersowing at 20 C, the time at which cotyledons were expandingand greening. At this stage, the critical daylength was between8 h and 10 h. At 7 d, seedlings required five LD for inductionand, as the seedlings aged, they became more sensitive so thatby day 20, one LD was fully inductive. The response to SD innewly germinated seedlings was to delay flowering without alteringleaf number, but after about 10 d, delay of flowering by SDwas accompanied by extra leaves. In light quality experiments,blue light (B) was inductive for 5-d-old plants and in all subsequenttreatments, far-red (FR) caused induction in treatments at 12d and 18 d and low pressure sodium, equivalent to red, was notinductive at 5 d and 12 d, but partially inductive at day 18.Hence, both a specific blue-light photoreceptor and phytochromeA in High Irradiance Response mode promote floral induction.In daylength transfer experiments all three hy mutants respondedto LD by earlier flowering. Both hy2 and hy3 produced substantiallyfewer leaves than Ler in SD and hy3 flowered slightly earlierthan Ler. The hy4 mutants flowered later than Ler in SD andhad a higher leaf number. A scheme is proposed in which photoperiodicinduction depends on the ability of the plant to sense photoperiod,the stage of development and the photobiological input. We alsopropose that phytochrome A and the blue photoreceptor promoteflowering whereas phytochrome B promotes vegetative development. Key words: Arabidopsis thaliana, blue-absorbing photoreceptor, flowering, photoperiodic induction, phytochrome  相似文献   

13.
14.
Lee I  Amasino RM 《Plant physiology》1995,108(1):157-162
We have compared the flowering response to vernalization, photoperiod, and far-red (FR) light of the Columbia (Col) and Landsberg erecta (Ler) ecotypes of Arabidopsis into which the flowering-time locus FRIGIDA (FRI) has been introgressed with that of the wild types Col, Ler, and San Feliu-2 (Sf-2). In the early-flowering parental ecotypes, Col and Ler, a large decrease in flowering time in response to vernalization was observed only under short-day conditions. However, Sf-2 and the Ler and Col genotypes containing FRI showed a strong response to vernalization when grown in either long days or short days. Although vernalization reduced the responsiveness to photoperiod, plants vernalized for more than 80 d still showed a slight photoperiod response. The effect of FRI on flowering was eliminated by 30 to 40 d of vernalization; subsequently, the response to vernalization in both long days and short days was the same in Col and Ler with or without FRI. FR-light enrichment accelerated flowering in all ecotypes and introgressed lines. However, the FR-light effect was most conspicuous in the FRI-containing plants. Saturation of the vernalization effect eliminated the effect of FR light on flowering, although vernalization did not eliminate the increase of petiole length in FR light.  相似文献   

15.
Schläppi MR 《Plant physiology》2006,142(4):1728-1738
The Landsberg erecta (Ler) accession of Arabidopsis (Arabidopsis thaliana) has a weak allele of the floral inhibitor FLOWERING LOCUS C (FLC). FLC-Ler is weakly up-regulated by the active San Feliu-2 (Sf2) allele of FRIGIDA (FRI-Sf2), resulting in a moderately late-flowering phenotype. By contrast, the Columbia (Col) allele of FLC is strongly up-regulated by FRI-Sf2, resulting in a very late-flowering phenotype. In Col, the FRI-related gene FRI LIKE 1 (FRL1) is required for FRI-mediated up-regulation of FLC. It is shown here that in Ler, the FRL1-related gene FRI LIKE 2 (FRL2), but not FRL1, is required for FRI-mediated up-regulation of FLC. FRL1-Ler is shown to be a nonsense allele of FRL1 due to a naturally occurring premature stop codon in the middle of the conceptual protein sequence, suggesting that FRL1-Ler is nonfunctional. Compared to FRL2-Col, FRL2-Ler has two amino acid changes in the conceptual protein sequence. Plants homozygous for FRI-Sf2, FLC-Ler, FRL1-Ler, and FRL2-Col have no detectable FLC expression, resulting in an extremely early flowering phenotype. Transformation of a genomic fragment of FRL2-Ler, but not of FRL2-Col, into a recombinant inbred line derived from these plants restores both FRI-mediated up-regulation of FLC expression and a late-flowering phenotype, indicating that FRL2-Ler is the functional allele of FRL2. Taken together, these results suggest that in the two different Arabidopsis accessions Col and Ler, either FRL1 or FRL2, but not both, is functional and required for FRI-mediated up-regulation of FLC.  相似文献   

16.
We identified a new role of phytochrome in mediating germination responses to seasonal cues and thereby identified for the first time a gene involved in maternal environmental effects on germination. We examined the germination responses of a mutant, hy2-1, which is deficient in the phytochrome chromophore. The background genotype, Landsberg erecta (Ler), lacked dormancy in most treatments, while hy2-1 required cold stratification for germination in a manner that resembled a more dormant ecotype, Columbia (Col). Unlike Col, hy2-1 was not induced into dormancy by warm stratification. Therefore, the down-regulation of phytochrome-mediated germination pathways results in sensitivity to cold, but we found no evidence that reduced phytochrome activity enables the warm-induction of dormancy. Cool temperatures during seed maturation induced dormancy. The hy2-1 mutants did not overcome this dormancy, indicating that phytochrome-mediated pathways are required to break cold-induced dormancy. Ler did not respond to post-stratification temperature, but hy2-1 did respond, suggesting phytochrome pathways are involved in germination responses to temperature. In summary, phytochromes mediate dormancy and germination responses to seasonal cues experienced both during seed maturation and after dispersal. Phytochromes therefore appear to be involved in mediating seasonal germination timing, a trait of great ecological importance and one that is under strong natural selection.  相似文献   

17.
The Arabidopsis FLOWERING LOCUS C (FLC) gene encodes a MADS box protein that acts as a dose-dependent repressor of flowering. Mutants and ecotypes with elevated expression of FLC are late flowering and vernalization responsive. In this study we describe an early flowering mutant in the C24 ecotype, flc expressor (flx), that has reduced expression of FLC. FLX encodes a protein of unknown function with putative leucine zipper domains. FLX is required for FRIGIDA (FRI)-mediated activation of FLC but not for activation of FLC in autonomous pathway mutants. FLX is also required for expression of the FLC paralogs MADS AFFECTING FLOWERING 1 (MAF1) and MAF2.  相似文献   

18.
19.
The role of cryptochrome 2 in flowering in Arabidopsis   总被引:1,自引:0,他引:1       下载免费PDF全文
We have investigated the genetic interactions between cry2 and the various flowering pathways in relation to the regulation of flowering by photoperiod and vernalization. For this, we combined three alleles of CRY2, the wild-type CRY2-Landsberg erecta (Ler), a cry2 loss-of-function null allele, and the gain-of-function CRY2-Cape Verde Islands (Cvi), with mutants representing the various photoreceptors and flowering pathways. The analysis of CRY2 alleles combined with photoreceptor mutants showed that CRY2-Cvi could compensate the loss of phyA and cry1, also indicating that cry2 does not require functional phyA or cry1. The analysis of mutants of the photoperiod pathway showed epistasis of co and gi to the CRY2 alleles, indicating that cry2 needs the product of CO and GI genes to promote flowering. All double mutants of this pathway showed a photoperiod response very much reduced compared with Ler. In contrast, mutations in the autonomous pathway genes were additive to the CRY2 alleles, partially overcoming the effects of CRY2-Cvi and restoring day length responsiveness. The three CRY2 alleles were day length sensitive when combined with FRI-Sf2 and/or FLC-Sf2 genes, which could be reverted when the delay of flowering caused by FRI-Sf2 and FLC-Sf2 alleles was removed by vernalization. In addition, we looked at the expression of FLC and CRY2 genes and showed that CRY2 is negatively regulated by FLC. These results indicate an interaction between the photoperiod and the FLC-dependent pathways upstream to the common downstream targets of both pathways, SOC1 and FT.  相似文献   

20.
We have analysed the circadian rhythm of Arabidopsis thaliana leaf movements in the accession Cvi from the Cape Verde Islands, and in the commonly used laboratory strains Columbia (Col) and Landsberg (erecta) (Ler), which originated in Northern Europe. The parental lines have similar rhythmic periods, but the progeny of crosses among them reveal extensive variation for this trait. An analysis of 48 Ler/Cvi recombinant inbred lines (RILs) and a further 30 Ler/Col RILs allowed us to locate four putative quantitative trait loci (QTLs) that control the period of the circadian clock. Near-isogenic lines (NILs) that contain a QTL in a small, defined chromo- somal region allowed us to confirm the phenotypic effect and to map the positions of three period QTLs, designated ESPRESSO, NON TROPPO and RALENTANDO. Quantitative trait loci at the locations of RALENTANDO and of a fourth QTL, ANDANTE, were identified in both Ler/Cvi and Ler/Col RIL populations. Some QTLs for circadian period are closely linked to loci that control flowering time, including FLC. We show that flc mutations shorten the circadian period such that the known allelic variation in the MADS-box gene FLC can account for the ANDANTE QTL. The QTLs ESPRESSO and RALENTANDO identify new genes that regulate the Arabidopsis circadian system in nature, one of which may be the flowering-time gene GIGANTEA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号