首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Six mutant xylanases were obtained by in vitro mutagenesis of a xylanase gene from the extremely thermophilic bacterium Caldocellum saccharolyticum. The temperature stability of all enzymes was affected by mutation to various degrees and one of the xylanases had an altered temperature optimum. The mutations had no effect on the pH optimum. The C. saccharolyticum xylanase showed strong homology to several thermophilic and mesophilic xylanases, and comparison of primary sequences allowed the localization of probable active sites and residues involved in thermostability. Offprint requests to: P. L. Bergquist  相似文献   

3.
The complete sequence of a beta-mannanase gene from an anaerobic extreme thermophile was determined, and it shows that the expressed protein consists of two catalytic domains and two binding domains separated by spacer regions rich in proline and threonine residues. The amino-terminal catalytic domain has beta-mannanase activity, and the carboxy-terminal domain acts as an endoglucanase. Neither domain shows homology with any other cellulase or hemicellulase sequence at the nucleic acid or protein level.  相似文献   

4.
A lambda recombinant bacteriophage coding for xylanase and beta-xylosidase activity has been isolated from a genomic library of the extremely thermophilic anaerobe "Caldocellum saccharolyticum." Partial Sau3AI fragments of the lambda recombinant DNA were ligated into pBR322. A recombinant plasmid with an insertion of ca. 7 kilobases of thermophilic DNA expressing both enzymatic activities was isolated. The location of the genes has been established by analyzing deletion derivatives, and the DNA sequence of 6.067 kilobases of the insert has been determined. Five open reading frames (ORFs) were found, one of which (ORF1; Mr 40,455) appears to code for a xylanase (XynA) which also acts on o-nitrophenyl-beta-D-xylopyranoside. Another, ORF5 (Mr 56,365), codes for a beta-xylosidase (XynB). The xynA gene product shows significant homology with the xylanases from the alkalophilic Bacillus sp. strain C125 and Clostridium thermocellum.  相似文献   

5.
A lambda recombinant phage expressing beta-mannanase activity in Escherichia coli has been isolated from a genomic library of the extremely thermophilic anaerobe "Caldocellum saccharolyticum." The gene was cloned into pBR322 on a 5-kb BamHI fragment, and its location was obtained by deletion analysis. The sequence of a 2.1-kb fragment containing the mannanase gene has been determined. One open reading frame was found which could code for a protein of Mr 38,904. The mannanase gene (manA) was overexpressed in E. coli by cloning the gene downstream from the lacZ promoter of pUC18. The enzyme was most active at pH 6 and 80 degrees C and degraded locust bean gum, guar gum, Pinus radiata glucomannan, and konjak glucomannan. The noncoding region downstream from the mannanase gene showed strong homology to celB, a gene coding for a cellulase from the same organism, suggesting that the manA gene might have been inserted into its present position on the "C. saccharolyticum" genome by homologous recombination.  相似文献   

6.
7.
In this study, different mole fractions of pure Thermomonospora fusca E(5) and E(3), plus Trichoderma reesei CBHI were studied for reducing sugar production at 2 h, degree of synergism, and cellulose binding. In addition, the effects of introducing the Caldocellum saccharolyticum beta-glucosidase into this cellulase system were investigated. The cellulases used were purified to homogeneity. Avicel PH 102 (4% w/w solution in 0.05 sodium acetate pH 5.5 buffer) was the substrate. Reactions were run at 50 degrees C for 2 h using total cellulase concentrations of 8.3 or 12.2 muM. A bimixture of T. fusca E(3) and T. reesei CBHI was very effective in hydrolyzing microcrystalline cellulose (9.1% conversion). The addition of endoglucanase E(5) to the mixture only increased conversion to 9.8%. However, when both E(5) and beta-glucosidase were added, conversion increased to 14%. It was also observed that increasing total cellulase concentration beyond 8.3 muM did little to increase percent conversion of cellulose into glucose. The results of the binding studies indicate no competition for binding sites between the endo- and exocellulases. (c) 1993 John Wiley & Sons, Inc.  相似文献   

8.
The aerotolerant rumen bacterium, Streptococcus bovis, has been used as a host for expression of genes of eukaryotic origin. The coding regions of the celA cellulase gene from the rumen fungus, Neocallimastix patriciarum, were fused with bacterial promoter/signal peptide regions from the Ruminococcus flavefaciens xynD and S. bovis -(1,3-1,4)-glucanase genes. Fusion cassettes were built into shuttle vector constructs based on pIL253 or pTRW10 and constructs carrying celA were transformed into S. bovis JB1. Active N. patriciarum cellulase was produced in S. bovis with either promoter, although better expression levels were obtained with the native S. bovis -glucanase promoter fragment.  相似文献   

9.
A xylanase encoded by the xynA gene of the extreme thermophile "Caldocellum saccharolyticum" was overexpressed in Escherichia coli by cloning the gene downstream from the temperature-inducible lambda pR and pL promoters of the expression vector pJLA602. Induction of up to 55 times was obtained by growing the cells at 42 degrees C, and the xylanase made up to 20% of the whole-cell protein content. The enzyme was located in the cytoplasmic fraction in E. coli. The temperature and pH optima were determined to be 70 degrees C and pH 5.5 to 6, respectively. The xylanase was stable for at least 72 h if incubated at 60 degrees C, with half-lives of 8 to 9 h at 70 degrees C and 2 to 3 min at 80 degrees C. The enzyme had high activity on xylan and ortho-nitrophenyl beta-D-xylopyranoside and some activity on carboxymethyl cellulose and para-nitrophenyl beta-D-cellobioside. The gene was probably expressed from its own promoter in E. coli. Translation of the xylanase overproduced in E. coli seemed to initiate at a GTG codon and not at an ATG codon as previously determined.  相似文献   

10.
Summary The gene for a -glucosidase from the extremely thermophilic bacterium Caldocellum saccharolyticum has been isolated from a genomic library and sequenced. An open reading frame identified by computer analysis of the sequence could encode a protein of Mr 54400, which is close to the size of the polypeptide experimentally determined using maxicells. Analysis of the amino-terminal residues of the protein produced in Escherichia coli suggests that it is processed by a methionine aminopeptidase. A sequence within C. saccharolyticum DNA upstream of the -glucosidase gene was found to act as a promoter for expression of the thermophile gene in E. coli. The protein has been overproduced in E. coli and Bacillus subtilis where it retains its enzymatic activity and heat stability. There appears to be a single copy of the gene in Caldocellum DNA.  相似文献   

11.
Mutants of the extreme thermophile Thermus flavus in the pyrimidine biosynthetic pathway (Pyr-) were isolated by resistance to 5-fluoroorotic acid. The pyrE gene, which codes for the orotate phosphoribosyltransferase, was cloned by recombination with one of the isolated Pyr- T. flavus mutant strains. It was subcloned by complementation of an Escherichia coli pyrE mutant strain and was sequenced. The deduced polypeptide sequence extends over 183 amino acids. Several independent Pyr- mutations were mapped within the pyrE locus by recombination with fragments of the cloned gene.  相似文献   

12.
13.
A Thermus thermophilus host strain of which the leuB gene was totally deleted was constructed from a delta pyrE strain by a two step method. First, the leuB gene was replaced with the pyrE gene. Second, the inserted pyrE gene was deleted by using 5-fluoroorotic acid. A plasmid vector with the leuB marker was constructed and the plasmid complemented the leuB deficiency of the host. When the leuB gene from Escherichia coli and its derivative encoding a stabilized enzyme were expressed with the host-vector system, their growth temperature reflected the stability of the enzyme. These results suggest that the gene replacement deletion method using the pyrE gene is useful for the construction of a reliable plasmid vector system and it can be applied to the selection of stabilized enzymes.  相似文献   

14.
15.
A thermostable arginase (L-arginine amidinohydrolase, EC 3.5.3.1) was purified from the extreme thermophile 'Bacillus caldovelox' (DSM 411) by a procedure including DEAE-Sepharose chromatography, and gel filtration, anion exchange and hydrophobic-interaction fast-protein liquid chromatography, with substantial retention of the metal ion cofactor. The purified enzyme is a hexamer with a subunit Mr of 31,000 +/- 2000 and contains greater than or equal to 1 Mn atom per subunit. Maximum activation on incubation with Mn2+ is 29%. Activity is optimal at pH 9 and at 60 degrees C the Km for arginine is 3.4 mM and Ki(ornithine) is 0.55 mM. Incubation in 0.1 M Mops/NaOH buffer (pH 7) causes rapid inactivation at 60 degrees C (t1/2 (half life) = 4.5 min) and individually 0.1 mM Mn2+ or 1 mg/ml BSA (bovine serum albumin) increase the t1/2 of arginase activity 4-fold, but combined they produce greater than 1000-fold increase and a t1/2 = 105 min at 95 degrees C. Aspartic acid and other species that bind Mn2+ can replace BSA, and it is suggested that arginase can be inactivated by free Mn2+. A strong chelating agent causes inactivation without subunit dissociation, but arginase dissociates rapidly at pH 2.5. Reassociation occurs at pH 9 and is unusual in that it does not require Mn2+.  相似文献   

16.
17.
18.
Caldolysin, the extracellular thermostable metal-chelator-sensitive lytic protease from Thermus T-351 was immobilized to Sepharose 4B, CM-cellulose, and controlled pore glass (CPG). Although protein binding efficiencies were high (96, 88, and 95%), some loss of enzyme activity occurred on immobilization (26, 69, and 89%). The pH optimum of both CM-cellulose and CPG-immobilized Caldolysin was decreased by about one pH unit. The K(m) for Sepharose-Caldolysin was unchanged with respect to the free protease, while those for CM-cellulose-Caldolysin and CPG-Caldolysin were lower by approximately one order of magnitude. Immobilization to both Sepharose and CM-cellulose increased the thermostability of Caldolysin at high temperatures, while CPG-Caldolysin was less thermostable than the free protease.  相似文献   

19.
20.
Thermostable aminoacyl-tRNA synthetases specific to Val, Ile, Met and Glu were purified from an extreme thermophile, Thermus thermophilus HB8. As for the subunit compositions and molecular weights, these four aminoacyl-tRNA synthetases are similar to the corresponding enzymes from E. coli and B. stearothermophilus. Val-tRNA, Ile-tRNA and Met-tRNA synthetases from T. thermophilus have two tightly bound zinc ions, whereas Glu-tRNA synthetase does not. The amino acid compositions and secondary structures of Val-tRNA, Ile-tRNA and Met-tRNA synthetases are quite similar to one another. The conformational transition involving the anticodon of E. coli tRNAGlu as complexed with Glu-tRNA synthetase from T. thermophilus is necessary for the aminoacylation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号