首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae). The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome) or both sex chromosomes (X and Y chromosomes). This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes) and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.  相似文献   

2.
The location of 18S and 5S rDNA sites was determined in eight species and populations of the fish genus Triportheus by using fluorescent in situ hybridization (FISH). The males and females of all species had 2n = 52 chromosomes and a ZZ/ZW sex chromosome system. A single 18S rDNA site that was roughly equivalent to an Ag-NOR was detected on the short arms of a submetacentric pair in nearly all species, and up to two additional sites were also observed in some species. In addition, another 18S rDNA cluster was identified in a distal region on the long arms of the W chromosome; this finding corroborated previous evidence that this cluster would be a shared feature amongst Triportheus species. In T. angulatus, a heterozygotic paracentric inversion involving the short arms of one homolog of a metacentric pair was associated with NORs. The 5S rDNA sites were located on the short arms of a single submetacentric chromosomal pair, close to the centromeres, except in T. auritus, which had up to ten 5S rDNA sites. The 18S and 5S rDNA sites were co-localized and adjacent on the short arms of a chromosomal pair in two populations of T. nematurus. Although all Triportheus species have a similar karyotypic macrostructure, the results of this work show that in some species ribosomal genes may serve as species-specific markers when used in conjunction with other putatively synapomorphic features.  相似文献   

3.
Chromosome mapping of three common markers, ie major and 5S rRNA genes (rDNA) and telomeric repeats, and conventional chromosome bandings were applied to two sibling species, Apodemus sylvaticus Linnaeus, 1758 and A. flavicollis Melchior, 1834, to further investigate intra- and interspecific karyological differentiation in the genus Apodemus. A slight variation of the rDNA-patterns was detected between the two Apodemus species. In both of them, the major NORs were located on autosome pairs 8, 11, 12 and 22, while the two other rDNA sites detected on chromosomes 7 and 21 were variable in, respectively, A. sylvaticus and A. flavicollis. Several tiny rDNA sites were present on the sex chromosomes in both species, but their incidence was lower in A. flavicollis. Single 5S rDNA chromosomal sites were conserved on chromosome pair 20. No interstitial sites of telomeric repeats were present in either species. In the Sicilian population of A. sylvaticus, the constitutive heterochromatin pattern corresponded to the “sylvaticus-E1” cytotype, while A. flavicollis had a species-specific pattern restricted to centromeres of all chromosomes. The results are discussed in relation to cytogenetic data available for the genus, with emphasis on the Sylvaemus group/subgenus.  相似文献   

4.
Over one hundred years have passed since the first cytogenetic studies were made on the liverwort genus Pellia Raddi. The karyotype of Pellia is characterised by large chromosomes, a varying heterochromatin content and the presence of sex chromosomes in the dioicous species. Most of the Pellia species are diploids with n?=?9, but one of them, Pellia borealis Lorb., has been described as an example of allopolyploidy in liverworts. Although the localisation of rRNA genes, which are essential components of the nuclear genome, remains a challenge in bryophytes, data on the number and chromosomal localisation of 35S and 5S rDNA in all of the Pellia species are now available. Previously, fluorescence in situ hybridisation using rDNA probes was performed on the mitotic chromosomes of 2 monoicous species. The aim of this study was to establish the number and chromosomal distribution of rRNA genes in 2 dioicous diploid species—Pellia endiviifolia (Dicks.) Dumort. and Pellia neesiana (Gottsche) Limpr. The relationships between the species within the genus Pellia can now be discussed in the context of the localisation of the rDNA sites and the range in the number of rDNA loci among bryophytes can also be verified.  相似文献   

5.
Pseudis paradoxa paradoxa, P. p. platensis, P. bolbodactyla, P. fusca and P. tocantins were analyzed cytogenetically by conventional chromosomal staining, C-banding, silver staining and fluorescent in situ hybridization with an rDNA probe. Pseudis tocantins chromosomes were also stained with distamycin A/DAPI. All of the species had a diploid number of 2n = 24 chromosomes and the nucleolar organizer region (NOR) was located on pair 7. However, the karyotypes could be differentiated based on the morphology of chromosomal pairs 2 and 8, the region that the NORs occupied on the long arms of the homologous of pair 7, and the pattern of heterochromatin distribution. The subspecies P. p. paradoxa and P. p. platensis had identical karyotypes. Heteromorphism in NOR size was seen in P. p. paradoxa, P. p. platensis, P. bolbodactyla and P. fusca. Heteromorphic sex chromosomes (ZZ/ZW) were identified in P. tocantins. The W chromosome was subtelocentric and larger than the metacentric Z chromosomes. The differences observed in the C-banding pattern and in the position of the NOR on the sex chromosomes suggested that inversions and heterochromatinization were responsible for the morphological differentiation of these chromosomes.  相似文献   

6.
Erythrinus erythrinus presents extensive karyotypic diversity, with four karyomorphs (A–D) differing in the number of chromosomes, karyotype structure or sex chromosomes systems. Karyomorph A has 2n = 54 chromosomes in males and females without heteromorphic sex chromosomes, while karyomorph C has 2n = 52 chromosomes in females and 2n = 51 chromosomes in males, due a X1X1X2X2/X1X2Y sex chromosome system. Three allopatric populations of the karyomorph A and one population of the karyomorph C were now in deep investigated by molecular cytogenetic analyses, using repetitive DNAs as probes. The results reinforced the relatedness among populations of the karyomorph A, despite their large geographic distribution. Karyomorph C, however, showed a remarkably difference in the genomic constitution, especially concerning the amount and distribution of the 5S rDNA and Rex3 sequences on chromosomes. In addition, although karyomorphs C and D share several features, exclusive chromosomal markers show the derivative evolutionary pathway between them. Thus, besides the classical chromosomal rearrangements, the repetitive DNAs were useful tools to reveal the biodiversity, relatedness and differentiation of this fish group. The chromosomal set strongly corroborates that E. erythrinus corresponds to a species complex instead of a single biological entity.  相似文献   

7.
Conventional and molecular cytogenetic analyses were performed in specimens of the Neotropical Crenuchus spilurus freshwater fish species from a single location (Caeté River, Brazil). All specimens presented diploid values of 2n?=?38 chromosomes (12 m?+?4sm?+?2st?+?20a), the lowest reported for family Crenuchidae up to now. A single pair of nucleolar organizing regions (NORs) was detected in the subtelocentric chromosome pair no. 9 by silver-staining and fluorescence in situ hybridization (FISH) with 18S rDNA sequence-specific probe. Two pairs of 5S rRNA gene clusters were found either interstitial or terminally located in the long arms of the acrocentric chromosome pairs nos. 10 and 13. Heterochromatic regions were clearly observed in the short arms of the NOR-bearing chromosome pair and weakly-positive to the pericentromeric regions of most acrocentric chromosomes. Additionally, no sex chromosomes were identified in the surveyed specimens. Crenuchidae have signals of several mechanisms involved in karyotype diversification within this family: differential location of heterochromatin-rich regions, multiplication, and translocation of rDNA clusters, presence/absence of sex chromosomes, macrostructural changes in morphology and number of chromosomes. This variety of karyotype patterns reveals the importance of widening cytogenetic studies to more taxa for better know the chromosomal evolution occurred in this group.  相似文献   

8.
Karyotype and chromosomal location of the major ribosomal RNA genes (rDNA) were studied using fluorescence in situ hybridization (FISH) in five species of CRASSOSTREA: three Asian-Pacific species (C. gigas, C. plicatula, and C. ariakensis) and two Atlantic species (C. virginica and C. rhizophorae). FISH probes were made by PCR amplification of the intergenic transcribed spacer between the 18S and 5.8S rRNA genes, and labeled with digoxigenin-11-dUTP. All five species had a haploid number of 10 chromosomes. The Atlantic species had 1-2 submetacentric chromosomes, while the three Pacific species had none. FISH with metaphase chromosomes detected a single telomeric locus for rDNA in all five species without any variation. In all three Pacific species, rDNA was located on the long arm of Chromosome 10 (10q)--the smallest chromosome. In the two Atlantic species, rDNA was located on the short arm of Chromosome 2 (2p)--the second longest chromosome. A review of other studies reveals the same distribution of NOR sites (putative rDNA loci) in three other species: on 10q in C. sikamea and C. angulata from the Pacific Ocean and on 2p in C. gasar from the western Atlantic. All data support the conclusion that differences in size and shape of the rDNA-bearing chromosome represent a major divide between Asian-Pacific and Atlantic species of CRASSOSTREA: This finding suggests that chromosomal divergence can occur under seemingly conserved karyotypes and may play a role in reproductive isolation and speciation.  相似文献   

9.
Fluorescence in situ hybridization (FISH) was for the first time used to study the chromosomal location of the 45S (18-2.5S-26S) and 5S ribosomal genes in the genomes of five flax species of the section Linum (syn. Protolinum and Adenolinum). In L. usitatissimum L. (2n = 30), L. angustifolium Huds. (2n = 30), and L. bienne Mill. (2n = 30), a major hybridization site of 45S rDNA was observed in the pericentric region of a large metacentric chromosome. A polymorphic minor locus of 45S rDNA was found on one of the small chromosomes. Sites of 5S rDNA colocalized with those of 45S rDNA, but direct correlation between signal intensities from the 45S and 5S rDNA sites was observed only in some cases. Other 5S rDNA sites mapped to two chromosomes in these flax species. In L. grandiflorum Desf. (2n = 16) and L. austriacum L. (2n = 18), large regions of 45S and 5S rDNA were similarly located on a pair of homologous satellite-bearing chromosomes. An additional large polymorphic site of 45S and 5S rDNA was found in the proximal region of one arm of a small chromosome in the L. usitatissimum. L. angustifolium, and L. bienne karyotypes. The other arm of this chromosome contained a large 5S rDNA cluster. A similar location of the ribosomal genes in the pericentric region of the pair of satellite-bearing metacentrics confirmed the close relationships of the species examined. The difference in chromosomal location of the ribosomal genes between flax species with 2n = 30 and those with 2n = 16 or 18 testified to their assignment to different sections. The use of ribosomal genes as chromosome markers was assumed to be of importance for comparative genomic studies in cultivated flax, a valuable crop species of Russia, and in its wild relatives.  相似文献   

10.
45S rDNA在小麦及其近缘物种染色体上的分布   总被引:5,自引:0,他引:5  
徐川梅  别同德  王春梅  周波  陈佩度 《遗传》2007,29(9):1126-1130
将染色体C-分带和原位杂交技术相结合,系统研究了45S rDNA在栽培一粒小麦、野生二粒小麦、普通小麦、大麦、簇毛麦、硬簇麦、六倍体燕麦及鹅观草等物种染色体上的分布情况。这些物种染色体的次缢痕区都有45S rDNA位点, 某些非随体染色体上也有45S rDNA位点分布。以小麦—鹅观草1Rk#1二体附加系为材料,通过顺序C分带-FISH技术首次将一个45S rDNA定位到1Rk#1染色体短臂末端。  相似文献   

11.
Studies on Chenopodium chromosomes are scarce and restricted mainly to chromosome number estimation. To extend our knowledge on karyotype structure of the genus, the organization of 5S and 35S rRNA genes in Chenopodium chromosomes was studied. The rDNA sites were predominantly located at chromosomal termini, except in a few species where 5S rDNA sites were interstitial. The majority of the diploid species possessed one pair each of 35S and 5S rDNA sites located on separate chromosomes. Slightly higher diversity in rDNA site number was observed in polyploid accessions. One or two pairs of 35S rDNA sites were observed in tetraploids and hexaploids. Tetraploid species had two, four or six sites and hexaploid species had six or eight sites of 5S rDNA, respectively. These data indicate that, in the evolution of some polyploid species, there has been a tendency to reduce the number of rDNA sites. Additionally, polymorphism in rDNA site number was observed. Possible mechanisms of rDNA locus evolution are discussed. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

12.
The karyotype structure of Arachis trinitensis was studied by conventional Feulgen staining, CMA/DAPI banding and rDNA loci detection by fluorescence in situ hybridization (FISH) in order to establish its genome status and test the hypothesis that this species is a genome donor of cultivated peanut. Conventional staining revealed that the karyotype lacked the small "A chromosomes" characteristic of the A genome. In agreement with this, chromosomal banding showed that none of the chromosomes had the large centromeric bands expected for A chromosomes. FISH revealed one pair each of 5S and 45S rDNA loci, located in different medium-sized metacentric chromosomes. Collectively, these results suggest that A. trinitensis should be removed from the A genome and be considered as a B or non-A genome species. The pattern of heterochromatic bands and rDNA loci of A. trinitensis differ markedly from any of the complements of A. hypogaea, suggesting that the former species is unlikely to be one of the wild diploid progenitors of the latter.  相似文献   

13.
Parodontidae fish show few morphological characteristics for the identification of their representatives and chromosomal analyses have provided reliable features for determining the interrelationships in this family. In this study, the chromosomes of Apareiodon hasemani from the São Francisco River basin, Brazil, were analyzed and showed a karyotype with 2n = 54 meta/submetacentric chromosomes, and a ZZ/ZW sex chromosome system. The study revealed active NORs located on pair 11 and additional 18S rDNA sites on pairs 7 and 22. The 5S rDNA locus was found in pair 14. It showed a pericentric inversion regarding the ancestral condition. The satellite DNA pPh2004 was absent in the chromosomes of A. hasemani, a shared condition with most members of Apareiodon. The WAp probe was able to detect the amplification region of the W chromosome, corroborating the common origin of the system within Parodontidae. These chromosomal data corroborate an origin for the ZW system of Parodontidae and aid in the understanding of the differentiation of sex chromosome systems in Neotropical fishes.  相似文献   

14.
15.
Previous studies have shown a dynamic karyotype evolution and the presence of complex sex chromosome systems in three cryptic Leptidea species from the Western Palearctic. To further explore the chromosomal particularities of Leptidea butterflies, we examined the karyotype of an Eastern Palearctic species, Leptidea amurensis. We found a high number of chromosomes that differed between the sexes and slightly varied in females (i.e. 2n = 118–119 in females and 2n = 122 in males). The analysis of female meiotic chromosomes revealed multiple sex chromosomes with three W and six Z chromosomes. The curious sex chromosome constitution [i.e. W1–3/Z1–6 (females) and Z1–6/Z1–6 (males)] and the observed heterozygotes for a chromosomal fusion are together responsible for the sex‐specific and intraspecific variability in chromosome numbers. However, in contrast to the Western Palearctic Leptidea species, the single chromosomal fusion and static distribution of cytogenetic markers (18S rDNA and H3 histone genes) suggest that the karyotype of L. amurensis is stable. The data obtained for four Leptidea species suggest that the multiple sex chromosome system, although different among species, is a common feature of the genus Leptidea. Furthermore, inter‐ and intraspecific variations in chromosome numbers and the complex meiotic pairing of these multiple sex chromosomes indicate the role of chromosomal fissions, fusions, and translocations in the karyotype evolution of Leptidea butterflies.  相似文献   

16.
Karyotype, sex chromosome system and cytogenetics characteristics of an unidentified species of the genus Apareiodon originating from Piquiri River (Paraná State, Brazil) were investigated using differential staining techniques (C-banding and Ag-staining) and fluorescent in situ hybridization (FISH) with 5S and 18S rDNA probes. The diploid chromosome number was 2n = 54 with 25 pairs of meta- (m) to submetacentric (sm) and 2 pairs of subtelocentric (st) chromosomes. The major ribosomal rDNA sites as revealed by Ag-staining and FISH with 18S rDNA probe were found in distal region of longer arm of st chromosome pair 26, while minor 5S sites were observed in the interstitial sites on chromosome pairs 2 (smaller cluster) and 7 (larger one). The C-positive heterochromatin had pericentromeric and telomeric distribution. The heteromorphic sex chromosome system consisted of male ZZ (pair 21) and female middle-sized m/st Z/W chromosomes. The pericentric inversion of heterochromatinized short arm of ancestral Z followed by multiplication of heterochromatin segments is hypothesized for origin of W chromosome. The observed karyotype and chromosomal markers corresponded to those found in other species of the genus.  相似文献   

17.
The chromosomal localization of 28S rDNA was investigated in 16 speices of the Australian ant genus Myrmecia, with 2n numbers ranging from 4 to 76, using the fluorescence in situ hybridization method and karyographic analysis. A unique phenomenon was observed: the number of chromosomes carrying 28S rDNA increases from 2 in species with low chromosome numbers to 19 in species with high chromosome numbers. This is termed rDNA dispersion. Centric fission and a reciprocal translocation that occurs in C-bands were detected as the major mechanisms involved in rDNA dispersion. Received: 22 March 1996; in revised form: 3 June 1996 / Accepted: 4 June 1996  相似文献   

18.
The Neotropical armored catfish genus Harttia presents a wide variation of chromosomal rearrangements among its representatives. Studies indicate that translocation and Robertsonian rearrangements have triggered the karyotype evolution in the genus, including differentiation of sex chromosome systems. However, few studies used powerful tools, such as comparative whole chromosome painting, to clarify this highly diversified scenario. Here, we isolated probes from the X1 (a 5S rDNA carrier) and the X2 (a 45S rDNA carrier) chromosomes of Harttia punctata, which displays an X1X1X2X2/X1X2Y multiple sex chromosome system. Those probes were applied in other Harttia species to evidence homeologous chromosome blocks. The resulting data reinforce that translocation events played a role in the origin of the X1X2Y sex chromosome system in H. punctata. The repositioning of homologous chromosomal blocks carrying rDNA sites among ten Harttia species has also been demonstrated. Anchored to phylogenetic data it was possible to evidence some events of the karyotype diversification of the studied species and to prove an independent origin for the two types of multiple sex chromosomes, XX/XY1Y2 and X1X1X2X2/X1X2Y, that occur in Harttia species. The results point to evolutionary breakpoint regions in the genomes within or adjacent to rDNA sites that were widely reused in Harttia chromosome remodeling.  相似文献   

19.
Standard cytogenetic analyses and chromosomal mapping of the genes for 18S and 5S rRNAs and histone H3 were performed in 14 species of beetles of the genus Dichotomius (Coleoptera, Scarabaeidae, Scarabaeinae). Conserved karyotypes with 2n = 18 and biarmed chromosomes were observed in all species. Moreover, the presence of a large metacentric pair (pair 1) was characteristic in the studied species, evidencing a remarkable synapomorphy for this genus, which probably originated by an ancient fusion of 2 autosomes while the ancestral sex-chromosome pair remained conserved. FISH showed that the 5S rRNA and histone H3 genes are located in the proximal region of pair 2, with the 2 genes co-located. However, the major rDNA cluster probed by the 18S rRNA gene mapped to 1-3 bivalents, being exclusively autosomal, associated with sex elements, or both. In most species, the major rDNA cluster was observed in pair 3, and it was frequently (64.3%) located in the distal region regardless of the chromosome. The conserved number and position of the 5S rDNA/H3 histone cluster seems to be an ancient pattern shared by all of the studied species. In contrast, the major rDNA clusters apparently tolerate distinct patterns of diversification in the karyotypes of the species that could be associated with small inversions, ectopic recombination, and transposition. Moreover, we reinforced the association/co-localization between the 5S rRNA and histone H3 genes in this group contributing thus to the knowledge about the chromosomal organization and diversification patterns of multigene families in beetles and insects.  相似文献   

20.
The olive fruit fly, Bactrocera oleae, has a diploid set of 2n?=?12 chromosomes including a pair of sex chromosomes, XX in females and XY in males, but polytene nuclei show only five polytene chromosomes, obviously formed by five autosome pairs. Here we examined the fate of the sex chromosomes in the polytene complements of this species using fluorescence in situ hybridization (FISH) with the X and Y chromosome-derived probes, prepared by laser microdissection of the respective chromosomes from mitotic metaphases. Specificity of the probes was verified by FISH in preparations of mitotic chromosomes. In polytene nuclei, both probes hybridized strongly to a granular heterochromatic network, indicating thus underreplication of the sex chromosomes. The X chromosome probe (in both female and male nuclei) highlighted most of the granular mass, whereas the Y chromosome probe (in male nuclei) identified a small compact body of this heterochromatic network. Additional hybridization signals of the X probe were observed in the centromeric region of polytene chromosome II and in the telomeres of six polytene arms. We also examined distribution of the major ribosomal DNA (rDNA) using FISH with an 18S rDNA probe in both mitotic and polytene chromosome complements of B. oleae. In mitotic metaphases, the probe hybridized exclusively to the sex chromosomes. The probe signals localized a discrete rDNA site at the end of the short arm of the X chromosome, whereas they appeared dispersed over the entire dot-like Y chromosome. In polytene nuclei, the rDNA was found associated with the heterochromatic network representing the sex chromosomes. Only in nuclei with preserved nucleolar structure, the probe signals were scattered in the restricted area of the nucleolus. Thus, our study clearly shows that the granular heterochromatic network of polytene nuclei in B. oleae is formed by the underreplicated sex chromosomes and associated rDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号