首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Asakura K  Hayashi M  Osanai S 《Chirality》2003,15(3):238-241
The influence of latent heat dissipated by the crystallization of 1,1'-binaphthyl in its supercooled molten state on the chiral symmetry breaking transition was investigated. Temperature change in the crystallization system was monitored by infrared thermocamera. Temperature rise due to the dissipation of latent heat in the growing front of polycrystalline aggregate was about 2 degrees C in an unstirred crystallization system. The melting point of racemic mixture and racemic compound of 1,1'-binaphthyl is 145 degrees C and 158 degrees C, respectively. The latent heat generated by the crystallization could thus change the crystallization behavior when the initial temperature of the melt was slightly lower than 145 degrees C. The temperature change in both unstirred and stirred crystallization systems was monitored. In the stirred crystallization system, even in the case when the initial temperature of the melt was about 2 degrees C lower than 145 degrees C, the temperature rose by about 4 degrees C immediately after the onset of crystallization. This indicates that the role of stirring as the critical parameter for the chiral symmetry breaking transition is not only to clone the chiral crystals but also to enhance the dissipation of latent heat due to secondary nucleation.  相似文献   

2.
5’-三磷酸腺苷(5’-ATP)是重要的生物活性物质,其结晶过程困难,是研究的热点。分别采用静态法和激光法测定了5’-ATP在不同温度的乙醇-水体系中的溶解度和介稳区宽度,并用溶解度模型——肌方程回归了溶解度数据,得到的溶解度关联方程为λ=19.034 3exp(-12.799w),h:614.053exp(11.3106w)。研究表明.5’-ATP的溶解度随着温度的升高而升高,随着乙醇与水体积比r的升高而下降;其介稳区宽度随着温度的升高略有增大,随着乙醇与水体积比r的升高明显减小。这为5'-三磷酸腺苷工业结晶装置及生产线的设计、工程放大和工业结晶生产操作提供了理论依据。  相似文献   

3.
Wang X  Wang XJ  Ching CB 《Chirality》2002,14(4):318-324
Characterization of the racemic species, which can be a racemic compound, a racemic conglomerate, or a pseudoracemate (solid solution), is a prerequisite for the design of crystallization resolution processes. It is useful to determine the solid/liquid equilibrium solubility of the enantiomer mixtures for crystallization operation. For the beta-blocker drug propranolol hydrochloride, Gibbs free energy of formation of racemic compound and entropy of mixing of the (R)- and (S)- enantiomers in the liquid state for racemic conglomerate were calculated. The structural differences between (R, S)-propranolol hydrochloride and its (S)-enantiomer were further investigated by powder X-ray diffraction patterns, infrared spectra, and solid-state NMR spectra. The solubility and metastable zone width of (R, S)- propranolol hydrochloride in a mixed solvent of methanol and acetone were determined by cooling crystallization over the temperature range 3.5-42.5 degrees C. The ternary solubility diagram of (R)-, (S)-propranolol hydrochloride was constructed using the same mixed solvent. The diagram will be useful as a guide for choosing crystallization operation conditions to produce pure enantiomers.  相似文献   

4.
D-阿拉伯糖是多种功能性糖合成的中间体,其纯度高低决定了功能性糖转化率的高低,所以得到高纯度的D-阿拉伯糖尤为重要。通过对D-阿拉伯糖结晶温度、搅拌速度、结晶液中离子含量等因素进行试验,确定了采用梯度降温形式、搅拌速度控制在5 r/min,离子含量控制在100 μs/cm以下能够得到纯度达99.8%的D-阿拉伯糖晶体,实验结果为后续功能性糖的高效转化奠定了基础。  相似文献   

5.
The effect of cooling on leaf extension rate (LER) and on relative elemental growth rate (REGR) was measured in both gibberellic acid (GA)-responsive dwarf barley and in the same barley variety treated with GA. Seedlings were maintained at 20 degrees C while their leaf extension zone (LEZ) temperature was reduced either in steps to -6 degrees C in short-term cooling experiments, or to 10 degrees C for 48 h in long-term cooling experiments. Short-term cooling resulted in a biphasic response in LER, with a clear inflection point identified. Below this point, the activation energy for leaf extension becomes higher. The short-term response of LER to cooling was altered by the application of GA, which resulted in a lower base temperature (Tb), inflection point temperature and activation energy for leaf extension. Both GA-treated and untreated seedlings were less sensitive to cooling maintained for a prolonged period, with LER making a partial recover over the initial 5 h. Although long-term cooling reduced maximum REGR, it resulted in a longer LEZ and an increase in the length of mature interstomatal cells in GA-treated and untreated seedlings. These changes in overall physiology appear to enhance the ability of the leaves to continue expansion at suboptimal temperatures. In both GA-treated and cold-acclimated tissue, the occurrence of a longer LEZ was associated with a lower temperature sensitivity in LER.  相似文献   

6.
The aim of this work was to survey how processing parameters affect the crystal growth of beta-sitosterol in suspension. The process variables studied were the cooling temperature, stirring time and stirring rate during recrystallization. In addition, we investigated the effect a commonly used surfactant, polysorbate 80, has on crystal size distribution and the polymorphic form. This study describes the optimization of the crystallization process, with the object of preparing crystals as small as possible. Particle size distribution and habit were analyzed using optical microscopy, and the crystal structure was analyzed using X-ray diffractometry. The cooling temperature had a remarkable influence on the crystal size. Crystals with a median crystal length of approximately 23 microm were achieved with a low cooling temperature (<10 degrees C); however, a fairly large number of crystals over 50 microm appeared. Higher cooling temperatures (>30 degrees C) caused notable crystal growth both in length and width. Rapid (250 rpm), continuous stirring until the suspensions had cooled to room temperature created small, less than 50 micro m long (median <20 microm), needle-shaped crystals. The addition of surfactant slightly reduced the size of the initially large crystals. Both hemihydrate and monohydrate crystal forms occurred throughout, regardless of the processing parameters. By using an optimized process, it was possible to obtain a microcrystalline suspension, with a smooth texture.  相似文献   

7.
The influence of the synthesis conditions (method and sequence of adding reagents, reaction temperature, stirring rate) on the luminescence performance of the rare earth ternary complex compound europium-salicylic acid-(1,10-phenanthroline) [Eu(Sal)(3)Phen] was studied. We show that the method and sequence of adding reagents greatly affects the luminescence properties of the products. Within the range of synthesis temperatures (30-70 degrees C), the complex has a better luminescence performance at the lower temperature. However, performance decreased when the temperature decreased to 20 degrees C. Increase of stirring rate led to better performance in the range 200-700 r.p.m. Infrared (IR) spectroscopy, scanning electron microscopy (SEM) and wide-angle X-ray diffraction (WAXD) were utilized to characterize the structure and morphology of Eu(Sal)(3)Phen. The studies demonstrate that the crystallization of the product increased with increasing luminescence of the product. Therefore, it is proposed that increasing the crystallization of the product will enhance its luminescence performance.  相似文献   

8.
The enantioselective hydrolysis of insoluble (R,S)-ketoprofen ethyl ester to the optically active (S)-ketoprofen was carried out in a dispersed aqueous lipase reaction system induced by the inclusion of chiral cyclodextrins for complexation of the substrate. Hydroxypropyl-beta-cyclodextrin was the most effective chiral selector and disperser giving an enantiomeric excess and conversion yield of 0.99 and 0.49, respectively.  相似文献   

9.
Human lymphocytes were frozen at constant cooling rates in the range 2.4 to 1000 degrees K/min without cryoadditive on the cold stage of a thermally defined cryomicroscope. The volume loss due to water efflux was quantified optically for the cooling rates 2.4, 12, 48, and 120 degrees K/min. The likelihood of the formation of intracellular ice was determined as function of the cooling rate. Intracellular crystallization temperatures were obtained for ice formation during both cooling and rewarming. A theoretical analysis of the cell volume loss during freezing was compared to the experimental data and used for an indirect determination of the water permeability of the cells. A relative optimum of the cooling rate is predicted theoretically under the assumption of a critical level of intracellular salt concentration near the eutectic temperature. The dependence of survival and cooling rate was determined cryomicroscopically by simultaneously applying the FDA/EB fluorescence viability test. The optimal cooling rate of about 35 degrees K/min was also found for 2-ml samples frozen within the range of cooling rates of interest. The results show that for freezing in physiological saline solution (1) the optimum of the cooling rate is theoretically predictable, (2) cryomicroscopical data are significant for freezing of samples of larger volume, and (3) the lethal type of intracellular crystallization is cooling rate dependent and distinguishable from innocuous types.  相似文献   

10.
The influence of cooling rate and quench temperature on the formation of spherulitic morphology in heated mung bean starch is reported. Spherulites were obtained for a wide range of cooling rates (2.5-250 degrees C/min), provided the system was heated to 180 degrees C and then cooled below 65 degrees C. Branched crystalline structures were also observed, as was a gellike morphology. The dissolution temperature for spherulitic material ranged between 100 and 130 degrees C. A second dissolution endotherm was observed between 130 and 150 degrees C in systems containing gellike material. Spherulites revealed B-type X-ray diffraction patterns. Spherulitic crystallization of starch following phase separation is proposed as a model for starch granule initiation in vivo.  相似文献   

11.
A simulated moving bed (SMB) chromatography system is a powerful tool for preparative scale separation, which can be applied to the separation of chiral compound. We have designed our own lab-scale SMB chromatography using 5 HPLC pumps, 6 stainless steel columns and 4 multi-position valves, to separate a racemic mixture of ketoprofen in to its enantiomers. Our design has the characteristics of the low cost for assembly for the SMB chromatography and easy repair of the unit, which differs from the designs suggested by other investigators. It is possible for the flow path through each column to be independently changed by computer control, using 4 multi-position rotary valves and 5 HPLC solvent delivery pumps. In order to prove the operability of our SMB system, attempts were made to separate the (S)-ketoprofen enantiomer from a ketoprofen racemic mixture. The operating parameters of the SMB chromatography were calculated for ketoprofen separation from a batch chromatography experiment as well as by the triangle theory. With a feed concentration of 1 mg/mL, (S)-ketoprofen was obtained with a purity of 96% under the calculated operating conditions.  相似文献   

12.
《Chirality》2017,29(9):550-557
Resolution of chiral compounds has played an important role in the pharmaceutical field, involving detailed studies of pharmacokinetics, physiological, toxicological, and metabolic activities of enantiomers. Herein, a reliable method by high‐performance liquid chromatography (HPLC) coupled with an optical rotation detector was developed to separate isoborneol enantiomers. A cellulose tris(3, 5‐dimethylphenylcarbamate)‐coated chiral stationary phase showed the best separation performance for isoborneol enantiomers in the normal phase among four polysaccharide chiral packings. The effects of alcoholic modifiers and column temperature were studied in detail. Resolution of the isoborneol racemate displayed a downward trend along with an increase in the content of ethanol and column temperature, indicating that less ethanol in the mobile phase and lower temperature were favorable to this process. Moreover, two isoborneol enantiomers were obtained via a semipreparative chiral HPLC technique under optimum conditions, and further characterized by analytical HPLC, and experimental and calculated vibrational circular dichroism (VCD) spectroscopy, respectively. The solution VCD spectrum of the first‐eluted component was consistent with the Density Functional Theory (DFT) calculated pattern based on the SSS configuration, indicating that this enantiomer should be (1S , 2S , 4S )‐(+)‐isoborneol. Briefly, these results have provided reliable information to establish a method for analysis, preparative separation, and absolute configuration of chiral compounds without typical chromophoric groups.  相似文献   

13.
The yeast strain CGMCC 0573 was identified as Citeromyces matriensis and shown to be capable of enantioselectively hydrolyzing ethyl ester of ( R)-Ketoprofen (2-(3-benzoylphenyl)propionic acid). The strain was isolated for the first time from soil samples through a new and efficient screening procedure in which the probability of obtaining active strains was greatly increased by using ethanol and Tween-80 alternatively as additives during the enrichment culture. Studies of the culture conditions and catalytic performance of Citeromyces matriensis CGMCC 0573 showed that the enzyme occurs constitutively in the cells and its production is enhanced by feeding with Tween-80 during the early period of cultivation. Yeast extract was found to be beneficial both for growth and for esterase production. The optimal temperature and pH for the bioconversion were 40 degrees C and pH 8.0, respectively. Biotransformation using resting cells cultured in a flask with baffles and magnetic stirring and in the presence of 50 mM substrate resulted in the production of ( R)-ketoprofen at 93% ee (enantiomeric excess) and at 42.6% conversion.  相似文献   

14.
Liposome dispersions (bilayer composition Phospholipon 100H/dicetylphosphate (molar ratio 10:1) dispersed in 10 mM Tris buffer) are frozen in a differential scanning calorimeter. In the cooling curves of the dispersions a heat-flow below -40 degrees C is observed. This heat-flow is due to the crystallization of maximally supercooled water. Evidence is provided that at this temperature, defined as the homogeneous nucleation temperature, part or all encapsulated water in the liposomes crystallizes. At a cooling rate of 10 degrees C/min only for small liposomes with particle sizes below approximately 0.2 micron the internal volume crystallizes at the homogeneous nucleation temperature. After a freezing/thawing cycle of the liposomal dispersions retention of the water-soluble marker carboxyfluorescein (CF) was significantly better if crystallization of the encapsulated volume occurred at the homogeneous nucleation temperature. Up to 55% retention of CF in dispersions with mean vesicle sizes below 0.2 micron was found after storage for 45 min at -50 or -75 degrees C. Only relatively small particle size alterations were found in comparison with the original mean particle sizes after a freezing/thawing cycle with storage for 45 min at -50 or -75 degrees C. Independent of particle size, dispersions stored for 45 min at -25 degrees C showed low CF retention (less than 10%) after thawing. For most of the liposome dispersions stored at -25 degrees C, large particle size alterations compared to the original particle sizes were observed after a freezing/thawing cycle.  相似文献   

15.
Hong Lu Y  Bun Ching C 《Chirality》2004,16(8):541-548
Compared to simulated moving bed (SMB) chromatography, fractional crystallization is a simple and economical method for enantioseparation. Therefore, the coupling of SMB chromatography and fractional crystallization is suggested for enantioseparation of racemic compounds. In this work, a nonsteroidal antiinflammatory drug, ketoprofen (Kp), was chosen to be studied. Kp was verified as a racemic compound by FTIR, PXRD, and thermodynamic calculations. To derive the condition where pure (S)-Kp could be crystallized from a solution, which was previously enantiomerically enriched, the binary melting phase diagram and the ternary solubility phase diagram in the mixed solvent of ethanol and water over a temperature range of 15-30 degrees C were obtained. From these phase diagrams the eutectic point was determined as 91.6% mole percent (S)-Kp from the binary phase diagram and 91% from the ternary phase diagram. The results may provide valuable experiment data for the possibility of coupling fractional crystallization with SMB for Kp separation.  相似文献   

16.
In an attempt to study the deleterious effects which occur during the freezing and thawing of mammalian oocytes, we developed a cryomicroscope controlled by digital programmable equipment. The program permits any cooling rate between 0.1 and 60 degrees C/min with a precision of 0.6 degrees C. Using a precooled stage, it is possible to obtain rapid cooling (100 degrees C/min). The maximum thawing rate is about 60 degrees C/min. A copper-- constantan microthermocouple allows precise measurement of the specimen temperature. All information (specimen, temperature of the specimen, date, hour, and minutes) is recorded at the same time on photographic film by a camera fitted with a " Recordata Back" and a motor drive which allows three frames per second. Our preliminary results show that: (1) rapid cooling yields a supercooling with simultaneous extra- and intracellular crystallization; (2) slow cooling with seeding at -8 degrees C gives an extracellular crystallization which is achieved by -9 degrees C, followed by an extracellular recrystallization occurring at almost -8 degrees C which alters the morphology of the oocyte and the zona pellucida, without any visible intracellular crystallization; (3) during continued slow cooling the oocytes dehydrate without any intracellular freezing; and (4) during rewarming a partial rehydration of the cell occurs with a swelling of the oocytes to their original volumes after the thawing has been achieved.  相似文献   

17.
Centrifugal elutriation appears to be a promising method for cell separation. The quality of the separation may be limited by the control of temperature within the separation chamber, which affects the fluid viscosity and rotor speed. The factors affecting the temperature regulations have been re-examined. At flow rates between 10 and 40 mL/min the temperature within the chamber was primarily dependent on the temperature of the fluid flowing into the rotor. Increases in the temperature of the fluid while it flowed through the rotor were observed and were greater at higher rotor speeds and lower flow rates. This heating, caused by friction at the rotating seal, could raise the fluid temperature within the chamber by as much as 6 degrees C. Fluctuations in the temperature of the centrifuge produced temperature variations of only 0.3 degrees C in the fluid in the elutriation chamber. Small increases in the rate of elutriation of cells, concomitant with centrifuge cooling and speed fluctuations, were detected by optical density measurements. However, neither the modal volume nor coefficient of variation of the collected cells were affected.  相似文献   

18.
Differential scanning calorimetry (DSC) and X-ray diffraction have been used to study hydrated N-lignocerylgalactosylsphingosine (NLGS) bilayers. DSC of fully hydrated NLGS shows an endothermic transition at 69-70 degrees C, immediately followed by an exothermic transition at 72-73 degrees C; further heating shows a high-temperature (Tc = 82 degrees C), high-enthalpy (delta H = 15.3 kcal/mol NLGS) transition. Heating to 75 degrees C, cooling to 20 degrees C and subsequent reheating shows no transitions at 69-73 degrees C; only the high-temperature (82 degrees C), high-enthalpy (15.3 kcal/mol) transition. Two exothermic transitions are observed on cooling; for the upper transition its temperature (about 65 degrees C) and enthalpy (about 6 kcal/mol NLGS) are essentially independent of cooling rate, whereas the lower transition exhibits marked changes in both temperature (30----60 degrees C) and enthalpy (2.2----9.5 kcal/mol NLGS) as the cooling rate decreases from 40 to 0.625 Cdeg/min. On reheating, the enthalpy of the 69-70 degrees C transition is dependent on the previous cooling rate. The DSC data provide clear evidence of conversions between metastable and stable forms. X-ray diffraction data recorded at 26, 75 and 93 degrees C show clearly that NLGS bilayer phases are present at all temperatures. The X-ray diffraction pattern at 75 degrees C shows a bilayer periodicity d = 65.4 A, and a number of sharp reflections in the wide-angle region indicative of a crystalline chain packing mode. This stable bilayer form converts to a liquid-crystal bilayer phase; at 93 degrees C, the bilayer periodicity d = 59.1 A, and a diffuse reflection at 1/4.6 A-1 is observed. The diffraction pattern at 22 degrees C represents a combination of the stable and metastable low-temperature bilayer forms. NLGS exhibits a complex pattern of thermotropic changes related to conversions between metastable (gel), stable (crystalline) and liquid-crystalline bilayer phases. The structure and thermotropic properties of NLGS are compared with those of hydrated N-palmitoylgalactosylsphingosine reported previously (Ruocco, M.J., Atkinson, D., Small, D.M., Skarjune, R.P., Oldfield, E. and Shipley, G.G. (1981) Biochemistry 20, 5957-5966).  相似文献   

19.
Lee KW  Shin GS  Bae HA  Shin HD  Lee YH 《Biotechnology letters》2004,26(21):1639-1642
A new Acinetobacter sp. ES-1, grown on triolein, tryptone and Triton X-100, excreted a lipase that hydrolyzed 10 mM (R,S)-ketoprofen ethyl ester into (S)-ketoprofen. The crude lipase had an activity of 10 U ml(-1) and, at 30 degrees C and pH 7 over 48 h, gave a conversion yield of 35% with an enantiomeric excess for the product 96%.  相似文献   

20.
The effect of several cell-level parameters on the predicted optimal cooling rate B(opt) of an arbitrary biological system has been studied using a well-defined water transport model. An extensive investigation of the water transport model revealed three key cell level parameters: reference permeability of the membrane to water L(pg), apparent activation energy E(Lp), and the ratio of the available surface area for water transport to the initial volume of intracellular water (SA/WV). We defined B(opt) as the "highest" cooling rate at which a predefined percent of the initial water volume is trapped inside the cell (values ranging from 5% to 80%) at a predefined end temperature (values ranging from -5 degrees C to -40 degrees C). Irrespective of the choice of the percent of initial water volume trapped and the end temperature, an exact and linear relationship exists between L(pg), SA/WV, and B(opt0. However, a nonlinear and inverse relationship is found between E(Lp) and B(opt). Remarkably, for a variety of biological systems a comparison of the published experimentally determined values of B(opt) agreed quite closely with numerically predicted B(opt) values when the model assumed 5% of initial water is trapped inside the cell at a temperature of -15 degrees C. This close agreement between the experimental and model predicted optimal cooling rates is used to develop a generic optimal cooling rate chart and a generic optimal cooling rate equation that greatly simplifies the prediction of the optimal rate of freezing of biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号