首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respiratory syncytial virus (RSV) is the primary cause of hospitalization for acute respiratory tract illness in general and specifically for bronchiolitis in young children. The link between RSV bronchiolitis and reactive airway disease is not completely understood, even though RSV bronchiolitis is frequently followed by recurrent episodes of wheezing. Therapy with ribavirin does not appear to significantly reduce long-term respiratory outcome of RSV lower respiratory tract infection, and corticosteroid or bronchodilator therapy may possibly improve outcomes only on a short-term basis. No vaccine against RSV is yet available. It is not known whether prophylaxis with RSV intravenous immune globulin or palivizumab can reduce postbronchiolitic wheezing.  相似文献   

2.
Respiratory syncytial virus (RSV) is the primary cause of hospitalization for acute respiratory tract illness in general and specifically for bronchiolitis in young children. The link between RSV bronchiolitis and reactive airway disease is not completely understood, even though RSV bronchiolitis is frequently followed by recurrent episodes of wheezing. Therapy with ribavirin does not appear to significantly reduce long-term respiratory outcome of RSV lower respiratory tract infection, and corticosteroid or bronchodilator therapy may possibly improve outcomes only on a short-term basis. No vaccine against RSV is yet available. It is not known whether prophylaxis with RSV intravenous immune globulin or palivizumab can reduce postbronchiolitic wheezing.  相似文献   

3.
Respiratory syncytial virus (RSV) is a primary cause of morbidity and life-threatening lower respiratory tract disease in infants and young children. Children with acute RSV bronchiolitis often develop respiratory sequelae, but the disease mechanisms are poorly understood. Mounting evidence suggests that RSV may mediate persistent infection. Using immunohistochemistry to identify RSV and RSV-infected cell types, we show that RSV infects primary neurons and neuronal processes that innervate the lungs through a process that involves RSV G protein and the G protein CX3C motif. These findings suggest a mechanism for disease chronicity and have important implications for RSV disease intervention strategies.  相似文献   

4.
5.
Human metapneumovirus (HMPV) is a recently discovered pathogen first identified in respiratory specimens from young children suffering from clinical respiratory syndromes ranging from mild to severe lower respiratory tract illness. HMPV has worldwide prevalence, and is a leading cause of respiratory tract infection in the first years of life, with a spectrum of disease similar to respiratory syncytial virus (RSV). The disease burden associated with HMPV infection has not been fully elucidated; however, studies indicate that HMPV may cause upper or lower respiratory tract illness in patients between ages 2 months and 87 years, may co-circulate with RSV, and HMPV infection may be associated with asthma exacerbation. The mechanisms and effector pathways contributing to immunity or disease pathogenesis following infection are not fully understood; however, given the clinical significance of HMPV, there is a need for a fundamental understanding of the immune and pathophysiological processes that occur following infection to provide the foundation necessary for the development of effective vaccine or therapeutic intervention strategies. This review provides a current perspective on the processes associated with HMPV infection, immunity, and disease pathogenesis.  相似文献   

6.
Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in infants and the elderly. While the primary infection is the most serious, reinfection of the upper airway throughout life is the rule. Although relatively little is known about either RSV infection of the upper respiratory tract or host mucosal immunity to RSV, recent literature suggests that RSV is the predominant viral pathogen predisposing to bacterial otitis media (OM). Herein, we describe mouse and chinchilla models of RSV infection of the nasopharynx and Eustachian tube. Both rodent hosts were susceptible to RSV infection of the upper airway following intranasal challenge; however, the chinchilla proved to be more permissive than the mouse. The chinchilla model will likely be extremely useful to test the role of RSV in bacterial OM and the efficacy of RSV vaccine candidates designed to provide mucosal and cytotoxic T-lymphocyte immunity. Ultimately, we hope to investigate the relative ability of these candidates to potentially protect against viral predisposal to bacterial OM.  相似文献   

7.
Zang N  Xie X  Deng Y  Wu S  Wang L  Peng C  Li S  Ni K  Luo Y  Liu E 《Journal of virology》2011,85(24):13061-13068
Respiratory syncytial virus (RSV) is the most important cause of severe, lower respiratory tract infections in infants, and RSV infections have been associated with chronic wheezing and asthma during childhood. However, the mechanism of RSV-induced airway inflammation and airway hyperresponsiveness (AHR) is poorly understood. Furthermore, there are presently neither effective vaccines nor drugs available for the prevention or treatment of RSV infections. In this study, we investigated the effect of the plant extract resveratrol as a means of preventing airway inflammation and attenuating RSV-induced AHR. Our data showed that resveratrol reduced RSV lung titers and the number of infiltrating lymphocytes present in bronchoalveolar lavage fluid (BALF) and reduced inflammation. Furthermore, resveratrol attenuated airway responses to methacholine following RSV infection and significantly decreased gamma interferon (IFN-γ) levels in BALF of RSV-infected mice. Data presented in this report demonstrated that resveratrol controlled Toll-like receptor 3 (TLR3) expression, inhibited the TRIF signaling pathway, and induced M2 receptor expression following RSV infection. These data support a role for the use of resveratrol as a means of reducing IFN-γ levels associated with RSV-mediated airway inflammation and AHR, which may be mediated via TLR3 signaling.  相似文献   

8.
Tan YR  Yang T  Liu SP  Xiang Y  Qu F  Liu HJ  Qin XQ 《Peptides》2008,29(1):47-56
Respiratory syncytial virus (RSV) infection causes bronchiolitis in infants and children, which is an important risk factor for the development of chronic asthma. To probe the underlying mechanisms that RSV infection increases the susceptibility of asthma, this present study was designed to establish a RSV persistent infection animal model by cyclophosphamide (CYP) pretreatment that more closely mimic human RSV infection. CYP is an immunosuppressant, which induced deficiency in cellular and humoral immunity. Pulmonary RSV titers, airway function and peptidergic innervation were measured on 7d, 28 d, 42 d and 60 d postinfection. The results showed that during RSV persistent infection, the lungs of RSV-inoculated animals pretreated with CYP showed higher RSV titers and exhibited obvious chronic inflammation. The results also showed that protein gene product 9.5 (PGP9.5), substance P (SP) and calcitonin gene-related peptide (CGRP)-immunoreactive fibers increased and vasoactive intestinal peptide (VIP)-immunoreactive fibers decreased during RSV persistent infection. These results demonstrate that RSV persistent infection induces significant alterations in the peptidergic innervation in the airways, which may be associated with the development of altered airway function.  相似文献   

9.
10.
11.
12.

Background

Respiratory Syncytial Virus (RSV) infection is usually restricted to the respiratory epithelium. Few studies have documented the presence of RSV in the systemic circulation, however there is no consistent information whether virus detection in the blood correlates with disease severity.

Methods

Balb/c mice were inoculated with live RSV, heat-inactivated RSV or medium. A subset of RSV-infected mice was treated with anti-RSV antibody 72 h post-inoculation. RSV RNA loads were measured by PCR in peripheral blood from day 1-21 post-inoculation and were correlated with upper and lower respiratory tract viral loads, the systemic cytokine response, lung inflammation and pulmonary function. Immunohistochemical staining was used to define the localization of RSV antigens in the respiratory tract and peripheral blood.

Results

RSV RNA loads were detected in peripheral blood from day 1 to 14 post-inoculation, peaked on day 5 and significantly correlated with nasal and lung RSV loads, airway obstruction, and blood CCL2 and CXCL1 expression. Treatment with anti-RSV antibody reduced blood RSV RNA loads and improved airway obstruction. Immunostaining identified RSV antigens in alveolar macrophages and peripheral blood monocytes.

Conclusions

RSV RNA was detected in peripheral blood upon infection with live RSV, followed a time-course parallel to viral loads assessed in the respiratory tract and was significantly correlated with RSV-induced airway disease.  相似文献   

13.
Airway mucus is a hallmark of respiratory syncytial virus (RSV) lower respiratory tract illness. Laboratory RSV strains differentially induce airway mucus production in mice. Here, we tested the hypothesis that RSV strains differ in pathogenesis by screening six low-passage RSV clinical isolates for mucogenicity and virulence in BALB/cJ mice. The RSV clinical isolates induced variable disease severity, lung interleukin-13 (IL-13) levels, and gob-5 levels in BALB/cJ mice. We chose two of these clinical isolates for further study. Infection of BALB/cJ mice with RSV A2001/2-20 (2-20) resulted in greater disease severity, higher lung IL-13 levels, and higher lung gob-5 levels than infection with RSV strains A2, line 19, Long, and A2001/3-12 (3-12). Like the line 19 RSV strain, the 2-20 clinical isolate induced airway mucin expression in BALB/cJ mice. The 2-20 and 3-12 RSV clinical isolates had higher lung viral loads than laboratory RSV strains at 1 day postinfection (p.i.). This increased viral load correlated with higher viral antigen levels in the bronchiolar epithelium and greater histopathologic changes at 1 day p.i. The A2 RSV strain had the highest peak viral load at day 4 p.i. RSV 2-20 infection caused epithelial desquamation, bronchiolitis, airway hyperresponsiveness, and increased breathing effort in BALB/cJ mice. We found that RSV clinical isolates induce variable pathogenesis in mice, and we established a mouse model of clinical isolate strain-dependent RSV pathogenesis that recapitulates key features of RSV disease.  相似文献   

14.
建立了检测呼吸道合胞病毒(RSV)和副流感病毒(PFV)血清特异性IgM和IgA抗体的间接ELISA方法。在方法统一的基础上比较了检测IgG、IgM和IgA抗体的结果,证明检测血清IgM和IgA可以作为RSV和PFV感染的早期诊断指标。检测了120份临床急性下呼吸道感染患儿的血清,RSV-IgM检出率为33.3%,RSV-IgA为36.7%;PFV-IgM为27.5%,PFV-IgA为31.6%。提出了对RSV和PFV感染以检测特异性IgA替代IgM或两者互补的设想。  相似文献   

15.
Respiratory syncytial virus (RSV) causes severe respiratory disease in both the very young and the elderly. Nearly all individuals become infected in early childhood, and reinfections with the virus are common throughout life. Despite its clinical impact, there remains no licensed RSV vaccine. RSV infection in the respiratory tract induces an inflammatory response by the host to facilitate efficient clearance of the virus. However, the host immune response also contributes to the respiratory disease observed following an RSV infection. RSV has evolved several mechanisms to evade the host immune response and promote virus replication through interactions between RSV proteins and immune components. In contrast, some RSV proteins also play critical roles in activating, rather than suppressing, host immunity. In this review, we discuss the interactions between individual RSV proteins and host factors that modulate the immune response and the implications of these interactions for the course of an RSV infection.  相似文献   

16.
Respiratory syncytial virus (RSV) is the major etiologic agent of severe epidemic lower respiratory tract infections in infancy. Airway mucosal inflammation plays a critical role in the pathogenesis of RSV disease in both natural and experimental infections. RSV is among the most potent biological stimuli that induce the expression of inflammatory genes, including those encoding chemokines, but the mechanism(s) that controls virus-mediated airway inflammation in vivo has not been fully elucidated. Herein we show that the inoculation of BALB/c mice with RSV results in rapid activation of the multisubunit IkappaB kinase (IKK) in lung tissue. IKK transduces upstream activating signals into the rate-limiting phosphorylation (and proteolytic degradation) of IkappaBalpha, the inhibitory subunit that under normal conditions binds to the nuclear factor (NF)-kappaB complex and keeps it in an inactive cytoplasmic form. Mice treated intranasally with interleukin-10 or with a specific cell-permeable peptide that blocks the association of the catalytic subunit IKKbeta with the regulatory protein NEMO showed a striking reduction of lung NF-kappaB DNA binding activity, chemokine gene expression, and airway inflammation in response to RSV infection. These findings suggest that IKKbeta may be a potential target for the treatment of acute or chronic inflammatory diseases of the lung.  相似文献   

17.
Zeng R  Li C  Li N  Wei L  Cui Y 《Cytokine》2011,53(1):1-7
Respiratory syncytial virus (RSV) is the primary cause of serious lower respiratory tract illness in infants and young children worldwide. The mechanism is largely unknown. RSV stimulates airway epithelial cells and resident leukocytes to release cytokines. Cytokines and chemokines involved in host response to RSV infection are thought to play a central role in the pathogenesis. In addition, RSV infection early in life has been associated with the development of asthma in later childhood. It is likely that the persistence of cytokines and chemokines in fully recovered patients with RSV in the long term can provide a substratum for the development of subsequent asthma. This review describes the genetic factors in cytokines and chemokines associated with severity of RSV disease, cytokines and chemokines synthesis in RSV infection, and the role of these innate immune components in RSV-associated asthma.  相似文献   

18.
Respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. Increased airway resistance and increased airway mucin production are two manifestations of RSV infection in children. RSV rA2-line19F infection induces pulmonary mucous production and increased breathing effort in BALB/c mice and provides a way to assess these manifestations of RSV disease in an animal model. In the present study, we investigated the effect of prophylactic treatment with the F(ab′)2 form of the anti-G protein monoclonal antibody (MAb) 131-2G on disease in RSV rA2-line19F-challenged mice. F(ab′)2 131-2G does not affect virus replication. It and the intact form that does decrease virus replication prevented increased breathing effort and airway mucin production, as well as weight loss, pulmonary inflammatory-cell infiltration, and the pulmonary substance P and pulmonary Th2 cytokine levels that occur in mice challenged with this virus. These data suggest that the RSV G protein contributes to prominent manifestations of RSV disease and that MAb 131-2G can prevent these manifestations of RSV disease without inhibiting virus infection.  相似文献   

19.
Respiratory syncytial virus (RSV) infection in airway epithelial cells is the main cause of bronchiolitis in children. Excessive mucus secretion is one of the primary symbols in RSV related lower respiratory tract infections (RSV-related LRTI). However, the pathological processes of mucus hypersecretion in RSV-infected airway epithelial cells remains unclear. The current study explores the involvement of miR-34b/miR-34c in mucus hypersecretion in RSV-infected airway epithelial cells by targeting FGFR1. First, miR-34b/miR-34c and FGFR1 mRNA were quantified by qPCR in throat swab samples and cell lines, respectively. Then, the luciferase reporters’ assay was designed to verify the direct binding between FGFR1 and miR-34b/miR-34c. Finally, the involvement of AP-1 signalling was assessed by western blot. This study identified that miR-34b/miR-34c was involved in c-Jun-regulated MUC5AC production by targeting FGFR1 in RSV-infected airway epithelial cells. These results provide some useful insights into the molecular mechanisms of mucus hypersecretion which may also bring new potential strategies to improve mucus hypersecretion in RSV disease.  相似文献   

20.
Respiratory syncytial virus (RSV) is the most common cause of severe lower respiratory tract infection in infants and the elderly. There is currently no effective antiviral treatment for the infection, but advances in our understanding of RSV uptake, especially the role of surfactant proteins, the attachment protein G and the fusion protein F, as well as the post-binding events, have revealed potential targets for new therapies and vaccine development. RSV infection triggers an intense inflammatory response, mediated initially by the infected airway epithelial cells and antigen-presenting cells. Humoral and cell-mediated immune responses are important in controlling the extent of infection and promoting viral clearance. The initial innate immune response may play a critical role by influencing the subsequent adaptive response generated. This review summarizes our current understanding of RSV binding and uptake in mammalian cells and how these initial interactions influence the subsequent innate immune response generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号