首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Alu家族及其生物学意义   总被引:2,自引:0,他引:2  
罗迪贤  李凯  何淑雅  廖端芳 《遗传》2005,27(2):284-288
  相似文献   

2.
Evolution of the master Alu gene(s)   总被引:34,自引:0,他引:34  
Summary A comparison of Alu sequences that comprise more recently amplified Alu subfamilies was made. There are 18 individual diagnostic mutations associated with the different subfamilies. This analysis confirmed that the formation of each subfamily can be explained by the sequential accumulation of mutations relative to the previous subfamily. Polymerase chain reaction amplification of orthologous loci in several primate species allowed us to determine the time of insertion of Alu sequences in individual loci. These data suggest that the vast majority of Alu elements amplified at any given time comprised a single Alu subfamily. We find that, although the individual divergence relative to a consensus sequence correlate reasonably well with sequence age, the diagnostic mutations are a more accurate measure of the age of any individual Alu family member. Our data are consistent with a model in which all Alu family members have been made from a single master gene or from a series of sequential master genes. This master gene(s) accumulated diagnostic base changes, resulting in the amplification of different subfamilies from the master gene at different times in primate evolution. The changes in the master gene(s) probably occurred individually, but their appearance is clearly punctuated. Ten of them have occurred within an 15-million-year time span, 40–25 million years ago, and 8 changes have occurred within the last 5 million years. Surprisingly, no changes appeared in the 20 milion years separating these periods.  相似文献   

3.
4.
The medaka Oryzias latipes and its two sister species, O. curvinotus and O. luzonensis, possess an XX-XY sex-determination system. The medaka sex-determining gene DMY has been identified on the orthologous Y chromosome [O. latipes linkage group 1 (LG1)] of O. curvinotus. However, DMY has not been discovered in other Oryzias species. These results and molecular phylogeny suggest that DMY was generated recently [approximately 10 million years ago (MYA)] by gene duplication of DMRT1 in a common ancestor of O. latipes and O. curvinotus. We identified seven sex-linked markers from O. luzonensis (sister species of O. curvinotus) and constructed a sex-linkage map. Surprisingly, all seven sex-linked markers were located on an autosomal linkage group (LG12) of O. latipes. As suggested by the phylogenetic tree, the sex chromosomes of O. luzonensis should be "younger" than those of O. latipes. In the lineage leading to O. luzonensis after separation from O. curvinotus approximately 5 MYA, a novel sex-determining gene may have arisen and substituted for DMY. Oryzias species should provide a useful model for evolution of the master sex-determining gene and differentiation of sex chromosomes from autosomes.  相似文献   

5.
New World primates comprise a diverse group of neotropical mammals that suddenly appeared in the Late Oligocene deposits of South America at around 26 million years ago (MYA). Platyrrhines seem to have separated from Old World anthropoids ca. 35 MYA, and their subsequent diversfication is not well documented in the fossil record. Therefore, molecular clock studies were conducted to unveil the temporal scenario for the evolution of the group. In this study, divergence times of all splits within platyrrhines until the generic level were investigated, using two different gene data sets under relaxed molecular clocks. Special attention was paid to the basal diversification of living platyrrhines and to the basal split of the modern Cebidae family, since these nodes were reported to be phylogenetically difficult to resolve. The results showed that analyses from various genomic regions are similar to estimates obtained by early single-gene studies. Living New World primates are descendants of ancestors that lived in the Early Miocene, at around 20 MYA, and modern Cebidae and Pitheciidae appeared ca. 16.9 and 15.6 MYA, respectively. The last common ancestor of living Atelidae is 12.4 million years old, making this clade the youngest New World primate family; at approximately the same time, modern Callitrichinae was evolving (11.8 MYA). The gap between the Platyrrhini/Catarrhini separation and the last common ancestor of living Platyrrhini may be as big as 20 million years. Paleontological and geoclimatological evidence corroborates that the sudden appearance of modern families may be a consequence of environmental changes during the Miocene.  相似文献   

6.
Alu elements belonging to the previously identified "young" subfamilies are thought to have inserted in the human genome after the divergence of humans from non-human primates and therefore should not be present in non-human primate genomes. Polymerase chain reaction (PCR) based screening of over 500 Alu insertion loci resulted in the recovery of a few "young" Alu elements that also resided at orthologous positions in non-human primate genomes. Sequence analysis demonstrated these "young" Alu insertions represented gene conversion events of pre-existing ancient Alu elements or independent parallel insertions of older Alu elements in the same genomic region. The level of gene conversion between Alu elements suggests that it may have a significant influence on the single nucleotide diversity within the genome. All the instances of multiple independent Alu insertions within the same small genomic regions were recovered from the owl monkey genome, indicating a higher Alu amplification rate in owl monkeys relative to many other primates. This study suggests that the majority of Alu insertions in primate genomes are the products of unique evolutionary events.  相似文献   

7.
Kass DH  Knight A  Deininger PL 《Genetica》2004,121(2):187-193
Alu repeats in primates have been shown to evolve at a neutral mutation rate, as anticipated for non-coding autosomal loci. However, we have identified Alu elements within the 3' untranslated region (UTR) of the low density lipoprotein receptor (LDLR) gene that exhibited highly accelerated rates of evolution. In humans, a 100- and 25-fold increase in average divergence, for an upstream Alu (Alu U) and a downstream Alu (Alu D) respectively, was estimated based on sequence analysis among eight individuals of diverse ethnic backgrounds. None of these individuals demonstrated identical sequences within a 950 base region consisting of these two Alu elements. The hypervariability of this genetic region in the nuclear genome yields a potentially powerful tool for human population studies, forensics and paternity. Additionally, the mutation rate of Alu U among non-human hominoids was also accelerated, although to a lesser extent of roughly 3-fold that of other Alu elements. Sequence analysis of various Hominoidea species demonstrated its utility as a phylogenetic tool. The mechanism for the hypervariability in mutation rates is unclear, but may be accelerated as a result of Alu-mediated gene conversion in the human lineage.  相似文献   

8.
Li X  Ma W  Gao L  Zhang Y  Wang A  Ji K  Wang K  Appels R  Yan Y 《Genetics》2008,180(1):93-101
Four LMW-m and one novel chimeric (between LMW-i and LMW-m types) low-molecular-weight glutenin subunit (LMW-GS) genes from Aegilops neglecta (UUMM), Ae. kotschyi (UUSS), and Ae. juvenalis (DDMMUU) were isolated and characterized. Sequence structures showed that the 4 LMW-m-type genes, assigned to the M genome of Ae. neglecta, displayed a high homology with those from hexaploid common wheat. The novel chimeric gene, designed as AjkLMW-i, was isolated from both Ae. kotschyi and Ae. juvenalis and shown to be located on the U genome. Phylogentic analysis demonstrated that it had higher identity to the LMW-m-type than the LMW-i-type genes. A total of 20 single nucleotide polymorphisms (SNPs) were detected among the 4 LMW-m genes, with 13 of these being nonsynonymous SNPs that resulted in amino acid substitutions in the deduced mature proteins. Phylogenetic analysis demonstrated that it had higher identity to the LMW-m-type than the LMW-i-type genes. The divergence time estimation showed that the M and D genomes were closely related and diverged at 5.42 million years ago (MYA) while the differentiation between the U and A genomes was 6.82 MYA. We propose that, in addition to homologous recombination, an illegitimate recombination event on the U genome may have occurred 6.38 MYA and resulted in the generation of the chimeric gene AjkLMW-i, which may be an important genetic mechanism for the origin and evolution of LMW-GS Glu-3 alleles as well as other prolamin genes.  相似文献   

9.
L M Erickson  H S Kim  N Maeda 《Genomics》1992,14(4):948-958
To investigate the nature of the recombination that generated the haptoglobin three-gene cluster in Old World primates, we sequenced the region between the second gene (HPR) and the third gene (HPP) in chimpanzees (15 kb), as well as the region 3' to the cluster in humans (14 kb). Comparison to the previously sequenced human haptoglobin (HP) and HPR genes showed that the junction point between HP and HPR in humans (junction 1) was not identical to the junction point between the HPR and HPP genes of the chimpanzee (junction 2). An Alu sequence was found at each junction, but both Alu sequences lacked short direct repeats of the flanking genomic DNA. The lack of direct repeats implies that both junction Alu sequences are the products of recombination between different Alu elements. In addition, other insertion and deletion events are clustered in the regions near the junction Alu sequences. The observation that Alu sequences define the junctions between genes in the haptoglobin gene cluster emphasizes the importance of Alu sequences in the evolution of multigene families.  相似文献   

10.
Nearly 1 million Alu elements in human DNA were inserted by an RNA-mediated retroposition-amplification process that clearly decelerated about 30 million years ago. Since then, Alu sequences have proliferated at a lower rate, including within the human genome, in which Alu mobility continues to generate genetic variability. Initially derived from 7SL RNA of the signal recognition particle (SRP), Alu became a dominant retroposon while retaining secondary structures found in 7SL RNA. We previously identified a human Alu RNA-binding protein as a homolog of the 14-kDa Alu-specific protein of SRP and have shown that its expression is associated with accumulation of 3'-processed Alu RNA. Here, we show that in early anthropoids, the gene encoding SRP14 Alu RNA-binding protein was duplicated and that SRP14-homologous sequences currently reside on different human chromosomes. In anthropoids, the active SRP14 gene acquired a GCA trinucleotide repeat in its 3'-coding region that produces SRP14 polypeptides with extended C-terminal tails. A C-->G substitution in this region converted the mouse sequence CCA GCA to GCA GCA in prosimians, which presumably predisposed this locus to GCA expansion in anthropoids and provides a model for other triplet expansions. Moreover, the presence of the trinucleotide repeat in SRP14 DNA and the corresponding C-terminal tail in SRP14 are associated with a significant increase in SRP14 polypeptide and Alu RNA-binding activity. These genetic events occurred during the period in which an acceleration in Alu retroposition was followed by a sharp deceleration, suggesting that Alu repeats coevolved with C-terminal variants of SRP14 in higher primates.  相似文献   

11.
12.
Comparative mapping and sequencing show that turnover of sex determining genes and chromosomes, and sex chromosome rearrangements, accompany speciation in many vertebrates. Here I review the evidence and propose that the evolution of therian mammals was precipitated by evolution of the male‐determining SRY gene, defining a novel XY sex chromosome pair, and interposing a reproductive barrier with the ancestral population of synapsid reptiles 190 million years ago (MYA). Divergence was reinforced by multiple translocations in monotreme sex chromosomes, the first of which supplied a novel sex determining gene. A sex chromosome‐autosome fusion may have separated eutherians (placental mammals) from marsupials 160 MYA. Another burst of sex chromosome change and speciation is occurring in rodents, precipitated by the degradation of the Y. And although primates have a more stable Y chromosome, it may be just a matter of time before the same fate overtakes our own lineage. Also watch the video abstract .  相似文献   

13.
Alu elements as regulators of gene expression   总被引:12,自引:3,他引:9  
  相似文献   

14.
In primate genomes more than 40% of CpG islands are found within repetitive elements. With more than one million copies in the human genome, the Alu family of retrotransposons represents the most successful short interspersed element (SINE) in primates and CpG dinucleotides make up about 20% of Alu sequences. It is generally thought that CpG dinucleotides mutate approximately ten times faster than other dinucleotides due to cytosine methylation and the subsequent deamination and conversion of C-->T. However, the disparity of Alu subfamily age estimations based upon CpG or non-CpG substitution density indicates a more complex relationship between CpG and non-CpG substitutions within the Alu elements. Here we report an analysis of the mutation patterns for 5296 Alu elements comprising 20 subfamilies. Our results indicate a relatively constant CpG versus non-CpG substitution ratio of approximately 6 for the young (AluY) and intermediate (AluS) Alu subfamilies. However, a more complex non-linear relationship between CpG and non-CpG substitutions was observed when old (AluJ) subfamilies were included in the analysis. These patterns may be the result of the slowdown of the neutral mutation rate during primate evolution and/or an increase in the CpG mutation rate as the consequence of increased DNA methylation in response to a burst of retrotransposition activity approximately 35 million years ago.  相似文献   

15.
Schmitz J  Ohme M  Zischler H 《Genetics》2001,157(2):777-784
Transpositions of Alu sequences, representing the most abundant primate short interspersed elements (SINE), were evaluated as molecular cladistic markers to analyze the phylogenetic affiliations among the primate infraorders. Altogether 118 human loci, containing intronic Alu elements, were PCR analyzed for the presence of Alu sequences at orthologous sites in each of two strepsirhine, New World and Old World monkey species, Tarsius bancanus, and a nonprimate outgroup. Fourteen size-polymorphic amplification patterns exhibited longer fragments for the anthropoids (New World and Old World monkeys) and T. bancanus whereas shorter fragments were detected for the strepsirhines and the outgroup. From these, subsequent sequence analyses revealed three Alu transpositions, which can be regarded as shared derived molecular characters linking tarsiers and anthropoid primates. Concerning the other loci, scenarios are represented in which different SINE transpositions occurred independently in the same intron on the lineages leading both to the common ancestor of anthropoids and to T. bancanus, albeit at different nucleotide positions. Our results demonstrate the efficiency and possible pitfalls of SINE transpositions used as molecular cladistic markers in tracing back a divergence point in primate evolution over 40 million years old. The three Alu insertions characterized underpin the monophyly of haplorhine primates (Anthropoidea and Tarsioidea) from a novel perspective.  相似文献   

16.
During the past 65 million years, Alu elements have propagated to more than one million copies in primate genomes, which has resulted in the generation of a series of Alu subfamilies of different ages. Alu elements affect the genome in several ways, causing insertion mutations, recombination between elements, gene conversion and alterations in gene expression. Alu-insertion polymorphisms are a boon for the study of human population genetics and primate comparative genomics because they are neutral genetic markers of identical descent with known ancestral states.  相似文献   

17.
Alu家族是灵长类动物特有的且是最重要的短散在元件(short interspersed elements,SINEs),经过6千5百万年的进化,Alu序列在基因组中约有120万份拷贝,占基因组的10%以上。Alu家族在基因组中有很多功能,如介导重组、基因插入和删除、甲基化和A-to-I的编辑作用、调控转录和翻译、选择性剪接等等。Alu家族的变异与疾病和进化存在密切关系。  相似文献   

18.
Evolution of Alu repeats surrounding the human ferredoxin gene   总被引:1,自引:0,他引:1  
Ferredoxin is an iron-sulfur protein that serves as an electron carrier for the mitochondrial oxidation/reduction system. During the characterization of the human ferredoxin gene, we have identified three Alu sequences surrounding it. When these Alu sequences were compared with others, all three of them are more related to the consensus Alu than the 7SL gene, the progenitor of the Alu family. It suggests that they are members of the modern Alu family. Their sequences differ from the Alu consensus sequence by about 5%, indicating that they were inserted into the chromosome about 35 million years ago.  相似文献   

19.
Two human apolipoprotein C-I genes, one of which is believed to be a pseudogene, are located within the lipoprotein gene cluster on chromosome 19. Alignments were made between the apoC-I and the pseudoC-I' genes using a computer sequence editor. Particular Alu sequences may be found in one gene or in both: the proposal is that common Alu sequences (found in both genes) were present before the duplication of the C-I gene, whereas single Alu sequences (present in only one gene) were transposed afterward. Alu sequences of the C-I genes were also classified into Alu families. Common sequences belong to older families of Alu genes, whereas single sequences belong to younger families. Marked change in the apolipoprotein C-I gene began during early radiation of primate lineages. Retropositions of older Alu sequences occurred throughout the Paleocene and the Eocene periods. The numbering of uncommon substitutions in the six common Alu sequences gives a good estimate of the duplication time for the C-I gene (39 +/- 6 million years) at the end of the Eocene. After that, the other Alu sequences were transposed into each gene and further substitutions occurred to give the present form of the C-I genes in humans.  相似文献   

20.
A recently identified Alu element (Leeflang et al. J. Mol. Evol. 1993, 37:559–565), referred to as the putative founder of the HS (PV) subfamily, was found to be present at orthologous loci in the human, chimpanzee, gorilla, and gibbon lineages. The evolution of this Alu suggested that it is a source gene in the evolution of Alu family repeats for one of the most recent subfamilies, HS. We have determined that this putative founder of the HS subfamily was not present at the orthologous loci in older primates, including old world and new world monkeys. Thus, this particular Alu locus has only been responsible for the establishment of a very small subfamily of Alu sequences. We have further demonstrated that this putative founder Alu was not responsible for the de novo Alu insertion into the neurofibromatosis-1 gene of an individual causing neurofibromatosis. Our data demonstrate that although the putative founder of the HS subfamily found by Leeflang et al. (1993) probably gave rise to one of the most recent subfamilies of Alu sequences, it has not been very active in retroposition. Correspondence to: T.H. Shaikh  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号