首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
DNA methylation is involved in gene silencing and genome stability in organisms from fungi to mammals. Genetic studies in Neurospora crassa previously showed that the CUL4-DDB1 E3 ubiquitin ligase regulates DNA methylation via histone H3K9 trimethylation. However, the substrate-specific adaptors of this ligase that are involved in the process were not known. Here, we show that, among the 16 DDB1- and Cul4-associated factors (DCAFs) encoded in the N. crassa genome, three interacted strongly with CUL4-DDB1 complexes. DNA methylation analyses of dcaf knockout mutants revealed that dcaf26 was required for all of the DNA methylation that we observed. In addition, histone H3K9 trimethylation was also eliminated in dcaf26KO mutants. Based on the finding that DCAF26 associates with DDB1 and the histone methyltransferase DIM-5, we propose that DCAF26 protein is the major adaptor subunit of the Cul4-DDB1-DCAF26 complex, which recruits DIM-5 to DNA regions to initiate H3K9 trimethylation and DNA methylation in N. crassa.  相似文献   

2.
The CUL4 (cullin 4) proteins are the core components of a new class of ubiquitin E3 ligases that regulate cell cycle, DNA replication, and DNA damage response. To determine the composition of CUL4 ubiquitin E3 ligase complex, we used anti-CUL4 antibody affinity chromatography to isolate the proteins that associated with human CUL4 complexes and identified them by mass-spectrometry. A novel and conserved WD40 domain-containing protein, the human homologue of Drosophila lethal(2) denticleless protein (L2DTL), was found to associate with CUL4 and DDB1. L2DTL also interacts with replication licensing protein CDT1 in vivo. Loss of L2DTL in Drosophila S2 and human cells suppressed proteolysis of CDT1 in response to DNA damage. We further isolated the human L2DTL complexes by anti-L2DTL immuno-affinity chromatography from HeLa cells and found it associates with DDB1, components of the COP9-signalosome complex (CSN), and PCNA. We found that PCNA interacts with CDT1 and loss of PCNA suppressed CDT1 proteolysis after DNA damage. Our data also revealed that in vivo, inactivation of L2DTL causes the dissociation of DDB1 from the CUL4 complex. Our studies suggest that L2DTL and PCNA interact with CUL4/DDB1 complexes and are involved in CDT1 degradation after DNA damage.  相似文献   

3.
Nakagawa T  Xiong Y 《Molecular cell》2011,43(3):381-391
CUL4B, encoding a scaffold protein for the assembly of Cullin4B-Ring ubiquitin ligase (CRL4B) complexes, is frequently mutated in X-linked mental retardation (XLMR) patients. Here, we show that CUL4B, but not its paralog, CUL4A, targets WDR5, a core subunit of histone H3 lysine 4 (H3K4) methyltransferase complexes, for ubiquitylation and degradation in the nucleus. Knocking down CUL4B increases WDR5 and trimethylated H3K4 (H3K4me3) on the neuronal gene promoters and induces their expression. Furthermore, CUL4B depletion suppresses neurite outgrowth of PC12 neuroendocrine cells, which can be rescued by codepletion of WDR5. XLMR-linked mutations destabilize CUL4B and impair its ability to support neurite outgrowth of PC12 cells. Our results identify WDR5 as a critical substrate of CUL4B in regulating neuronal gene expression and suggest epigenetic change as a common pathogenic mechanism for CUL4B-associated XLMR.  相似文献   

4.
The CUL4-ROC1 E3 ligase complex regulates genome stability, replication, and cell cycle progression. A novel WD40 domain-containing protein, L2DTL, and PCNA were identified as proteins associated with CUL4/DDB1 complexes. Inactivation of CUL4A, L2DTL, PCNA, DDB1, or ROC1 induced p53 stabilization and growth arrest. L2DTL, PCNA, and DDB1/CUL4A complexes were found to physically interact with p53 tumor suppressor and its regulator MDM2/HDM2. The isolated CUL4A complexes display potent and robust polyubiquitination activity towards p53 and this activity is dependent on L2DTL, PCNA, DDB1, ROC1, and MDM2/HDM2. We also found that the interaction between p53 and CUL4 complex is regulated by DNA damage. Our data further showed that MDM2/HDM2 is rapidly proteolyzed in response to UV irradiation and this process is regulated by CUL4/DDB1 and PCNA. Our studies demonstrate that PCNA, L2DTL, and the DDB1-CUL4A complex play critical and differential roles in regulating the protein stability of p53 and MDM2/HDM2 in unstressed and stressed cells.  相似文献   

5.
6.
Histone methylation at specific lysine residues brings about various downstream events that are mediated by different effector proteins. The WD40 domain of WDR5 represents a new class of histone methyl-lysine recognition domains that is important for recruiting H3K4 methyltransferases to K4-dimethylated histone H3 tail as well as for global and gene-specific K4 trimethylation. Here we report the crystal structures of full-length WDR5, WDR5Delta23 and its complexes with unmodified, mono-, di- and trimethylated histone H3K4 peptides. The structures reveal that WDR5 is able to bind all of these histone H3 peptides, but only H3K4me2 peptide forms extra interactions with WDR5 by use of both water-mediated hydrogen bonding and the altered hydrophilicity of the modified lysine 4. We propose a mechanism for the involvement of WDR5 in binding and presenting histone H3K4 for further methylation as a component of MLL complexes.  相似文献   

7.
The CUL4-DDB1 E3 ligase complex serves as a critical regulator in various cellular processes, including cell proliferation, DNA damage repair, and cell cycle progression. However, whether this E3 ligase complex regulates clock protein turnover and the molecular clock activity in mammalian cells is unknown. Here we show that CUL4-DDB1-CDT2 E3 ligase ubiquitinates CRY1 and promotes its degradation both in vitro and in vivo. Depletion of the major components of this E3 ligase complex, including Ddb1, Cdt2, and Cdt2-cofactor Pcna, leads to CRY1 stabilization in cultured cells or in the mouse liver. CUL4A-DDB1-CDT2 E3 ligase targets lysine 585 within the C-terminal region of CRY1 protein, shown by the CRY1 585KA mutant’s resistance to ubiquitination and degradation mediated by the CUL4A-DDB1 complex. Surprisingly, both depletion of Ddb1 and over-expression of Cry1-585KA mutant enhance the oscillatory amplitude of the Bmal1 promoter activity without altering its period length, suggesting that CUL4A-DDB1-CDT2 E3 targets CRY1 for degradation and reduces the circadian amplitude. All together, we uncovered a novel biological role for CUL4A-DDB1-CDT2 E3 ligase that regulates molecular circadian behaviors via promoting ubiquitination-dependent degradation of CRY1.  相似文献   

8.
Several proteins, including the replication licensing factor CDT1 and the histone methyltransferase SET8, are targeted for proteolysis during DNA replication and repair by the E3 ubiquitin ligase CRL4(CDT2). CRL4(CDT2) function is coupled to replication and repair because it only ubiquitinates substrates that associate with chromatin-bound PCNA. Here, we report a genome-wide siRNA screen that identifies multiple factors necessary for CDT1 destruction after UV irradiation. Among these, nucleotide excision repair factors promote CDT1 destruction due to a role in recruiting PCNA to damaged DNA. The COP9/Signalosome regulates CDT2 stability through CUL4 deneddylation. Finally, the p97 AAA(+)-ATPase and its cofactor UFD1 are required for proteasome-dependent removal of ubiquitinated CDT1 and SET8 from chromatin and their subsequent degradation both in vivo and in a Xenopus egg extract system in vitro. This study provides insight into and a resource for the further exploration of pathways that promote timely degradation of chromatin-associated CRL4(CDT2) substrates.  相似文献   

9.
Genomic integrity is maintained by checkpoints that guard against undesired replication after DNA damage. Here, we show that CDT1, a licensing factor of the pre-replication complex (preRC), is rapidly proteolysed after UV- or gamma-irradiation. The preRC assembles on replication origins at the end of mitosis and during G1 to license DNA for replication in S phase. Once the origin recognition complex (ORC) binds to origins, CDC6 and CDT1 associate with ORC and promote loading of the MCM2-7 proteins onto chromatin, generating the preRC. We show that radiation-mediated CDT1 proteolysis is independent of ATM and CHK2 and can occur in G1-phase cells. Loss of the COP9-signalosome (CSN) or CUL4-ROC1 complexes completely suppresses CDT1 proteolysis. CDT1 is specifically polyubiquitinated by CUL4 complexes and the interaction between CDT1 and CUL4 is regulated in part by gamma-irradiation. Our study reveals an evolutionarily conserved and uncharacterized G1 checkpoint that induces CDT1 proteolysis by the CUL4-ROC1 ubiquitin E3 ligase and CSN complexes in response to DNA damage.  相似文献   

10.
MLL complexes are homologs of yeast COMPASS capable of methylating histone H3 Lys4 (H3K4). ASH2L, RbBP5 and WDR5 are conserved subunits of MLL complexes with homology to the Cps40/Cps60, Cps50 and Cps30 subunits of COMPASS, respectively. We report that ASH2L differentially regulates MLL's catalysis of H3K4 trimethylation similarly to Cps40 and Cps60. Furthermore, WDR5 is required to maintain MLL complex integrity, including the stability of ASH2L within the complex. These findings offer insight into the molecular role of ASH2L, and by extension that of WDR5, in proper H3K4 trimethylation.  相似文献   

11.
Molecular recognition of histone H3 by the WD40 protein WDR5   总被引:1,自引:0,他引:1  
The WD40-repeat protein WDR5 is a conserved subunit of Trithorax (TRX) histone methyltransferase complexes. WDR5 has been reported to selectively bind dimethylated Lys4 (K4me2) in histone H3 to promote K4 trimethylation by TRX. To elucidate the basis of this binding specificity, we have determined the crystal structure of WDR5 bound to a histone H3 peptide bearing K4me2. The structure reveals that the N terminus of histone H3 binds as a 3(10)-helix in the central depression formed by the WD40 repeats. R2 in histone H3 is bound in the acidic channel in the protein's core, whereas K4me2 is solvent exposed and does not engage in direct interactions with WDR5. Functional studies confirm that WDR5 recognizes A1, R2 and T3 in histone H3 but has virtually identical affinities for the unmodified and mono-, di- and trimethylated forms of K4, demonstrating that it does not discriminate among different degrees of methylation of this residue.  相似文献   

12.
13.
14.
Methylation of DNA and of Lysine 9 on histone H3 (H3K9) is associated with gene silencing in many animals, plants, and fungi. In Neurospora crassa, methylation of H3K9 by DIM-5 directs cytosine methylation by recruiting a complex containing Heterochromatin Protein-1 (HP1) and the DIM-2 DNA methyltransferase. We report genetic, proteomic, and biochemical investigations into how DIM-5 is controlled. These studies revealed DCDC, a previously unknown protein complex including DIM-5, DIM-7, DIM-9, CUL4, and DDB1. Components of DCDC are required for H3K9me3, proper chromosome segregation, and DNA methylation. DCDC-defective strains, but not HP1-defective strains, are hypersensitive to MMS, revealing an HP1-independent function of H3K9 methylation. In addition to DDB1, DIM-7, and the WD40 domain protein DIM-9, other presumptive DCAFs (DDB1/CUL4 associated factors) co-purified with CUL4, suggesting that CUL4/DDB1 forms multiple complexes with distinct functions. This conclusion was supported by results of drug sensitivity tests. CUL4, DDB1, and DIM-9 are not required for localization of DIM-5 to incipient heterochromatin domains, indicating that recruitment of DIM-5 to chromatin is not sufficient to direct H3K9me3. DIM-7 is required for DIM-5 localization and mediates interaction of DIM-5 with DDB1/CUL4 through DIM-9. These data support a two-step mechanism for H3K9 methylation in Neurospora.  相似文献   

15.
16.
17.
In mammals, the SET1 family of lysine methyltransferases (KMTs), which includes MLL1-5, SET1A and SET1B, catalyzes the methylation of lysine-4 (Lys-4) on histone H3. Recent reports have demonstrated that a three-subunit complex composed of WD-repeat protein-5 (WDR5), retinoblastoma-binding protein-5 (RbBP5) and absent, small, homeotic disks-2-like (ASH2L) stimulates the methyltransferase activity of MLL1. On the basis of studies showing that this stimulation is in part controlled by an interaction between WDR5 and a small region located in close proximity of the MLL1 catalytic domain [referred to as the WDR5-interacting motif (Win)], it has been suggested that WDR5 might play an analogous role in scaffolding the other SET1 complexes. We herein provide biochemical and structural evidence showing that WDR5 binds the Win motifs of MLL2-4, SET1A and SET1B. Comparative analysis of WDR5-Win complexes reveals that binding of the Win motifs is achieved by the plasticity of WDR5 peptidyl-arginine-binding cleft allowing the C-terminal ends of the Win motifs to be maintained in structurally divergent conformations. Consistently, enzymatic assays reveal that WDR5 plays an important role in the optimal stimulation of MLL2-4, SET1A and SET1B methyltransferase activity by the RbBP5-ASH2L heterodimer. Overall, our findings illustrate the function of WDR5 in scaffolding the SET1 family of KMTs and further emphasize on the important role of WDR5 in regulating global histone H3 Lys-4 methylation.  相似文献   

18.
DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase   总被引:2,自引:0,他引:2  
Lee J  Zhou P 《Molecular cell》2007,26(6):775-780
The CUL4-DDB1 ubiquitin ligase regulates cell proliferation, survival, DNA repair, and genomic integrity through targeted ubiquitination of key regulators, yet the substrate receptors that dictate the specificity of this ubiquitination machinery have been largely unknown. Recent work identified a family of DDB1 and CUL4-associated factors (DCAFs) as substrate receptors, implicating a broad spectrum of cellular processes regulated by CUL4-DDB1.  相似文献   

19.
20.
The DDB1-DDB2-CUL4-RBX1 complex serves as the primary detection device for UV-induced lesions in the genome. It simultaneously functions as a CUL4 type E3 ubiquitin ligase. We review the current understanding of this dual function ubiquitin ligase and damage detection complex. The DDB2 damage binding module is merely one of a large family of possible DDB1-CUL4 associated factors (DCAF), most of which are substrate receptors for other DDB1-CUL4 complexes. DDB2 and the Cockayne-syndrome A protein (CSA) function in nucleotide excision repair, whereas the remaining receptors operate in a wide range of other biological pathways. We will examine the modular architecture of DDB1-CUL4 in complex with DDB2, CSA and CDT2 focusing on shared architectural, targeting and regulatory principles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号