首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The trypanosomatid parasite Trypanosoma brucei synthesizes fatty acids in the mitochondrion using the type II fatty acid synthesis (FAS) machinery. When mitochondrial FAS was characterized in T. brucei, all of the enzymatic components were identified based on their homology to yeast mitochondrial FAS enzymes, except for 3-hydroxyacyl-ACP dehydratase. Here we describe the characterization of T. brucei mitochondrial 3-hydroxyacyl-ACP dehydratase (TbHTD2), which was identified by its similarity to the human mitochondrial dehydratase. TbHTD2 can rescue the respiratory deficient phenotype of the yeast knock-out strain and restore the lipoic acid content, is localized in the mitochondrion and exhibits hydratase 2 activity.  相似文献   

2.
Recent studies have revealed that mitochondria are able to synthesize fatty acids in a malonyl-CoA/acyl carrier protein (ACP)-dependent manner. This pathway resembles bacterial fatty acid synthesis (FAS) type II, which uses discrete, nuclearly encoded proteins. Experimental evidence, obtained mainly through using yeast as a model system, indicates that this pathway is essential for mitochondrial respiratory function. Curiously, the deficiency in mitochondrial FAS cannot be complemented by inclusion of fatty acids in the culture medium or by products of the cytosolic FAS complex. Defects in mitochondrial FAS in yeast result in the inability to grow on nonfermentable carbon sources, the loss of mitochondrial cytochromes a/a3 and b, mitochondrial RNA processing defects, and loss of cellular lipoic acid. Eukaryotic FAS II generates octanoyl-ACP, a substrate for mitochondrial lipoic acid synthase. Endogenous lipoic acid synthesis challenges the hypothesis that lipoic acid can be provided as an exogenously supplied vitamin. Purified eukaryotic FAS II enzymes are catalytically active in vitro using substrates with an acyl chain length of up to 16 carbon atoms. However, with the exception of 3-hydroxymyristoyl-ACP, a component of respiratory complex I in higher eukaryotes, the fate of long-chain fatty acids synthesized by the mitochondrial FAS pathway remains an enigma. The linkage of FAS II genes to published animal models for human disease supports the hypothesis that mitochondrial FAS dysfunction leads to the development of disorders in mammals.  相似文献   

3.
When individual enzyme activities of the fatty acid synthetase (FAS) system were assayed in extracts from five different plant tissues, acetyl-CoA:acyl carrier protein (ACP) transacylase and beta-ketoacyl-ACP synthetases I and II had consistently low specific activities in comparison with the other enzymes of the system. However, two of these extracts synthesized significant levels of medium chain fatty acids (rather than C16 and C18 acid) from [14C]malonyl-CoA; these extracts had elevated levels of acetyl-CoA:ACP transacylase. To explore the role of the acetyl transacylase more carefully, this enzyme was purified some 180-fold from spinach leaf extracts. Varying concentrations of the transacylase were then added either to spinach leaf extracts or to a completely reconstituted FAS system consisting of highly purified enzymes. The results suggested that: (a) acetyl-CoA:ACP transacylase was the enzyme catalyzing the rate-limiting step in the plant FAS system; (b) increasing concentration of this enzyme markedly increased the levels of the medium chain fatty acids, whereas increase of the other enzymes of the FAS system led to increased levels of stearic acid synthesis; and (c) beta-ketoacyl-ACP synthetase I was not involved in the rate-limiting step. It is suggested that modulation of the activity of acetyl-CoA:ACP transacylase may have important implications in the type of fatty acid synthesized, as well as the amount of fatty acids formed.  相似文献   

4.
Acyl carrier protein (ACP) is a principal partner in the cytosolic and mitochondrial fatty acid synthesis (FAS) pathways. The active form holo-ACP serves as FAS platform, using its 4′-phosphopantetheine group to present covalently attached FAS intermediates to the enzymes responsible for the acyl chain elongation process. Mitochondrial unacylated holo-ACP is a component of mammalian mitoribosomes, and acylated ACP species participate as interaction partners in several ACP-LYRM (leucine-tyrosine-arginine motif)-protein heterodimers that act either as assembly factors or subunits of the electron transport chain and Fe-S cluster assembly complexes. Moreover, octanoyl-ACP provides the C8 backbone for endogenous lipoic acid synthesis. Accumulating evidence suggests that mtFAS-generated acyl-ACPs act as signaling molecules in an intramitochondrial metabolic state sensing circuit, coordinating mitochondrial acetyl-CoA levels with mitochondrial respiration, Fe-S cluster biogenesis and protein lipoylation.  相似文献   

5.
Adult Drosophila melanogaster synthesizes dodecanoic and tetradecanoic acids in vivo, along with the more common 16- and 18-carbon fatty acids. The radiolabeled C12 and C14 fatty acids synthesized from sodium [1-14C]acetate are found primarily in the diacylglycerol and triacylglycerol fractions. Partially purified fatty acid synthetase (FAS) synthesizes C14, C16, and C18 fatty acids (as the free acids) at 0.2 M ionic strength. Increasing the ionic strength to 2.0 M causes partially purified FAS to synthesize primarily C12 and C14 fatty acids. Addition of aliquots of the microsomal pellet and other soluble protein fractions does not alter the pattern of fatty acids synthesized by FAS. The percentage of C12 and C14 fatty acids synthesized at high ionic strength by individual fractions from the FAS peak (Sepharose 6B column) is constant across the peak. None of the soluble protein fractions is able to relieve the inhibition of FAS by phenylmethylsulfonyl fluoride. These results indicate that the FAS of D. melanogaster has the inherent capability to form C12 and C14 fatty acids and that no other soluble protein appears to be involved in their synthesis.  相似文献   

6.
Substrate specificity of condensing enzymes is a predominant factor determining the nature of fatty acyl chains synthesized by type II fatty acid synthase (FAS) enzyme complexes composed of discrete enzymes. The gene (mtKAS) encoding the condensing enzyme, beta-ketoacyl-[acyl carrier protein] (ACP) synthase (KAS), constituent of the mitochondrial FAS was cloned from Arabidopsis thaliana, and its product was purified and characterized. The mtKAS cDNA complemented the KAS II defect in the E. coli CY244 strain mutated in both fabB and fabF encoding KAS I and KAS II, respectively, demonstrating its ability to catalyze the condensation reaction in fatty acid synthesis. In vitro assays using extracts of CY244 containing all E. coli FAS components, except that KAS I and II were replaced by mtKAS, gave C(4)-C(18) fatty acids exhibiting a bimodal distribution with peaks at C(8) and C(14)-C(16). Previously observed bimodal distributions obtained using mitochondrial extracts appear attributable to the mtKAS enzyme in the extracts. Although the mtKAS sequence is most similar to that of bacterial KAS IIs, sensitivity of mtKAS to the antibiotic cerulenin resembles that of E. coli KAS I. In the first or priming condensation reaction of de novo fatty acid synthesis, purified His-tagged mtKAS efficiently utilized malonyl-ACP, but not acetyl-CoA as primer substrate. Intracellular targeting using green fluorescent protein, Western blot, and deletion analyses identified an N-terminal signal conveying mtKAS into mitochondria. Thus, mtKAS with its broad chain length specificity accomplishes all condensation steps in mitochondrial fatty acid synthesis, whereas in plastids three KAS enzymes are required.  相似文献   

7.
Lee SH  Stephens JL  Paul KS  Englund PT 《Cell》2006,126(4):691-699
All eukaryotic and prokaryotic organisms are thought to synthesize fatty acids using a type I or type II synthase. In addition, eukaryotes extend pre-existing long chain fatty acids using microsomal elongases (ELOs). We have found that Trypanosoma brucei, a eukaryotic human parasite that causes sleeping sickness, uses three elongases instead of type I or type II synthases for the synthesis of nearly all its fatty acids. Trypanosomes encounter diverse environments during their life cycle with different fatty acid requirements. The tsetse vector form requires synthesis of stearate (C18), whereas the bloodstream form needs myristate (C14). We find that trypanosome fatty acid synthesis is modular, with ELO1 converting C4 to C10, ELO2 extending C10 to C14, and ELO3 elongating C14 to C18. In blood, ELO3 downregulation favors myristate synthesis, whereas low concentrations of exogenous fatty acids in cultured parasites cause upregulation of the entire pathway, allowing the parasite to adapt to different environments.  相似文献   

8.
Fatty acid and lipoic acid biosynthesis were investigated in plant mitochondria. Although the mitochondria lack acetyl-CoA carboxylase, our experiments reveal that they contain the enzymatic equipment necessary to transform malonate into the two main building units for fatty acid synthesis: malonyl- and acetyl-acyl carrier protein (ACP). We demonstrated, by a new method based on a complementary use of high performance liquid chromatography and mass spectrometry, that the soluble mitochondrial fatty-acid synthase produces mainly three predominant acyl-ACPs as follows: octanoyl(C8)-, hexadecanoyl(C16)-, and octadecanoyl(C18)-ACP. Octanoate production is of primary interest since it has been postulated long ago to be a precursor of lipoic acid. By using a recombinant H apoprotein mutant as a potential acceptor for newly synthesized lipoic acid, we were able to detect limited amounts of lipoylated H protein in the presence of malonate, several sulfur donors, and cofactors. Finally, we present a scheme outlining the new biochemical pathway of fatty acid and lipoic acid synthesis in plant mitochondria.  相似文献   

9.
Trypanosoma brucei use microsomal elongases for de novo synthesis of most of its fatty acids. In addition, this parasite utilizes an essential mitochondrial type II synthase for production of octanoate (a lipoic acid precursor) as well as longer fatty acids such as palmitate. Evidence from other organisms suggests that mitochondrially synthesized fatty acids are required for efficient respiration but the exact relationship remains unclear. In procyclic form trypanosomes, we also found that RNAi depletion of the mitochondrial acyl carrier protein, an important component of the fatty acid synthesis machinery, significantly reduces cytochrome-mediated respiration. This reduction was explained by RNAi-mediated inhibition of respiratory complexes II, III and IV, but not complex I. Other effects of RNAi, such as changes in mitochondrial morphology and alterations in membrane potential, raised the possibility of a change in mitochondrial membrane composition. Using mass spectrometry, we observed a decrease in total and mitochondrial phosphatidylinositol and mitochondrial phosphatidylethanolamine. Thus, we conclude that the mitochondrial synthase produces fatty acids needed for maintaining local phospholipid levels that are required for activity of respiratory complexes and preservation of mitochondrial morphology and function.  相似文献   

10.
Mitochondria and fatty acids are tightly connected to a multiplicity of cellular processes that go far beyond mitochondrial fatty acid metabolism. In line with this view, there is hardly any common metabolic disorder that is not associated with disturbed mitochondrial lipid handling. Among other aspects of mitochondrial lipid metabolism, apparently all eukaryotes are capable of carrying out de novo fatty acid synthesis (FAS) in this cellular compartment in an acyl carrier protein (ACP)-dependent manner. The dual localization of FAS in eukaryotic cells raises the questions why eukaryotes have maintained the FAS in mitochondria in addition to the “classic” cytoplasmic FAS and what the products are that cannot be substituted by delivery of fatty acids of extramitochondrial origin. The current evidence indicates that mitochondrial FAS is essential for cellular respiration and mitochondrial biogenesis. Although both β-oxidation and FAS utilize thioester chemistry, CoA acts as acyl-group carrier in the breakdown pathway whereas ACP assumes this role in the synthetic direction. This arrangement metabolically separates these two pathways running towards opposite directions and prevents futile cycling. A role of this pathway in mitochondrial metabolic sensing has recently been proposed. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.  相似文献   

11.
We have cultivated the cel mutant of Neurospora crassa defective in cytosolic fatty acid synthesis with [2-14C]malonate and found radioactivity covalently attached to the mitochondrial acyl-carrier protein (ACP), a subunit of the respiratory chain NADH:ubiquinone oxidoreductase. We purified the ACP by reverse-phase HPLC: the bound acyl groups were trans-esterified to methylesters and analyzed by gas chromatography. The saturated C6 to C18 fatty acids and oleic acid were detected. De novo synthesis and desaturation of fatty acids at the ACP subunit of NADH:ubiquinone oxidoreductase and use of the products of this mitochondrial synthetic pathway for cardiolipin synthesis is discussed.  相似文献   

12.
The objective of this study was to evaluate the physiological importance of the mitochondrial fatty acid synthesis pathway in mammalian cells using the RNA interference strategy. Transfection of HEK293T cells with small interfering RNAs targeting the acyl carrier protein (ACP) component reduced ACP mRNA and protein levels by >85% within 24 h. The earliest phenotypic changes observed were a marked decrease in the proportion of post-translationally lipoylated mitochondrial proteins recognized by anti-lipoate antibodies and a reduction in their catalytic activity, and a slowing of the cell growth rate. Later effects observed included a reduction in the specific activity of respiratory complex I, lowered mitochondrial membrane potential, the development of cytoplasmic membrane blebs containing high levels of reactive oxygen species and ultimately, cell death. Supplementation of the culture medium with lipoic acid offered some protection against oxidative damage but did not reverse the protein lipoylation defect. These observations are consistent with a dual role for ACP in mammalian mitochondrial function. First, as a key component of the mitochondrial fatty acid biosynthetic pathway, ACP plays an essential role in providing the octanoyl-ACP precursor required for the protein lipoylation pathway. Second, as one of the subunits of complex I, ACP is required for the efficient functioning of the electron transport chain and maintenance of normal mitochondrial membrane potential.Eukaryotes employ two distinct systems for the synthesis of fatty acids de novo. The bulk of fatty acids destined for membrane biogenesis and energy storage are synthesized in the cytosolic compartment by megasynthases in which the component enzymes are covalently linked in very large polypeptides; this system is referred to as the type I fatty acid synthase (FAS)2 (1, 2). A second system localized in mitochondria is composed of a suite of discrete, freestanding enzymes that closely resemble their counterparts in prokaryotes (310), which are characterized as type II FASs (11). Most of the constituent enzymes of the mitochondrial fatty acid biosynthetic system have been identified and characterized in fungi and animals; all are nuclear-encoded proteins that are transported to the matrix compartment of mitochondria. Fungi with deleted mitochondrial FAS genes fail to grow on non-fermentable carbon sources, have low levels of lipoic acid and elevated levels of mitochondrial lysophospholipids (12, 13). These observations indicate that the mitochondrial FAS may serve to provide the octanoyl precursor required for the biosynthesis of lipoyl moieties de novo, as well as providing fatty acids that are utilized in remodeling of mitochondrial membrane phospholipids (14). The mitochondrial FAS system in animals is less well characterized. However, kinetic analysis of the β-ketoacyl synthase enzyme responsible for catalysis of the chain extension reaction in human mitochondria suggested that this system is uniquely engineered to produce mainly octanoyl moieties and has limited ability to form long-chain products (9). Indeed, studies with a reconstituted system from bovine heart mitochondrial matrix extracts confirmed that octanoyl moieties are the main product and are utilized for the synthesis of lipoyl moieties (15). One of the key components of the prokaryotic and mitochondrial FAS systems is a small molecular mass, freestanding protein, the ACP, that shuttles substrates and pathway intermediates to each of the component enzymes. The mitochondrial ACP is localized primarily in the matrix compartment (16), but a small fraction is integrated into complex I of the electron transport chain (1723). As is the case with many of the other 45 subunits of complex I, the role of the ACP subunit is unclear (24). To clarify the physiological importance of the mitochondrial FAS, and the mitochondrial ACP in particular, in mammalian mitochondrial function we have utilized an RNA interference strategy to knockdown the mitochondrial ACP in cultured HEK293T cells.  相似文献   

13.
Trypanosoma brucei, the causative agent of human African trypanosomiasis, possesses two fatty acid synthesis pathways: a major de novo synthesis pathway in the ER and a mitochondrial pathway. The 2-carbon donor for both pathways is malonyl-CoA, which is synthesized from acetyl-CoA by Acetyl-CoA carboxylase (ACC). Here, we show that T. brucei ACC shares the same enzyme architecture and moderate ~ 30% identity with yeast and human ACCs. ACC is cytoplasmic and appears to be distributed throughout the cell in numerous puncta distinct from glycosomes and other organelles. ACC is active in both bloodstream and procyclic forms. Reduction of ACC activity by RNA interference (RNAi) resulted in a stage-specific phenotype. In procyclic forms, ACC RNAi resulted in 50-75% reduction in fatty acid elongation and a 64% reduction in growth in low-lipid media. In bloodstream forms, ACC RNAi resulted in a minor 15% decrease in fatty acid elongation and no growth defect in culture, even in low-lipid media. However, ACC RNAi did attenuate virulence in a mouse model of infection. Thus the requirement for ACC in T. brucei is dependent upon the growth environment in two different life cycle stages.  相似文献   

14.
Glucagon and N,(6)O(2)-dibutyryl cyclic adenosine 3',5'-cyclic monophosphate (Bt(2)cAMP) inhibit fatty acid synthesis from acetate by more than 90% and prevent citrate formation in chick hepatocytes metabolizing glucose. With substrates that enter glycolysis at or below triose-phosphates, e.g., fructose, lactate, or pyruvate, Bt(2)cAMP has no effect on the citrate level and its inhibitory effect on fatty acid synthesis is substantially reversed. Because acetyl-CoA carboxylase requires a tricarboxylic acid activator for activity, it is proposed that regulation of fatty acid synthesis by Bt(2)cAMP is due, in part, to changes in the citrate level. Reduced citrate formation appears to result from a cAMP-induced inhibition of glycolysis. Bt(2)cAMP inhibits (14)CO(2) production from [1-(14)C]-, [6-(14)C]-, and [U-(14)C]glucose and has little effect on (14)CO(2) formation from [1-(14)C]- or [2-(14)C]pyruvate or from [1-(14)C]fructose. [(14)C]Lactate formation from glucose is depressed 50% by Bt(2)cAMP. In the presence of an inhibitor of mitochondrial pyruvate transport lactate accumulation is enhanced, but continues to be lowered 50% by Bt(2)cAMP. The activity of phosphofructokinase is greatly decreased in Bt(2)cAMP-treated cells while the activities of pyruvate kinase and acetyl-CoA carboxylase are unaffected. It appears that decreased glycolytic flux and decreased citrate formation result from depressed phosphofructokinase activity. Fatty acid synthesis from [(14)C]acetate is partially inhibited by Bt(2)cAMP in the presence of fructose, lactate, and pyruvate despite a high citrate level. Incorporation of [(14)C]fructose, [(14)C]pyruvate, or [(14)C]lactate into fatty acids is similarly depressed by Bt(2)cAMP. Synthesis of cholesterol from [(14)C]acetate or [2-(14)C]pyruvate is unaffected by Bt(2)cAMP. These results implicate a second site of inhibition of fatty acid synthesis by Bt(2)cAMP that involves the utilization, but not the production, of cytoplasmic acetyl-CoA.-Clarke, S. D., P. A. Watkins, and M. D. Lane. Acute control of fatty acid synthesis by cyclic AMP in the chick liver cell: possible site of inhibition of citrate formation.  相似文献   

15.
Distinct metabolic pathways can intersect in ways that allow hierarchical or reciprocal regulation. In a screen of respiration-deficient Saccharomyces cerevisiae gene deletion strains for defects in mitochondrial RNA processing, we found that lack of any enzyme in the mitochondrial fatty acid type II biosynthetic pathway (FAS II) led to inefficient 5′ processing of mitochondrial precursor tRNAs by RNase P. In particular, the precursor containing both RNase P RNA (RPM1) and tRNAPro accumulated dramatically. Subsequent Pet127-driven 5′ processing of RPM1 was blocked. The FAS II pathway defects resulted in the loss of lipoic acid attachment to subunits of three key mitochondrial enzymes, which suggests that the octanoic acid produced by the pathway is the sole precursor for lipoic acid synthesis and attachment. The protein component of yeast mitochondrial RNase P, Rpm2, is not modified by lipoic acid in the wild-type strain, and it is imported in FAS II mutant strains. Thus, a product of the FAS II pathway is required for RNase P RNA maturation, which positively affects RNase P activity. In addition, a product is required for lipoic acid production, which is needed for the activity of pyruvate dehydrogenase, which feeds acetyl-coenzyme A into the FAS II pathway. These two positive feedback cycles may provide switch-like control of mitochondrial gene expression in response to the metabolic state of the cell.  相似文献   

16.
Florova G  Kazanina G  Reynolds KA 《Biochemistry》2002,41(33):10462-10471
Malonyl acyl carrier protein (ACP) is used as an extender unit in each of the elongation steps catalyzed by the type II dissociated fatty acid synthase (FAS) and polyketide synthase (PKS) of Streptomyces glaucescens. Initiation of straight-chain fatty acid biosynthesis by the type II FAS involves a direct condensation of acetyl-CoA with this malonyl-ACP to generate a 3-ketobutyryl-ACP product and is catalyzed by FabH. In vitro experiments with a reconstituted type II PKS system in the absence of FabH have previously shown that the acetyl-ACP (generated by decarboxylation of malonyl-ACP), not acetyl-CoA, is used to initiate tetracenomycin C (TCM C) biosynthesis. We have shown that sgFabH activity is present in S. glaucescens fermentations during TCM C production, suggesting that it could contribute to initiation of TCM C biosynthesis in vivo. Isotope incorporation studies with [CD3]acetate and [13CD3]acetate demonstrated significant intact retention of three deuteriums into the starter unit of palmitate and complete washout of deuterium label into the starter unit of TCM C. These observations provide evidence that acetyl-CoA is not used directly as a starter unit for TCM C biosynthesis in vivo and argue against an involvement of FabH in this process. Consistent with this conclusion, assays of the purified recombinant sgFabH with acetyl-CoA demonstrated activity using malonyl-ACP generated from either FabC (the S. glaucescens FAS ACP) (k(cat) 42.2 min(-1), K(m) 4.5 +/- 0.3 microM) or AcpP (the E. coli FAS ACP) (k(cat) 7.5 min(-1), K(m) 6.3 +/- 0.3 microM) but not TcmM (the S. glaucescens PKS ACP). In contrast, the sgFabD which catalyzes conversion of malonyl-CoA to malonyl-ACP for fatty acid biosynthesis was shown to be active with TcmM (k(cat) 150 min(-1), K(m) 12.2 +/- 1.2 microM), AcpP (k(cat) 141 min(-1), K(m) 13.2 +/- 1.6 microM), and FabC (k(cat) 560 min(-1), K(m) 12.7 +/- 2.6 microM). This enzyme was shown to be present during TCM C production and could play a role in generating malonyl-ACP for both processes. Previous demonstrations that the purified PKS ACPs catalyze self-malonylation and that a FabD activity is not required for polyketide biosynthesis are shown to be an artifact of the expression and purification protocols. The relaxed ACP specificity of FabD and the lack of a clear alternative are consistent with a role of FabD in providing malonyl-ACP precursors for PKS as well as FAS processes. In contrast, the ACP specificity of FabH, isotope labeling studies, and a demonstrated alternative mechanism for initiation of the PKS process provide unequivocal evidence that FabH is involved only in the FAS process.  相似文献   

17.
Bacillus subtilis synthesizes, almost exclusively, saturated fatty acids, when grown at 37° C. When cultures were transferred from 37° C to 20° C, a chloramphenicol- and rifampicin-sensitive synthesis of a C-16 unsaturated fatty acid was observed. Synthesis of this compound reached a plateau after 5 h at 20° C, reaching levels of 20% of the total fatty acid content. [14C]-labelled fatty acids attached as thioesters to acyl-carriers compounds, such as coenzyme A (CoA) or acyl-carrier protein (ACP) synthesized de novo by glycerol-requiring auxotrophs deprived of glycerol to arrest phospholipid synthesis, could not be desaturated at 20° C. Desaturation of these fatty acids was readily observed when glycerol was restored to the cultures allowing resumption of transfer of acyl-moieties from acyl-thioesters to phospholipid. It was also observed that depletion of the pools of CoA and ACP by starvation of pantothenate auxotrophs had no effect on the observed synthesis of unsaturated fatty acid at 20° C. The overall results indicate that synthesis of unsaturated fatty acids in B. subtilis is a cold-inducible process and that phospholipids are obligate intermediates in this fatty acid desaturation pathway.  相似文献   

18.
Two distinct ways of organizing fatty acid biosynthesis exist: the multifunctional type I fatty acid synthase (FAS) of mammals, fungi, and lower eukaryotes with activities residing on one or two polypeptides; and the dissociated type II FAS of prokaryotes, plastids, and mitochondria with individual activities encoded by discrete genes. The beta-ketoacyl [ACP] synthase (KAS) moiety of the mitochondrial FAS (mtKAS) is targeted by the antibiotic cerulenin and possibly by the other antibiotics inhibiting prokaryotic KASes: thiolactomycin, platensimycin, and the alpha-methylene butyrolactone, C75. The high degree of structural similarity between mitochondrial and prokaryotic KASes complicates development of novel antibiotics targeting prokaryotic KAS without affecting KAS domains of cytoplasmic FAS. KASes catalyze the C(2) fatty acid elongation reaction using either a Cys-His-His or Cys-His-Asn catalytic triad. Three KASes with different substrate specificities participate in synthesis of the C(16) and C(18) products of prokaryotic FAS. By comparison, mtKAS carries out all elongation reactions in the mitochondria. We present the X-ray crystal structures of the Cys-His-His-containing human mtKAS and its hexanoyl complex plus the hexanoyl complex of the plant mtKAS from Arabidopsis thaliana. The structures explain (1) the bimodal (C(6) and C(10)-C(12)) substrate preferences leading to the C(8) lipoic acid precursor and long chains for the membranes, respectively, and (2) the low cerulenin sensitivity of the human enzyme; and (3) reveal two different potential acyl-binding-pocket extensions. Rearrangements taking place in the active site, including subtle changes in the water network, indicate a change in cooperativity of the active-site histidines upon primer binding.  相似文献   

19.
Fatty acid synthase (FAS) is a multifunctional homodimeric protein, and is the key enzyme required for the anabolic conversion of dietary carbohydrates to fatty acids. FAS synthesizes long-chain fatty acids from three substrates: acetyl-CoA as a primer, malonyl-CoA as a 2 carbon donor, and NADPH for reduction. The entire reaction is composed of numerous sequential steps, each catalyzed by a specific functional domain of the enzyme. FAS comprises seven different functional domains, among which the β-ketoacyl synthase (KS) domain carries out the key condensation reaction to elongate the length of fatty acid chain. Acyl tail length controlled fatty acid synthesis in eukaryotes is a classic example of how a chain building multienzyme works. Different hypotheses have been put forward to explain how those sub-units of FAS are orchestrated to produce fatty acids with proper molecular weight. In the present study, molecular dynamic simulation based binding free energy calculation and access tunnels analysis showed that the C16 acyl tail fatty acid, the major product of FAS, fits to the active site on KS domain better than any other substrates. These simulations supported a new hypothesis about the mechanism of fatty acid production ratio: the geometric shape of active site on KS domain might play a determinate role.  相似文献   

20.
We identified the fatty acid synthesis (FAS) initiation enzyme in Pseudomonas aeruginosa as FabY, a β-ketoacyl synthase KASI/II domain-containing enzyme that condenses acetyl coenzyme A (acetyl-CoA) with malonyl-acyl carrier protein (ACP) to make the FAS primer β-acetoacetyl-ACP in the accompanying article (Y. Yuan, M. Sachdeva, J. A. Leeds, and T. C. Meredith, J. Bacteriol. 194:5171-5184, 2012). Herein, we show that growth defects stemming from deletion of fabY can be suppressed by supplementation of the growth media with exogenous decanoate fatty acid, suggesting a compensatory mechanism. Fatty acids eight carbons or longer rescue growth by generating acyl coenzyme A (acyl-CoA) thioester β-oxidation degradation intermediates that are shunted into FAS downstream of FabY. Using a set of perdeuterated fatty acid feeding experiments, we show that the open reading frame PA3286 in P. aeruginosa PAO1 intercepts C(8)-CoA by condensation with malonyl-ACP to make the FAS intermediate β-keto decanoyl-ACP. This key intermediate can then be extended to supply all of the cellular fatty acid needs, including both unsaturated and saturated fatty acids, along with the 3-hydroxyl fatty acid acyl groups of lipopolysaccharide. Heterologous PA3286 expression in Escherichia coli likewise established the fatty acid shunt, and characterization of recombinant β-keto acyl synthase enzyme activity confirmed in vitro substrate specificity for medium-chain-length acyl CoA thioester acceptors. The potential for the PA3286 shunt in P. aeruginosa to curtail the efficacy of inhibitors targeting FabY, an enzyme required for FAS initiation in the absence of exogenous fatty acids, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号