首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CAP-50, a calcyclin-associated protein with an apparent molecular mass of 50 kDa, was purified and proved to be a novel annexin [Tokumitsu, H. et al. (1992) J. Biol. Chem. 267, 8919-8924]. We examined the binding of CAP-50 to other Ca(2+)-binding proteins which have two of four EF-hand structures, by a co-precipitation assay with phospholipid (phosphatidylserine). Among nine Ca(2+)-binding proteins (calcyclin, S-100 proteins, p11, calgizzarin, calvasculin, calmodulin and troponin C) examined, only calcyclin interacted with CAP-50. These results clearly show that the interaction of CAP-50 to calcyclin is specific, i.e. other Ca(2+)-binding proteins with the EF-hand structure could not substitute for calcyclin, thereby suggesting the possible role in specific regulation of the function of CAP-50 by Ca2+/calcyclin.  相似文献   

2.
CAP-50 is a member of annexin family proteins which binds specifically to calcyclin in a Ca2+ dependent manner (Tokumitsu. H., Mizutani. A., Minami. H., Kobayashi. R., and Hidaka. H. (1992) J. Biol. Chem. 267,8919-8924). The cDNA representing the rabbit form of this protein has been cloned from rabbit lung cDNA library. Sequence analysis of two overlapping clones revealed a 81-nucleotides 5'-nontranslated region, 1512-nucleotides of open reading frame, a 672-nucleotides 3'-nontranslated region, and a poly(A) tail. Authenticity of the clones was confirmed by comparison of portions of the deduced amino acid sequence with eight sequences of proteolytic peptides obtained from rabbit lung protein. CAP-50 cDNA encodes a 503 residue protein with a calculated M(r) of 54,043 and shows that the protein is composed of four imperfect repeats and hydrophobic N-terminal region. C-terminal region including four imperfect repeats shows 58.1% identity with human synexin (annexin VII), 48.0% identity with annexin I, 47.4% identity with annexin II, 60.1% identity with annexin IV, 54.5% identity with annexin V. Hydrophobic N-terminal region composed of 202 amino acid residues is not homologous with other annexin proteins suggesting that CAP-50 is a novel member of annexin family proteins.  相似文献   

3.
Using Ca(2+)-dependent affinity chromatography on a synthetic compound (W-77)-coupled Sepharose 4B column, we purified two different Ca(2+)-binding proteins from rabbit lung extracts. The molecular weights of these proteins were estimated to be 17 kDa (calmodulin) and 10 kDa, respectively. The partial amino acid sequence of the 10-kDa protein revealed that it has two EF-hand structures. In addition, the 10-kDa protein was highly homologous (91%) to the product of growth-regulated gene, 2A9 (calcyclin). The Ca(2+)-binding property of the 10-kDa protein was observed by a change in the uv difference spectrum. Equilibrium dialysis showed that 1 mol of the 10-kDa protein bound to 2.04 +/- 0.05 mol of Ca2+ in the presence of 10(-4) M Ca2+. However, the protein failed to activate calmodulin-dependent enzymes such as Ca2+/CaM kinase II, myosin light chain kinase, and phosphodiesterase. We found that a 50-kDa cytosolic protein of the rabbit lung, intestine, and spleen bound to the 10-kDa protein, in a Ca(2+)-dependent manner. The distribution of calcyclin and calcyclin binding proteins was unique and seems to differ from that of calmodulin and calmodulin-binding proteins. Thus, calcyclin probably plays a physiological role through its binding proteins for the Ca(2+)-dependent cellular response.  相似文献   

4.
A 50-kDa protein, which binds to the growth-regulated gene (2A9) product, calcyclin in a calcium-dependent manner, was purified from bovine lung. Partial amino acid sequencing of the protein revealed it to be the bovine equivalent of rabbit lung CAP-50 (calcyclin-associated protein, 50 kDa), which is a member of the annexin family and binds to calcyclin in a calcium-dependent manner. Specific polyclonal antibodies to bovine lung CAP-50 were prepared. Comparative studies between CAP-50 and synexin (annexin VII) on the immunoreactivity against anti-CAP-50 antibodies and the ability of binding to calcyclin revealed that CAP-50 was a distinct molecule from synexin. Using specific polyclonal antibodies to bovine lung CAP-50, tissue distribution and subcellular distribution of CAP-50 were investigated. In most rat tissues, except those in the central nervous systems and kidney, CAP-50 is expressed at a high or moderate level. Both studies by subcellular fractionation and by indirect immunofluorescence staining of the rat embryonic fibroblast cell line, 3Y1, revealed that CAP-50 mainly localized in nuclei. Moreover, between the cells at interphase and at mitotic phase, different distributions of CAP-50 were observed. That is, in the cells at interphase, CAP-50 seemed to localize throughout the nucleoplasm. On the other hand, in the cells during mitosis, CAP-50 was concentrated at the loop-like structure around the mitotic apparatus. CAP-50 was found in isolated 3Y1 nuclei lacking outer nuclear membranes, and approximately 50% of CAP-50 was extracted from the nuclei by chelating calcium. Thus, CAP-50, a unique annexin, localizes in nuclei.  相似文献   

5.
Ca(2+)-dependent carbohydrate-binding proteins were purified from bovine kidney extracts. Upon SDS-polyacrylamide gel electrophoresis under nonreducing conditions, the purified fraction gave doublet protein bands corresponding to 33 kDa (p33) and 41 kDa (p41). Under reducing conditions, a single protein band (p33) was observed. p33 and p41 were submitted to proteolytic digestion with endoproteinase Lys-C, the peptides produced were separated by reversed-phase high performance liquid chromatography, and their amino acid sequences were determined by an automated gas-phase protein sequenator. Most of the resulting partial amino acid sequences of these proteins were strikingly homologous to annexin IV, an annexin family protein, i.e. Ca2+/phospholipid-binding proteins, especially in the consensus sequences. In the presence of Ca2+, both proteins bound to vesicles composed of phosphatidylserine and phosphatidylethanolamine, but not phosphatidylcholine. These results indicated that p33 and p41 are members of annexin family proteins.  相似文献   

6.
Ca(2+)-dependent annexin self-association on membrane surfaces   总被引:3,自引:0,他引:3  
W J Zaks  C E Creutz 《Biochemistry》1991,30(40):9607-9615
Annexin self-association was studied with 90 degrees light scattering and resonance energy transfer between fluorescein (donor) and eosin (acceptor) labeled proteins. Synexin (annexin VII), p32 (annexin IV), and p67 (annexin VI) self-associated in a Ca(2+)-dependent manner in solution. However, this activity was quite labile and, especially for p32 and p67, was not consistently observed. When bound to chromaffin granule membranes, the three proteins consistently self-associated and did so at Ca2+ levels (pCa 5.0-4.5) approximately 10-fold lower than required when in solution. Phospholipid vesicles containing phosphatidylserine and phosphatidylethanolamine (1:1 or 1:3) were less effective at supporting annexin polymerization than were those containing phosphatidylserine and phosphatidylcholine (1:0, 1:1, or 1:3). The annexins bound chromaffin granule membranes in a positively cooperative manner under conditions where annexin self-association was observed, and both phenomena were inhibited by trifluoperazine. Ca(2+)-dependent chromaffin granule membrane aggregation, induced by p32 or synexin, was associated with intermembrane annexin polymerization at Ca2+ levels less than pCa 4, but not at higher Ca2+ concentrations, suggesting that annexin self-association may be necessary for membrane contact at low Ca2+ levels but not at higher Ca2+ levels where the protein may bind two membranes as a monomer.  相似文献   

7.
Calcyclin is a homodimeric protein belonging to the S100 subfamily of EF-hand Ca(2+)-binding proteins, which function in Ca(2+) signal transduction processes. A refined high-resolution solution structure of Ca(2+)-bound rabbit calcyclin has been determined by heteronuclear solution NMR. In order to understand the Ca(2+)-induced structural changes in S100 proteins, in-depth comparative structural analyses were used to compare the apo and Ca(2+)-bound states of calcyclin, the closely related S100B, and the prototypical Ca(2+)-sensor protein calmodulin. Upon Ca(2+) binding, the position and orientation of helix III in the second EF-hand is altered, whereas the rest of the protein, including the dimer interface, remains virtually unchanged. This Ca(2+)-induced structural change is much less drastic than the "opening" of the globular EF-hand domains that occurs in classical Ca(2+) sensors, such as calmodulin. Using homology models of calcyclin based on S100B, a binding site in calcyclin has been proposed for the N-terminal domain of annexin XI and the C-terminal domain of the neuronal calcyclin-binding protein. The structural basis for the specificity of S100 proteins is discussed in terms of the variation in sequence of critical contact residues in the common S100 target-binding site.  相似文献   

8.
Human placental anticoagulant protein-I (PAP-I) is a member of the lipocortin/calpactin/annexin family of Ca2+-dependent phospholipid binding proteins. PAP-I was labeled with fluorescein 5-isothiocyanate (1 mol/mol); this derivative had anticoagulant activity identical to the unlabeled protein and could be used to measure Ca2+-dependent binding to phospholipid vesicles through changes in fluorescence quenching. At 1.2 mM Ca2+, 0.50 M ionic strength, pH 7.4, 25 degrees C, fluorescein-labeled PAP-I bound to phospholipid vesicles containing 80% phosphatidylcholine, 20% phosphatidylserine with a Kd of 1.2 +/- 0.2 nM (mean +/- S.D.). At an ionic strength of 0.15 M, the Kd decreased to less than 0.1 nM. Prothrombin and factor Xa both competed with fluorescein-labeled PAP-I for binding to anionic phospholipid vesicles, but with affinities at least 1000-fold weaker than PAP-I. PAP-I bound only weakly (Kd greater than 2 x 10(-5) M) to neutral or anionic phospholipid monomers, and this binding was not calcium-dependent. These results show that the affinity of PAP-I for anionic phospholipid surfaces is sufficient to explain its potency as an in vitro anticoagulant.  相似文献   

9.
Annexin II tetramer (A-IIt) is a member of the annexin family of Ca2+ and phospholipid-binding proteins. The ability of this protein to aggregate both phospholipid vesicles and chromaffin granules has suggested a role for the protein in membrane trafficking events such as exocytosis. A-IIt is also a major intracellular substrate of both pp60src and protein kinase C; however, the effect of phosphorylation on the activity of this protein is unknown. In the current report we have examined the effect of phosphorylation on the lipid vesicle aggregation activity of the protein. Protein kinase C catalyzed the incorporation of 2.1 +/- 0.8 mol of phosphate/mol of A-IIt. Phosphorylation of A-IIt caused a dramatic decrease in the rate and extent of lipid vesicle aggregation without significantly effecting Ca(2+)-dependent lipid binding by the phosphorylated protein. Phosphorylation of A-IIt increased the A50%(Ca2+) of lipid vesicle aggregation from 0.18 microM to 0.65 mM. Activation of A-IIt phosphorylation, concomitant with activation of lipid vesicle aggregation, inhibited both the rate and extent of lipid vesicle aggregation but did not cause disassembly of the aggregated lipid vesicles. These results suggest that protein kinase C-dependent phosphorylation of A-IIt blocks the ability of the protein to aggregate phospholipid vesicles without affecting the lipid vesicle binding properties of the protein.  相似文献   

10.
To identify lung lamellar body (LB)-binding proteins, the fractions binding to LB-Sepharose 4B in a Ca(2+)-dependent manner from the lung soluble fractions were analyzed with Mono Q column. Four annexins (annexins III, IV, V, and VIII) were identified by partial amino acid sequence analyses as the LB-binding proteins in the lung soluble fractions. A control experiment using phospholipid (phosphatidylserine/phosphatidylglycerol/phosphtidylcholine) liposome-Sepharose 4B revealed that annexins III, IV and V were the Ca(2+)-dependent proteins binding to the column in the lung soluble fractions, while annexin VIII was not detected. Thus, annexin VIII might preferentially bind to LB. On the other hand, the only Ca(2+)-dependent LB-binding protein identified in the bronchoalveolar lavage fluids was annexin V. It was further demonstrated that annexin V was secreted by isolated alveolar type II cells from rats and that the secretion was stimulated by the addition of phorbol ester (PMA), a potent stimulator of surfactant secretion. The PMA-dependent stimulation of annexin V was attenuated by preincubation with surfactant protein-A (SP-A), a potent inhibitor of surfactant secretion. As LB is thought to be an intracellular store of pulmonary surfactant, which is secreted by alveolar type II cells, annexin V is likely to be secreted together with the lamellar body.  相似文献   

11.
Annexins belong to a family of lipid-binding proteins that are implicated in membrane organization. Several members are capable of binding to actin and, in smooth muscle cells, annexin 6 is known to form a Ca(2+)-dependent, plasmalemmal complex with actin filaments. Annexins can also associate with F-actin containing stress fibres within cultured smooth muscle cells or fibroblasts in a Ca(2+)-independent manner. Depolymerization of stress-fibre systems with cytochalasin D leads to the translocation of actin-bound annexin 2 from the cytoplasm to the plasma membrane at high intracellular levels of Ca(2+). This type of Ca(2+)-dependent annexin mobility is observed only in cells of mesenchymal phenotype, which have a well-developed stress-fibre system; not in epithelial cells.  相似文献   

12.
The annexin sets in cell-free homogenates and membranes of rabbit skeletal and heart muscles, liver, kidney, lung, and brain, have been compared by one- and two-dimensional electrophoresis. The pIs and M(r)s of the proteins identified have been determined. The data on two-dimensional electrophoresis of annexins from different animals have been systematized. Simple graphs are proposed which allow to identify annexins on electrophoregrams. The technique has definite potentialities in recognition of some unidentified Ca(2+)-dependent membrane-binding proteins and may be used to predict the trend of search for novel members of the annexin family.  相似文献   

13.
The nearly complete amino acid sequence obtained for murine calcyclin from Ehrlich ascites tumor cells reveals a very strong similarity with the rat and human sequences previously deduced from corresponding cDNA clones. While mouse and rat calcyclins are identical, the human protein shows at three positions a conservative amino acid replacement. Using a mouse calcyclin affinity matrix, two proteins with molecular masses of about 36 kDa have been purified from Ehrlich ascites tumor cells. The interaction between these two proteins and the immobilized calcyclin is strictly Ca2(+)-dependent. Immunological criteria and partial sequence data identify the two calcyclin-binding proteins as the phospholipid-binding protein annexin II (p36) and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase. These observations suggest that calcyclin may exert its physiological function by a Ca2(+)-dependent interaction with cellular targets, e.g. annexin II or glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

14.
Annexin 2 is a member of the annexin family which has been implicated in calcium-regulated exocytosis. This contention is largely based on Ca(2+)-dependent binding of the protein to anionic phospholipids. However, annexin 2 was shown to be associated with chromaffin granules in the presence of EGTA. A fraction of this bound annexin 2 was released by methyl-beta-cyclodextrin, a reagent which depletes cholesterol from membranes. Restoration of the cholesterol content of chromaffin granule membranes with cholesterol/methyl-beta-cyclodextrin complexes restored the Ca(2+)-independent binding of annexin 2. The binding of both, monomeric and tetrameric forms of annexin 2 was also tested on liposomes of different composition. In the absence of Ca(2+), annexin 2, especially in its tetrameric form, bound to liposomes containing phosphatidylserine, and the addition of cholesterol to these liposomes increased the binding. Consistent with this observation, liposomes containing phosphatidylserine and cholesterol were aggregated by the tetrameric form of annexin 2 at submicromolar Ca(2+) concentrations. These results indicate that the lipid composition of membranes, and especially their cholesterol content, is important in the control of the subcellular localization of annexin 2 in resting cells, at low Ca(2+) concentration. Annexin 2 might be associated with membrane domains enriched in phosphatidylserine and cholesterol.  相似文献   

15.
Annexin A7 (synexin, annexin VII), a member of the annexin family of proteins, causes aggregation of membranes in a Ca2+-dependent manner and has been suggested to promote membrane fusion during exocytosis of lung surfactant, catecholamines, and insulin. Although annexin A7 (A7) was one of the first annexin proteins described, limited studies of its physical characteristics or of structural domains affecting any of its proposed functions have been conducted. As postulated for other annexin proteins, the unique NH2-domain possibly determines the functional specificity of A7. Therefore, we evaluated the effects of segmental deletions in the NH2-terminus on several characteristics associated with the COOH-terminus of A7. The COOH-terminus contains the only tryptophan residue, and all potential trypsin sites, and the Ca2+ and phospholipid binding sites. Recombinant rat A7 and its deletion mutants were expressed using constructs based on the cDNA sequence obtained by screening a rat lung cDNA library. Ca2+ increased the tryptophan fluorescence of A7 and caused a small red shift in the emission maximum (lambdamax), which was further increased in presence of phospholipid vesicles (PLV). NH2-terminal deletions of 29, 51, and 109 residues affected the peak width of fluorescence and lambdamax, surface-exposure of tryptophan residue, and caused a smaller Ca2+-dependent red shift in lambdamax of membrane-bound protein in comparison to A7. Limited proteolysis with trypsin showed that Ca2+ increased the proteolysis of all proteins, but the deletions also affected the pattern of proteolysis. The presence of PLV protected against Ca2+-dependent increase in proteolysis of all proteins. The deletion of first 29 residues also caused decreased membrane binding, aggregation, and fusion, when compared with A7. Collectively, these results suggest that specific NH2-terminus domains can alter those properties of A7 that are normally associated with the COOH-terminus. We speculate that interactions between the NH2- and COOH-termini are required for membrane binding, and aggregation and fusion properties of annexin A7.  相似文献   

16.
Chow A  Davis AJ  Gawler DJ 《FEBS letters》2000,469(1):88-92
p120(GAP) (RasGAP) has been proposed to function as both an inhibitor and effector of Ras. Previously we have shown that RasGAP contains a C2 domain which mediates both Ca(2+)-dependent membrane association and protein-protein interactions. Specifically, three proteins have been isolated in a complex with the C2 domain of RasGAP; these are the Ca(2+)-dependent lipid binding protein annexin VI (p70) and two previously unidentified proteins, p55 and p120. Here we provide evidence that p55 is the Src family kinase Fyn and p120 is the focal adhesion kinase family member Pyk2. In addition, in vitro binding assays indicate that Fyn, but not Pyk2 binds directly to annexin VI. Finally, co-immunoprecipitation studies in Rat-1 fibroblasts confirm that Fyn, Pyk2, annexin VI and RasGAP can form a protein complex in mammalian cells.  相似文献   

17.
The functional hallmark of annexins is the ability to bind to the surface of phospholipid membranes in a reversible, Ca(2+)-dependent manner. We now report that human annexin V and hydra annexin XII reversibly bound to phospholipid vesicles in the absence of Ca(2+) at low pH; half-maximal vesicle association occurred at pH 5.3 and 5. 8, respectively. The following biochemical data support the hypothesis that these annexins insert into bilayers at mildly acidic pH. First, a photoactivatable reagent (3-trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine) which selectively labels proteins exposed to the hydrophobic domain of bilayers reacted with these annexins at pH 5.0 and below but not at neutral pH. Second, in a Triton X-114 partitioning assay, annexins V and XII act as integral membrane proteins at low pH and as hydrophilic proteins at neutral pH; in the presence of phospholipids half-maximal partitioning into detergent occurred at pH approximately 5.0. Finally, annexin V or XII formed single channels in phospholipid bilayers at low pH but not at neutral pH. A model is discussed in which the concentrations of H(+) and Ca(2+) regulate the reversible conversion of three forms of annexins-soluble, peripheral membrane, and transmembrane.  相似文献   

18.
The hallmark of the annexin super family of proteins is Ca(2+)-dependent binding to phospholipid bilayers, a property that resides in the conserved core domain of these proteins. Despite the structural similarity between the core domains, studies reported herein showed that annexins A1, A2, A5, and B12 could be divided into two groups with distinctively different Ca(2+)-dependent membrane-binding properties. The division correlates with the ability of the annexins to form Ca(2+)-dependent membrane-bound trimers. Site-directed spin-labeling and Forster resonance energy transfer experimental approaches confirmed the well-known ability of annexins A5 and B12 to form trimers, but neither method detected self-association of annexin A1 or A2 on bilayers. Studies of chimeras in which the N-terminal and core domains of annexins A2 and A5 were swapped showed that trimer formation was mediated by the core domain. The trimer-forming annexin A5 and B12 group had the following Ca(2+)-dependent membrane-binding properties: (1) high Ca(2+) stoichiometry for membrane binding ( approximately 12 mol of Ca(2+)/mol of protein); (2) binding to membranes was very exothermic (> -60 kcal/ mol of protein); and (3) binding to bilayers that were in the liquid-crystal phase but not to bilayers in the gel phase. In contrast, the nontrimer-forming annexin A1 and A2 group had the following Ca(2+)-dependent membrane-binding properties: (1) lower Ca(2+) stoichiometry for membrane binding (相似文献   

19.
Synaptotagmins constitute a family of membrane proteins that are characterized by one transmembrane region and two C2 domains. Recent genetic and biochemical studies have indicated that oligomerization of synaptotagmin (Syt) I is important for expression of function during exocytosis of synaptic vesicles. However, little is known about hetero-oligomerization in the synaptotagmin family. In this study, we showed that the synaptotagmin family is a type I membrane protein (N(lumen)/C(cytoplasm)) by introducing an artificial N-glycosylation site at the N-terminal domain, and systematically examined all the possible combinations of hetero-oligomerization among synaptotagmin family proteins (Syts I-XI). We classified the synaptotagmin family into four distinct groups based on differences in Ca(2+)-dependent and -independent oligomerization activity. Group A Syts (III, V, VI, and X) form strong homo- and hetero-oligomers by disulfide bonds at an N-terminal cysteine motif irrespective of the presence of Ca(2+) [Fukuda, M., Kanno, E., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 31421-31427]. Group B Syts (I, II, VIII, and XI) show moderate homo-oligomerization irrespective of the presence of Ca(2+). Group C synaptotagmins are characterized by weak Ca(2+)-dependent (Syts IX) or no homo-oligomerization activity (Syt IV). Syt VII (Group D) has unique Ca(2+)-dependent homo-oligomerization properties with EC(50) values of about 150 microM Ca(2+) [Fukuda, M., and Mikoshiba, K. (2000) J. Biol. Chem. 275, 28180-28185]. Syts IV, VIII, and XI did not show any apparent hetero-oligomerization activity, but some sets of synaptotagmin isoforms can hetero-oligomerize in a Ca(2+)-dependent and/or -independent manner. Our data suggest that Ca(2+)-dependent and -independent hetero-oligomerization of synaptotagmins may create a variety of Ca(2+)-sensors.  相似文献   

20.
The distribution of annexin V isoforms (CaBP33 and CaBP37) and of annexin VI in bovine lung, heart, and brain subfractions was investigated with special reference to the fractions of these proteins which are membrane-bound. In addition to EGTA-extractable pools of the above proteins, membranes from lung, heart, and brain contain EGTA-resistant annexins V and VI which can be solubilized with detergents (Triton X-100 or Triton X-114). A strong base like Na2CO3, which is usually effective in extracting membrane proteins, only partially solubilizes the membrane-bound, EGTA-resistant annexins analyzed here. Also, only 50-60% of the Triton X-114-soluble annexins partition in the aqueous phase, the remaining fractions being recovered in the detergent-rich phase. Altogether, these findings suggest that, by an as yet unknown mechanism, following Ca(2+)-dependent association of annexin V isoforms and annexin VI with membranes, substantial fractions of these proteins remain bound to membranes in a Ca(2+)-independent way and behave like integral membrane proteins. These results further support the possibility that the above annexins might play a role in membrane trafficking and/or in the regulation of the structural organization of membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号