首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship of hepatic ornithine decarboxylase (ODC) activity to cyclic AMP levels and nutritional status was studied in the pre-weanling rat. Previous studies demonstrated that 2 hr without food causes a loss of hepatic ODC induction after glucagon or catecholamine injection. Isoproterenol or glucagon administration produced increased hepatic cyclic AMP and tyrosine aminotransferase activity which were not prevented by nutritional deprivation. Blockade of hepatic beta 2 receptors by the selective antagonist ICI 118,551 prevented increased cAMP levels and ODC activity after isoproterenol administration. Blockade of beta 1 receptors by atenolol did not prevent increased cAMP levels or ODC induction by isoproterenol although it did block activation of cardiac ODC. The phosphodiesterase inhibitor RO20-1724 increased hepatic cAMP levels as well as ODC and TAT activities, although the increase in ODC activity was attenuated by nutritional deprivation. RO20-1724 also potentiated the induction of hepatic ODC after glucagon or isoproterenol administration. Administration of 8-bromo cAMP elevated hepatic ODC activity regardless of nutritional status but also elevated serum levels of growth hormone and corticosterone. Hepatic ODC induction by glucagon or beta 2 agonists can be dissociated from changes in cAMP levels during nutritional deprivation.  相似文献   

2.
The effects of the alpha 1-adrenergic agonist methoxamine and the alpha 2-adrenergic agonist clonidine on isoproterenol stimulated adenylate cyclase activity were examined in plasma membranes prepared from female human subcutaneous adipose tissue. It was found that in the presence of 10 microM GTP and 100 mM NaCl increasing concentrations of both agonists inhibited basal and isoproterenol-stimulated adenylate cyclase activity. The inhibitory action of 5 x 10(-7) M clonidine could not be overcome by increasing concentrations of isoproterenol. These results suggest both alpha 1- and alpha 2-adrenergic agonists inhibit beta-agonist-stimulated adenylate cyclase activity in human adipose tissue.  相似文献   

3.
4.
An acute treatment of mice with clenbuterol, a beta-adrenergic agonist, produced a marked increase of polyamines levels in heart, particularly during the early phase of administration of the drug. A single dose of 1.5 mg/kg caused as much as a 10 fold induction in activity of ornithine decarboxylase (ODC) and 3 to 4 fold increase in levels of putrescine, spermidine and spermine in mouse heart. Maximum changes were observed 3 to 4 hours post-administration of clenbuterol. This treatment did not produce any change in S-adenosylmethionine decarboxylase activity. The induction of cardiac ODC by clenbuterol was also dose dependent with a peak at about 5 micromol/kg. Co-administration of difluoromethylornithine, an irreversible inhibitor of ODC, or propranolol, a nonspecific beta-antagonist, with clenbuterol completely prevented the induction of ODC activity as well as the increase in polyamine levels in heart. However, pretreatment with alprenolol or metoprolol, the specific beta1 and beta2-antagonists, respectively, produced only partial prevention. The cardiac ODC from controls as well as clenbuterol treated mice exhibited similar affinity (Km) for its substrate, ornithine, while maximum enzyme activity (Vmax) was about 14 fold higher in clenbuterol treated mouse heart than in the control. Clenbuterol produced no change in the level of specific ODC mRNA or the protein, but the enzyme from the drug-treated mouse heart was considerably more stable than the control. Pretreatment of mice with either cycloheximide or actinomycin D followed by administration of clenbuterol could not prevent the induction in ODC activity suggesting that de novo biosynthesis of the enzyme protein or ODC mRNA was not responsible for induction of ODC activity. Post-translational changes in ODC may be responsible for an early increase of ODC activity due to clenbuterol treatment.  相似文献   

5.
The effects of the mixed agonist epinephrine and the beta agonist isoproterenol, each alone and in combination with the alpha adrenergic blocker phentolamine and the beta blocker propranolol on the adenylate cyclase activity of human adipocyte membrane fragments were determined in a calcium free buffer. Neither phentolamine (10 muM) nor propranolol (32 muM) affected basal adenylate cyclase activity. Epinephrine (10 muM) stimulated adenylate cyclase activity and this effect was slightly enhanced by phentolamine. The combination of epinephrine plus propranolol depressed adenylate cyclase below the basal level. Isoproterenol (10 muM) markedly stimulated adenylate cyclase; the addition of phentolamine caused an equivocal further increase while the addition of propranolol depressed adenylate cyclase activity to, but not below, the basal level. These findings are consistent with the hypothesis that human adipocytes have both alpha and beta adrenergic receptors and that these receptors are associated with the cell membrane adenylate cyclase system.  相似文献   

6.
Adrenergic receptor agonists and antagonists were employed to establish (a) which receptor subtypes mediate the cyclic AMP response to norepinephrine in hypothalamic and preoptic area slices from gonadectomized female rats and (b) which receptor subtypes might be modulated by the steroid hormone estradiol. Slice cyclic AMP levels were elevated by the beta receptor agonist isoproterenol, but not by alpha 1 (phenylephrine, methoxamine) or alpha 2 (clonidine) agonists. However, the alpha agonist phenylephrine potentiated the effect of the beta agonist isoproterenol on slice cyclic AMP accumulation. In slices from rats given no hormone treatment, the beta antagonist propranolol inhibited norepinephrine-stimulated cyclic AMP production, while the alpha 1 antagonist prazosin was without effect. In contrast, the cyclic AMP response to norepinephrine in slices from estradiol-treated rats was blocked more effectively by prazosin than by propranolol. Estradiol treatment also attenuated the production of cyclic AMP by the beta agonist isoproterenol. The data suggest (a) that norepinephrine induction of cyclic AMP accumulation in hypothalamic and preoptic area slices is mediated by beta receptors and potentiated by alpha receptor activation and (b) that estradiol depresses beta and increases alpha 1 receptor function in slices from brain regions associated with reproductive physiology.  相似文献   

7.
Levels of cyclic nucleotides and ornithine decarboxylase (ODC) activity were examined following the application of various kinds of stimuli to superior cervical sympathetic ganglia (SCG), nodose ganglia, and vagus nerve fibers excised from the rat. The level of cyclic GMP in the SCG rose rapidly to about 4.5- to 7.5-fold the unstimulated control with 10 min of incubation after applications of preganglionic electrical stimulation (10 Hz), acetylcholine (ACh; 1 mM), or high extracellular K+ ( [K+]0, 70 mM). The cyclic GMP level in nodose ganglia was increased less than in the SCG by either ACh or high [K+]0 but was not affected by ACh in vagus fibers. Cyclic AMP in the SCG was also increased about 4- to 5.5-fold over the control within 10 min with the addition of ACh, norepinephrine (NE; 0.05 mM), or high [K+]0. Although NE caused a small increase in cyclic AMP, neither ACh nor high [K+]0 produced any appreciable change in nodose ganglia or vagus fibers. The ODC activity in the SCG was increased by preganglionic stimulation of 3- to 4-hr duration but not by a shorter period. A similar change in ODC activity was caused by the addition of oxotremorine (1 mM), isoproterenol (0.1 mM), NE, cyclic AMP (1 mM), or dibutyryl cyclic GMP (1 mM). The effect was exaggerated by the further addition of 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. The increase in ODC activity caused by ACh was abolished by a muscarinic cholinergic antagonist, atropine (0.01 mM), and following axotomy for a week, but not by a nicotinic antagonist or by denervation in the SCG. A similar increase in ganglionic ODC activity by NE was inhibited by an adrenergic blocker, propranolol (0.01 mM), and following axtotomy for a week, but not by denervation. Cholinergic or adrenergic stimulation did not cause an increase in ODC activity in nodose ganglia or vagus fibers. These results suggest that the stimulation-induced increase in ODC activity occurs in postganglionic neurons rather than in satellite glial cells and is mediated by muscarinic cholinergic or adrenergic receptors. The process appears to involve cyclic nucleotide-mediated protein biosynthesis in the SCG.  相似文献   

8.
The role of alpha- and beta-adrenergic receptors in regulation of rat Harderian gland type II thyroxine 5'-deiodinase (5'-D) activity was investigated. Our results show that isoproterenol, a beta-adrenergic agonist, and phenylephrine, an alpha-adrenergic agonist, elicited increases in Harderian gland 5'-D activity. The activation was dependent on the time and the dose of the drug. Other adrenergic agonists, i.e., norepinephrine, methoxamine or terbutaline, also clearly increased the enzyme activity. Moreover, administration of propranolol, a beta-adrenergic blocker, or prazosin, an alpha-adrenergic blocker, completely prevented the activation of the enzyme induced by norepinephrine. Results show a clear regulation by adrenergic mechanisms of 5'-D activity in the rat Harderian gland, where alpha- and beta-adrenergic receptors appear to be involved.  相似文献   

9.
It is well established that beta-adrenoceptor stimulation activates PKA and alpha(1)-adrenoceptor stimulation activates PKC. In normal ventricular myocytes, acute activation of alpha(1)-adrenoceptors inhibits beta-adrenoceptor stimulated L-type Ca current (I(Ca-L)) and direct activation of epsilonPKC leads to I(Ca-L) inhibition. Because increased PKC activity has been observed chronically in in vivo setting such as failing human heart, we hypothesized that chronic in vivo activation of epsilonPKC alters I(Ca-L) and its response to adrenergic stimulation. Therefore, we investigated the interaction between beta- and alpha(1)-adrenoceptors vis-à-vis I(Ca-L) in myocytes from transgenic mice (TG) with cardiac specific constitutive activation of epsilonPKC (epsilonPKC agonist). Whole-cell I(Ca-L) was recorded from epsilonPKC agonist TG mice and age-matched non-TG (NTG) littermates under: (1) basal condition, (2) beta-adrenoceptor agonist, isoproterenol (ISO), and (3) ISO plus alpha(1)-adrenoceptor agonist, methoxamine. The present results are the first to demonstrate that chronic in vivo activation of epsilonPKC leads to reduced basal I(Ca-L) density. beta-adrenoceptor activation of I(Ca-L) is blunted in epsilonPKC agonist TG mice. alpha-adrenoceptor cross-talk with beta-adrenoceptor signaling pathways vis-à-vis L-type Ca channels is impaired in epsilonPKC agonist TG mice. The diminished response to ISO and methoxamine suggests a protective feedback regulatory mechanism in epsilonPKC agonist TG mice and could be vital in the settings of excessive release of catecholamines during heart failure.  相似文献   

10.
The effect of 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of cyclic nucleotide phosphodiesterase, was tested on several actions of prolactin in cultured mouse mammary tissues. At concentrations of 0.5 mM and above, IBMX abolished the actions of prolactin on RNA and casein synthesis. IBMX by itself, stimulated ornithine decarboxylase (ODC) activity in a dose-response fashion; but the IBMX at concentrations up to 1 mM had no effect on the magnitude of the prolactin-stimulated ODC activity. IBMX inhibited in a dose-response fashion the rate of [14C]-acetate incorporation into lipids; however, prolactin stimulated lipid biosynthesis in the presence of IBMX concentrations of up to 1 mM.  相似文献   

11.
Ornithine decarboxylase activity (ODC) increased about 7 fold 6--8 h following 10mM asparagine (ASN) addition to confluent cultures that had been previously serum deprived and then placed in a salts/glucose medium. Optimal concentrations of dibutyryl cAMP (dB cAMP) when incubated with the ASN caused up to a 50 fold increase in the activity of this enzyme after 7--8 h. The enhancement of ODC activity by ASN and dB cAMP was not sensitive to continuous (0--7 h) treatment with actinomycin D but similar treatment with cycloheximide depressed enzyme activity 40--60%. The synergistic stimulation of ODC activity by dB cAMP added with ASN was dose dependent and the dB cAMP stimulation of ODC activity displayed an absolute requirement for ASN when cells were maintained in the salts/glucose medium. The addition of dB cAMP always further enhanced ODC activity above the levels produced by addition of various levels of ASN (1 to 40mM) to the salts/glucose medium. Other agents which elevated cAMP levels such as 1-methyl-3-isobutylxanthine (IBMX) also enhanced ODC activity when administered with ASN. Additionally, treatment with sodium butyrate at concentrations ranging from 0.001mM to 5.0mM did not elevate ODC activity above the activity obtained with ASN alone. Addition of dB cAMP at various times after placing cells in salts/glucose medium with ASN further stimulated ODC activity only when added during the first 3-4 h. These results demonstrate the involvement of cAMP in the ASN mediated stimulation of ODC activity using cells maintained in a salts/glucose medium.  相似文献   

12.
Chronic continuous infusion of norepinephrine in rats causes alterations in biochemical and physiologic responses of the cardiovascular system and in cardiovascular adrenoceptor number. The response of cardiac and aortic ornithine decarboxylase (ODC) activity to stimulation by norepinephrine was decreased in rats receiving norepinephrine infusion. These responses are due to stimulation of beta- and alpha-adrenergic receptors, respectively. Additionally, there was reduced stimulation of aortic ODC activity by angiotensin II and vasopressin. The cardiac ODC response to angiotensin II was decreased, but the response to vasopressin was not affected. The decreased ODC response is accompanied by decreased pressor responses to the alpha-adrenergic agonist phenylephrine. Decreased numbers of alpha- and beta-adrenoceptor binding sites (as measured by the binding of [3H]prazosin and [125I]pindolol) might mediate, in part, the altered responses to adrenergic agonists. The decreased cardiovascular responsiveness measured in these animals after several days of norepinephrine infusion hypertension contrasts with the increased responses found in most other forms of hypertension. This provides a useful model in which to examine the consequences of prolonged adrenergic receptor stimulation.  相似文献   

13.
14.
Adult male rats were injected either with α- or ß-adrenergic agonists and/ or antagonists and ornithine decarboxylase (ODC) activity in the heart and aorta was measured 4 hours later. At the lower doses, isoproterenol (0.2–0.4 mg/kg) resulted in a 10-fold increase in cardiac ODC activity but caused no significant change in aortic ODC activity. In contrast, phenylephrine (1 mg/kg) caused a 4-fold increase in aorta but no change in cardiac ODC activity levels. Phenoxybenzamine pretreatment completely abolished the PE-induced increase whereas no change was seen in ISop injected animals. Similarly, pretreatment with propranolol blocked the ISop induced response on ODC activity but had no effect on the increases observed after PE. These data suggest that the sympathetic regulation of ODC activity levels is mediated primarily via the ß-receptor in the heart but through the α-receptor in the aorta.  相似文献   

15.
The cultivation of mouse epidermal cells in medium of reduced calcium concentration (0.02–0.1 mM) selects for basal cell growth. Elevation of medium calcium levels above 0.1 mM results in rapid and well defined differentiative changes. This model was utilized to determine which cell type in mouse epidermis responds to the phorbol ester tumor promoter, 12-0-tetradecanoyl-phorbol-13-acetate (TPA), by an induction of the enzyme ornithine decarboxylase (ODC). Previous data had shown that TPA induces ODC in primary mouse epidermal cells only during the first 36 hr after plating in medium containing 1.44 mM Ca2+. In contrast, the induction in cells grown in low calcium medium was 2–10-fold greater, and inducibility persisted for at least 4 weeks. The greater inducibility of ODC in low calcium cells is not paralleled by increased thymidine incorporation after TPA treatment, probably because these cells are already proliferating at a maximum rate. When low calcium cells grown in 0.07 mM Ca2+ medium were switched to 1.2 mM Ca2+, there was a rapid loss of ODC inducibility. These results strongly suggest that the basal cells of the epidermis constitute the major target cells for the induction of ODC by TPA. The induction of ODC by ultraviolet light was not enhanced by growth of cells in low calcium medium, indicating that extracellular calcium concentration per se does not determine ODC inducibility. When epidermal cells grown in 1.2 mM or 0.07 mM Ca2+ medium were exposed to both UV light and TPA, there was a significant synergistic effect of combined treatment over the sum of each individual response, suggesting that factors in addition to differentiation determine the extent of ODC induction.  相似文献   

16.
17.
The addition of Earle's balanced salt solution (EBSS) of amino acids that are transported by a Na+-dependent cotransport system was not required by Vero cells for ornithine decarboxylase (ODC:EC 4.1.1.17) amplification. Vero cell ODC activity was elevated tenfold above basal levels when confluent cells were incubated for 5 hr in EBSS alone. ODC activity increased as a function of the incubation time in EBSS and was not elevated above basal enzyme levels when cells were incubated in EBSS minus glucose. ODC expression increased as a function of the glucose concentration in EBSS, with 20 mM glucose producing a 90-fold increase in ODC activity. ODC expression is more responsive to glucose in high-density quiescent cultures than in low-density growing cultures. Enhanced ODC expression by glucose depended on Na+ and K+ concentrations. The specific activity of ODC was also elevated above basal levels when mannose or fructose replaced glucose in EBSS. The addition of alanine or asparagine to EBSS enhanced ODC activity above levels obtained with EBSS containing standard (5.5 mM) glucose concentrations. In the absence of glucose, alanine was more effective than asparagine in enhancing ODC expression. These results suggest that the transport of amino acids is not an absolute requirement for Vero cell ODC expression and that ODC expression is linked to changes in cellular energetics and/or ion fluxes.  相似文献   

18.
Epidermal growth factor (EGF) and prostaglandins (PGs) have been implicated in the regulation of a number of developmental processes in the mammalian embryonic palate. Normal palatal ontogenesis is dependent on the presence and quite possibly on the interaction of various hormones and growth factors. The interaction between EGF and PGs in regulation of murine embryonic palate mesenchymal (MEPM) cell growth and differentiation was therefore investigated by monitoring the activity of ornithine decarboxylase (ODC), the principle and rate limiting enzyme of polyamine biosynthesis. ODC activity is tightly coupled to the proliferative and differentiative state of eukaryotic cells and therefore serves as a reliable indicator of such cellular functions. Treatment of confluent cultures of MEPM cells with EGF (1-50 ng/ml) resulted in a dose-related increase in ODC activity, while similar treatment with either PGE2 or PGF2 alpha (at concentrations up to 1 microM) did not elicit a dose-dependent increase in enzyme activity. Concurrent treatment of MEPM cells with EGF (20 ng/ml) and either PGE2 or PGF2 alpha (0.1-10000 nM) resulted in a marked prostaglandin dose-dependent induction of ODC activity, suggesting a strong cooperative interaction between these factors. ODC activity was maximal by 4 to 8 hr and could be completely inhibited by preincubation of the cells with actinomycin D or cycloheximide, indicating that de novo synthesis of RNA and protein is necessary for enzyme induction. Stimulation of ODC activity by EGF and PGE2 in these cells was not positively correlated with the level of cellular DNA synthesis but did result in a ninefold increase in the synthesis of extracellular glycosaminoglycans (GAGs), a key macromolecular family implicated in palatal morphogenesis. Stimulation of GAG synthesis was significantly inhibited by the administration of 5 mM DFMO (an irreversible inhibitor of ODC), indicating that the marked increase in GAG production was dependent, in part, on the induction of ODC activity by EGF and PGE2. Qualitative analysis of the palatal GAGs indicated that synthesis of several major classes of GAGs was stimulated. Collectively these data demonstrate a cooperative interaction between EGF and PGs in the induction of ODC activity. Such activity may serve to regulate the synthesis of GAGs, which are instrumental in mammalian palatal ontogenesis.  相似文献   

19.
Intraperitoneal injection of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX), resulted in a rapid and transient induction of rat hepatic ornithine decarboxylase (ODC) activity. Maximal activity was found about 5 hr after application. The levels of putrescine and spermidine increased accordingly, reaching a maximum at 7 and 12 hr following injection, respectively, while the concentration of spermine remained almost constant. The implications of these findings are discussed in relation to the mechanism of induction of ornithine decarboxylase and concomitant polyamine biosynthesis.  相似文献   

20.
Oxidation of [14C] glucose in isolated epididymal adipocytes from Golden hamsters was stimulated by isoproterenol, epinephrine and norepinephrine, which all interact with beta-adrenergic receptors and by adrenocorticotrophic hormone. In contrast alpha-receptor agonists, such as phenylephrine, methoxamine or clonidine did not increase basal glucose oxidation. The beta-adrenergic blocking drug propranolol inhibited both lipolysis and glucose oxidation when these had been stimulated by isoproterenol, epinephrine or norepinephrine. Conversely, the alpha-adrenergic blocking drugs phentolamine and phenoxybenzamine did not influence lipolysis or glucose oxidation when isoproterenol provided the stimulus and increased both lipolysis and glucose metabolism in the present of either epinephrine or norepinephrine. All alpha-adrenergic agonists tested (phenylephrine, methoxamine and clonidine) lowered lipolysis and glucose oxidation isolated adipocytes exposed to isoproterenol. However, when adrenocorticotropin provided the stimulus for glucose oxidation and lipolysis, only clonidine produced a significant reduction in lipolysis and glucose oxidation. None of the alpha-agonists influenced glucose metabolism which had been increased by insulin. These data confirm the presence of both alpha and beta adrenergic receptors on hamster epididymal adipocytes and suggest that they exert antagonistic influences on lipolysis and glucose oxidation. These data are also consistent with the view that adrenergic stimulation of glucose oxidation and lipolysis in adipocytes are both mediated through beta receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号