首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of chylomicron remnants enriched in n-3 or n-6 polyunsaturated fatty acids (PUFA) (derived from fish or corn oil, respectively) on the expression of mRNA for four genes involved in the regulation of the synthesis, assembly, and secretion of very-low-density lipoprotein (VLDL) in the liver was investigated in normal rat hepatocytes and after manipulation of the cellular oxidative state by incubation with N-acetyl cysteine (NAC) or CuSO(4). The four genes investigated were those encoding apolipoprotein B (apoB), the microsomal triacylglycerol transfer protein (MTP), and the enzymes acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:cholesterol acyltransferase 2 (ACAT2), which play a role in the regulation of triacylglycerol and cholesteryl ester synthesis, respectively. mRNA levels for apoB, MTP, and DGAT were unaffected by either fish or corn oil chylomicron remnants, but the amount of ACAT2 mRNA was significantly reduced after incubation of the hepatocytes with fish oil remnants as compared with corn oil remnants or without remnants. These findings indicate that the delivery of dietary n-3 PUFA to hepatocytes in chylomicron remnants downregulates the expression of mRNA for ACAT2, and this may play a role in their inhibition of VLDL secretion. However, when the cells were shifted into a pro-oxidizing or pro-reducing state by pretreatment with CuSO(4) (1 mM) or NAC (5 mM) for 24 hr, levels of mRNA for MTP were increased by about 2- or 4-fold, respectively, by fish oil remnants, whereas corn oil remnants had no significant effect. Fish oil remnants also caused a smaller increase in apoB mRNA in comparison with corn oil remnants in NAC-treated cells (+38%). These changes would be expected to lead to increased VLDL secretion rather than the decrease associated with dietary n-3 PUFA in normal conditions. These findings suggest that relatively minor changes in cellular redox levels can have a major influence on important liver functions such as VLDL synthesis and secretion.  相似文献   

2.
3.
The effects of native and oxidized chylomicron remnants on lipid synthesis in normal and oxidatively stressed liver cells were investigated using MET murine hepatocytes (MMH cells), a nontransformed mouse hepatocyte cell line that maintains a highly differentiated hepatic phenotype in culture. Lipid synthesis was determined by measuring the incorporation of [(3)H]oleate into cholesteryl ester, triacylglycerol, and phospholipid by the cells. The formation of cholesteryl ester and phospholipid was decreased by chylomicron remnants in a dose-dependent manner, while triacylglycerol synthesis was increased. Exposure of MMH cells to mild oxidative stress by incubation with CuSO(4) (2.5 microM) for 24 h led to significantly increased incorporation of [(3)H]oleate into triacylglycerol and phospholipid, but not cholesteryl ester, in the absence of chylomicron remnants. In the presence of the lipoproteins, however, similar effects to those found in untreated cells were observed. Oxidatively modified chylomicron remnants prepared by incubation with CuSO(4) (10 microM, 18 h, 37 degrees C) did not influence cholesteryl ester or phospholipid synthesis in MMH cells, but had a similar effect to that found with native remnants on triacylglycerol synthesis. These findings show that hepatic lipid metabolism is altered by exposure to mild oxidative stress and by lipids from the diet delivered to the liver in chylomicron remnants, and these effects may play a role in the development of atherosclerosis.  相似文献   

4.
The aim of this work was to characterise the lipid and fatty acid composition of chylomicron remnants enriched in n-3 or n-6 polyunsaturated fatty acids (PUFA) and to investigate their influence on the fatty acid profiles of the lipids of rat hepatocytes cultured in monolayers. Chylomicrons were prepared from the lymph collected from the thoracic duct of rats given an oral dose of fish or corn oil (high in n-3 and n-6 PUFA, respectively), and remnants were prepared in vitro from such chylomicrons using rat plasma containing lipoprotein lipase. The fatty acids predominating in the oils abounded also in their respective chylomicrons and remnants, especially in triacylglycerols. Chylomicrons as well as remnants contained small amounts of phospholipids and long-chain PUFA that were minor in, or absent from, the dietary oils, evidently provided by the intestinal epithelium. The incubation of hepatocytes for 6 h, with either n-3 or n-6 PUFA-rich remnants (0.25-0.75 mM triacylglycerol) resulted in a dose-dependent increase in the amount of triacylglycerols and phospholipids in the cells, which was not affected further by increasing the incubation time to 19 h. Whereas hepatocyte triacylglycerols mostly incorporated the PUFA predominating in each remnant type, the fatty acid profile of cell phospholipids was virtually unchanged. In addition, irrespective of whether they were enriched in n-3 or n-6 PUFA, remnants promoted a relative decrease in the amount of cholesteryl esters, a minor hepatocyte lipid class poor in PUFA. The results demonstrate that the hepatocyte fatty acid profile is modulated in a lipid-class specific way by the amount and type of dietary PUFA delivered to cells in chylomicron remnants.  相似文献   

5.
To characterize lipoprotein uptake by macrophages, we studied J774 murine macrophage-derived cells. Uptake of 125I-labeled beta-VLDL and 125I-labeled chylomicron remnants was saturable, specific, and of high affinity. Maximal specific uptake and the concentration at which half-maximal uptake occurred were similar for both beta-VLDL and chylomicron remnants. Specific uptake of 125I-labeled chylomicrons was only 1/5 that of the other two lipoproteins. Cholesterol loading decreased 125I-labeled chylomicron remnant and 125I-labeled beta-VLDL uptake by 25%. Chylomicron remnants and beta-VLDL were equipotent in cross-competition studies; acetyl-LDL did not compete, and human LDL was a poor competitor. Although the amounts of cell-associated lipoproteins were similar, beta-VLDL and chylomicron remnants had different effects on cellular lipid metabolism. beta-VLDL produced a threefold stimulation while chylomicron remnants caused a decrease in [3H]oleate incorporation into cholesteryl ester. beta-VLDL had no effect while chylomicron remnants caused a threefold increase in [3H]oleate incorporation into triacylglycerol. beta-VLDL produced a 44% suppression and chylomicron remnants produced a 78% increase in HMG-CoA reductase activity. In summary, J774 macrophages express a receptor site that recognizes both beta-VLDL and chylomicron remnants; however, these lipoproteins exhibit strikingly different effects on intracellular lipid metabolism.  相似文献   

6.
7.
The influence of the fatty acid composition of chylomicron remnant-like particles (CRLPs) on their uptake and induction of lipid accumulation in macrophages was studied. CRLPs containing triacylglycerol enriched in saturated, monounsaturated, n-6 or n-3 polyunsaturated fatty acids derived from palm, olive, corn or fish oil, respectively, and macrophages derived from the human monocyte cell line THP-1 were used. Lipid accumulation (triacylglycerol and cholesterol) in the cells was measured after incubation with CRLPs for 5, 24 and 48 h, and uptake over 24 h was determined using CRLPs radiolabelled with [3H]triolein. Total lipid accumulation in the macrophages was significantly greater with palm CRLPs than with the other three types of particle. This was mainly due to increased triacylglycerol concentrations, whereas changes in cholesterol concentrations did not reach significance. There were no significant differences in lipid accumulation after incubation with olive, corn or fish CRLPs. Palm and olive CRLPs were taken up by the cells at a similar rate, which was considerably faster than that observed with corn and fish CRLPs. These findings demonstrate that CRLPs enriched in saturated or monounsaturated fatty acids are taken up more rapidly by macrophages than those enriched in n-6 or n-3 polyunsaturated fatty acids, and that the faster uptake rate results in greater lipid accumulation in the case of saturated fatty acid-rich particles, but not monounsaturated fatty acid-rich particles. Thus, dietary saturated fatty acids carried in chylomicron remnants may enhance their propensity to induce macrophage foam cell formation.  相似文献   

8.
Kim HK  Choi H 《Life sciences》2005,77(12):1293-1306
The effect of dietary polyunsaturated fatty acids (PUFA) on hepatic peroxisomal oxidation was investigated with respect to the postprandial triacylglycerol levels. Male Sprague--Dawley rats were fed semipurified diets containing either 1% (w/w) corn oil, or 10% each of beef tallow, corn oil, perilla oil, and fish oil for 4 weeks and 4 days. Hepatic and plasma triacylglycerol levels were reduced in rats fed fish and perilla oil diets compared with corn oil and beef tallow diets. The peroxisomal beta-oxidation, catalase activity, and acyl-CoA oxidase (AOX) activity were markedly increased by fish oil feeding. To a lesser extent, perilla oil elevated AOX activity in a 4-day feeding although the effect gradually decreased in a 4-week feeding. Similarly, the mRNA levels were increased in rats fed fish and perilla oils. AOX activity was negatively correlated with postprandial triacylglycerol levels. In addition, the stimulation of AOX was highly associated with the content of long chain n-3 PUFA such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in hepatic microsome. These effects were evident within 4 days of initiating feeding. Therefore, alpha-linolenic perilla oil exerts a similar effect to fish oil in stimulating hepatic activity and gene expression of AOX by enriching long chain n-3 PUFA in hepatic membrane fraction, which can partly account for the reduction of postprandial triglyceridemia.  相似文献   

9.
To gain a detailed understanding of those factors that govern the processing of dietary-derived lipoprotein remnants by macrophages we examined the uptake and degradation of rat triacylglycerol-rich chylomicron remnants and rat cholesterol-rich beta-very low density lipoprotein (beta-VLDL) by J774 cells and primary cultures of mouse peritoneal macrophages. The level of cell associated 125I-labeled beta-VLDL and 125I-labeled chylomicron remnants reached a similar equilibrium level within 2 h of incubation at 37 degrees C. However, the degradation of 125I-labeled beta-VLDL was two to three times greater than the degradation of 125I-labeled chylomicron remnants at each time point examined, with rates of degradation of 161.0 +/- 36.0 and 60.1 +/- 6.6 ng degraded/h per mg cell protein, respectively. At similar extracellular concentrations of protein or cholesterol, the relative rate of cholesteryl ester hydrolysis from [3H]cholesteryl oleate/cholesteryl [14C]oleate-labeled chylomicron remnants was one-third to one-half that of similarly labeled beta-VLDL. The reduction in the relative rate of chylomicron remnant degradation by macrophages occurred in the absence of chylomicron remnant-induced alterations in low density lipoprotein (LDL) receptor recycling or in retroendocytosis of either 125I-labeled lipoprotein. The rate of internalization of 125I-labeled beta-VLDL by J774 cells was greater than that of 125I-labeled chylomicron remnants, with initial rates of internalization of 0.21 ng/min per mg cell protein for 125I-labeled chylomicron remnants and 0.39 ng/min per mg cell protein for 125I-labeled beta-VLDL. The degradation of 125I-labeled chylomicron remnants and 125I-labeled beta-VLDL was dependent on lysosomal enzyme activity: preincubation of macrophages with the lysosomotropic agent monensin reduced the degradation of both lipoproteins by greater than 90%. However, the pH-dependent rate of degradation of 125I-labeled chylomicron remnants by lysosomal enzymes isolated from J774 cells was 50% that of 125I-labeled beta-VLDL. The difference in degradation rates was dependent on the ratio of lipoprotein to lysosomal protein used and was greatest at ratios greater than 50. The degradation of 125I-labeled beta-VLDL by isolated lysosomes was reduced 30-40% by preincubation of beta-VLDL with 25-50 micrograms oleic acid/ml, suggesting that released free fatty acids could cause the slower degradation of chylomicron remnants. Thus, differences in the rate of uptake and degradation of remnant lipoproteins of different compositions by macrophages are determined by at least two factors: 1) differences in the rates of lipoprotein internalization and 2) differences in the rate of lysosomal degradation.  相似文献   

10.
Although replacement of dietary saturated fat with monounsaturated and polyunsaturated fatty acids (MUFA and PUFA) has been advocated for the reduction of cardiovascular disease risk, diets high in PUFA could increase low density lipoprotein (LDL) susceptibility to oxidation, potentially contributing to the pathology of atherosclerosis. To investigate this possibility, 15 postmenopausal women in a blinded crossover trial consumed 15 g of sunflower oil (SU) providing 12.3 g/day of oleate, safflower oil (SA) providing 10.5 g/day of linoleate, and fish oil (FO) providing 2.0 g/day of eicosapentaenoate (EPA) and 1.4 g/day of docosahexaenoate (DHA). During CuSO(4)-mediated oxidation, LDL was depleted of alpha-tocopherol more rapidly after FO supplementation than after supplementation with SU (P = 0.0001) and SA (P = 0.05). In LDL phospholipid and cholesteryl ester fractions, loss of n-3 PUFA was greater and loss of n-6 PUFA less after FO supplementation than after SU and SA supplementation (P < 0.05 for all), but loss of total PUFA did not differ. The lag phase for phosphatidylcholine hydroperoxide (PCOOH) formation was shorter after FO supplementation than after supplementation with SU (P = 0.0001) and SA (P = 0.006), whereas the lag phase for cholesteryl linoleate hydroperoxide (CE18:2OOH) formation was shorter after FO supplementation than after SU (P = 0.03) but not SA. In contrast, maximal rates of PCOOH and CE18:2OOH formation were lower after FO supplementation than after SA (P = 0.02 and 0.0001, respectively) and maximal concentrations of PCOOH and CE18:2OOH were lower after FO supplementation than after SA (P = 0.03 and 0.0006, respectively). Taken together, our results suggest that FO supplementation does not increase the overall oxidation of LDL ex vivo, especially when compared with SA supplementation. Consequently, health benefits related to increased fish consumption may not be offset by increased LDL oxidative susceptibility.-- Higdon, J. V., S. H. Du, Y. S. Lee, T. Wu, and R. C. Wander. Supplementation of postmenopausal women with fish oil does not increase overall oxidation of LDL ex vivo compared to dietary oils rich in oleate and linoleate. J. Lipid Res. 2001. 42: 407--418.  相似文献   

11.
The fate of cholesterol and triacylglycerol taken up and accumulated by macrophages after exposure to chylomicron remnants was investigated using macrophages derived from the human monocyte cell line THP-1 and chylomicron remnant-like particles containing human apolipoprotein (apo) E (CRLPs) as the experimental model. In THP-1 macrophages lipid loaded with CRLPs and incubated with various cholesterol acceptors for 24 h, the mass of cholesterol and cholesteryl ester found in the cells was not changed by HDL, HDL3 or lipid-free ApoA-I, although it was decreased by 38% by ApoA-I-phosphatidylcholine vesicles (ApoA-I-PC). After loading of the macrophages with [3H]cholesterol-labelled CRLPs, only about 5% of the label was effluxed in 24 h in the absence of cholesterol acceptors, and this increased to about 10% with ApoA-I or PC only, and to about 30% with apoA-I-PC. In similar experiments with [3H]triolein, only about 4% of the labelled triacylglycerol taken up by the cells was released into the medium in 24 h, and a large (>60%) and consistent proportion of the intracellular radioactivity remained associated with the triacylglycerol throughout this period. These results suggest that cholesterol and triacylglycerol derived from chylomicron remnants are not readily cleared from macrophages, and this is likely to contribute to the atherogenicity of the remnant lipoproteins.  相似文献   

12.
The effects of low-density lipoprotein (LDL) and chylomicron remnants on lipid accumulation in human monocyte-derived macrophages (HMDMs) and in macrophages derived from the human monocyte cell line THP-1 were compared. The HMDMs or THP-1 macrophages were incubated with LDL, oxidized LDL (oxLDL), chylomicron remnant-like particles (CMR-LPs), or oxidized CMR-LPs (oxCMR-LPs), and the amount and type of lipid accumulated were determined. As expected, the lipid content of both cell types was increased markedly by oxLDL but not LDL, and this was due to a rise in cholesterol, cholesteryl ester (CE), and triacylglycerol (TG) levels. In contrast, both CMR-LPs and oxCMR-LPs caused a considerable increase in cellular lipid in HMDMs and THP-1 macrophages, but in this case there was a greater rise in the TG than in the cholesterol or CE content. Lipid accumulation in response to oxLDL, CMR-LPs, and oxCMR-LPs was prevented by the ACAT inhibitor CI976 in HMDMs but not in THP-1 macrophages, where TG levels remained markedly elevated. The rate of incorporation of [(3)H]oleate into CE and TG in THP-1 macrophages was increased by oxLDL, CMR-LPs, and oxCMR-LPs, but incorporation into TG was increased to a greater extent with CMR-LPs and oxCMR-LPs compared with oxLDL. These results demonstrate that both CMR-LPs and oxCMR-LPs cause lipid accumulation in human macrophages comparable to that seen with oxLDL and that oxidation of the remnant particles does not enhance this effect. They also demonstrate that a greater proportion of the lipid accumulated in response to CMR-LPs compared with oxLDL is TG rather than cholesterol or CE and that this is associated with a higher rate of TG synthesis. This study, therefore, provides further evidence to suggest that chylomicron remnants have a role in foam cell formation that is distinct from that of oxLDL.  相似文献   

13.
14.
1. The hepatic metabolism of chylomicrons and chylomicron remnants was compared after adding approximately equal numbers of each lipoprotein particle to the perfusate of isolated livers. 2. At least 40% of the added remnants were metabolized by the liver compared with less than 3% for chylomicrons. 3. There was significantly more net removal of labelled remnants than of chylomicrons by the liver. 4. A greater proportion of labelled cholesterol than of labelled triacylglycerol fatty acids was transferred to the liver from each lipoprotein. 5. Cholesteryl esters of remnants were hydrolysed to triacylglycerol fatty lipoprotein. 5. Cholesteryl esters of remnants were hydrolysed to triacylglycerol fatty acids of remnants were oxidized to CO2 more extensively than those of chylomicrons. 6. There was greater oxidation of remnant glycerolipic [(1(-14)C]oleate than of glycerolipid [1(-14)C]palmitate. 7. A large fraction of the fatty acids of remnants, but not of chylomicrons, was transferred to phospholipids, which were released by the liver in a lipoprotein of relative density less than 1.006. 8. Label from remnants, but not from chylomicrons, was found in lipoproteins of relative density greater than 1.006, which were not released during perfusion but could be flushed out from the liver at the end of perfusion.  相似文献   

15.
The binding and internalization of (125)I-labelled chylomicron remnants derived from palm, olive, corn, or fish oil (rich in saturated, monounsaturated, n-6, or n-3 polyunsaturated fatty acids, respectively) by hepatocytes from rats fed a low-fat diet or a diet supplemented with the corresponding fat for 21 days was investigated. In hepatocytes from rats fed the low-fat diet, the association of radioactivity with the cells at 4 degrees C (a measure of initial binding only) was similar with all types of remnants tested, but was more rapid at 37 degrees C (a measure of binding plus internalization) when fish oil, as compared to olive, corn or palm oil remnants, was used, and similar differences in the internalization of the particles were observed. In contrast, when hepatocytes from rats fed the fat-supplemented diets were used, the rate of association at 37 degrees C of remnants with cells from rats fed palm, corn or fish oil was similar, and higher than that found with cells from animals fed olive oil, and in this case these differences were mainly due to changes in the binding of the particles to the cells at 4 degrees C. Both excess low-density lipoprotein (LDL), which inhibits remnant uptake by the LDL receptor, and lactoferrin, which blocks the LDL receptor-related protein (LRP), were found to decrease the association of the remnants with cells from rats fed the low-fat and high-fat diets. However, in hepatocytes from animals given the low-fat diet, most of the differences between the various types of particle were retained in the presence of lactoferrin, but abolished in the presence of LDL. In contrast, in cells from rats fed the high-fat diets, the differences were reduced by both lactoferrin and LDL. These findings demonstrate that the hepatic uptake of chylomicron remnants is influenced both by the fatty acid composition of the particles, and by longer-term adaptive changes in liver tissue, and suggest that the former effects are mediated mainly by the LDL receptor, while the latter may involve both the LDL receptor and the LRP.  相似文献   

16.
The study examined the ability of dietary n-3 fatty acids to modify mouse peritoneal macrophage glycerophospholipid molecular species and peptidoleukotriene synthesis. After a 2-week feeding period, fish versus corn oil feeding significantly (P less than 0.01) lowered n-6 polyunsaturated fatty acid (PUFA) mol % levels, i.e., arachidonic acid (20:4n-6) in diacylphosphatidylserine (PtdSer), diacylphosphatidylinositol (PtdIns), diacylglycerophosphoethanolamine (PtdEtn), alkenylacylglycerophosphoethanolamine (PlsEtn), and diacylglycerophosphocholine (PtdCho). A notable exception was alkylacylglycerophosphocholine (PakCho), where only moderate decreases in 16:0-20:4n-6 and 18:0-20:4n-6 species were observed after fish oil supplementation. The predominant n-3 PUFA in macrophage phospholipid subclasses was docosapentaenoic acid (22:5n-3). The major n-3 species were 18:0-22:5n-3 in PtdIns, PtdSer, glycerophosphoethanolamines (EtnGpl) and 16:0-22:5n-3 in PtdCho and PlsEtn. The major n-3-containing species in PakCho were 16:0-20:5n-3 and 18:1-22:6n-3. These findings indicate that n-3 PUFA are differentially incorporated into macrophage phospholipid subclasses after dietary fish oil supplementation, and suggest that phospholipid remodeling enzymes selectively discriminate between substrates based on compatibility of sn-1 covalent linkage and the composition of the sn-1 and sn-2 aliphatic chains. Macrophage peptidoleukotriene synthesis was also strongly influenced after fish oil feeding; the LTC5/LTC4 ratio was significantly higher (P less than 0.01) in fish oil-fed animals than in corn oil-fed animals, 0.85 versus 0.01, respectively. These ratios were subsequently compared to phospholipid molecular species 20:5n-3/20:4n-6 ratios in order to determine potential sources of eicosanoid precursors.  相似文献   

17.
Recent research has implicated dietary fish oils in the reduction of eicosanoids formed from arachidonic acid and amelioration of chronic diseases such as coronary heart disease, atherosclerosis and inflammation. Feeding studies were conducted to determine if the efficacy of dietary n-3 polyunsaturated fatty acids (PUFA) from fish oils was influenced by the quantity of n-6 polyunsaturated fatty acids and the total level of fat in the diet. Groups of mice were fed diets composed of 5 and 20% total fat with varying proportions of linoleic acid as a source of n-6 PUFA. Menhaden oil as a source of n-3 PUFA was fed at two levels of n-6 at each level of total fat. Eicosanoid biosynthesis was stimulated and assayed in the mouse peritoneum using zymosan as an inflammatory stimulus. Production of LTE4 and PGE2 was enhanced by increasing n-6 PUFA in the diet at both levels of total fat. High dietary fat significantly suppressed leukotriene (LT) synthesis. Dietary menhaden oil reduced LTE4 and PGE2 synthesis at both levels of dietary n-6 in the low fat study. In animals on 20% dietary fat menhaden oil significantly reduced LT synthesis only at a relatively low dietary n-6 PUFA. On a high n-6 PUFA high fat diets, menhaden oil did not significant affect LTE4 synthesis in response to zymosan stimulation. The results suggest that the effectiveness of fish oils in reducing eicosanoids in response to specific stimulation is influenced by the level of n-6 and the total quantity of fat in the diet.  相似文献   

18.
African green monkeys were fed diets containing either 11% (by weight) fish oil or lard for 2.5 yr. To test the hypothesis that fish oil decreases hepatic secretion of triglyceride (TG) and apoB, livers from these animals were perfused with a fatty acid mixture [85% (w/w) oleate containing [14C]oleate and 15% n-3 containing [3H]eicosapentaenoic acid (EPA)] at a rate of 0.1 mumol fatty acid/min per g liver. Liver perfusate was sampled every 30 min during 4 h of recirculating perfusion. The concentration of triglyceride was similar for livers of animals of both groups and there was no difference between groups in the extent of incorporation of [3H]EPA or [14C]oleate into hepatic TG. While the secretion rate for the mass of TG was less in the fish oil-fed group (8.3 +/- 2.5 vs 18.3 +/- 4.4 mg/h per 100 g liver, P less than 0.05), the apoB secretion rate was similar (0.92 +/- 0.15 vs 1.01 +/- 0.13 mg/h per 100 g liver). Significantly less [3H]EPA was incorporated into secreted TG in the fish oil group (0.4 +/- 0.1 vs 1.0 +/- 0.1% infused dose/h; P less than 0.01). The rate of secretion of [14C]TG was similar for both groups (1.3 +/- 0.3 vs 1.4 +/- 0.1% infused dose/h for fish oil and lard groups, respectively). No significant diet-related differences in [3H]TG or [14C]TG fatty acid specific activity were observed for perfusate TG or hepatic TG. After perfusion, livers from fish oil-fed monkeys contained significantly more [3H]EPA in hepatic phospholipid than livers from lard-fed monkeys (19.5 +/- 1.8 vs 11.4 +/- 1.7% infused dose; P less than 0.01) although hepatic phospholipid mass concentrations were similar. The liver phospholipids of the fish oil group were enriched in n-3 fatty acid mass and were relatively depleted of oleate and linoleate. We conclude that although apoB secretion was unaffected, dietary fish oil significantly decreased hepatic TG secretion through relatively poor utilization of EPA for the synthesis of TG destined for secretion in VLDL; at the same time, increased incorporation of [3H]EPA into hepatic phospholipid accompanied the decreased incorporation into secreted TG and these events may be coupled.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
20.
The effects of polyunsaturated fatty acids of the omega-3 family (PUFA n-3), (addition of fish oil), on the molecular composition of cholesteryl esters and triglycerides in plasma and liver perfusate of rats were studied. Rats fed a diet rich in saturated fatty acids (addition of lard) served as controls. Supplemention with PUFA n-3 not only decreases the plasma concentrations of free cholesterol, cholesteryl esters, and triglycerides, it also significantly alters the plasma composition of cholesteryl esters and triglycerides. Analyses of liver perfusate indicate a decrease in triglycerides secretion by in vitro perfused liver and reciprocal changes in relative contents of cholesteryl esters fractions with C(16) and C(20) acyl chains. This finding may be a result of chain-shortening of long-chain fatty acids probably in peroxisomal beta-oxidative system. Alterations in plasma cholesteryl esters and triglycerides composition of the fish oil group could be affected further by additional factors such as increased plasma cholesterol esterification activity and presence of triglyceride species of intestinal origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号