首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This assay measures reduced (GSH), oxidized (GSSG, GSSR), and protein-bound (glutathione-protein mixed disulfides, ProSSG) glutathione in human plasma. Oxidized glutathione and ProSSG are converted to GSH in the presence of NaBH4, and, after precolumn derivatization with monobromobimane, GSH is quantitated by reversed-phase liquid chromatography and fluorescence detection. The NaBH4 concentration is optimized so that total recovery of oxidized glutathione is obtained and no interference with the formation/stability of the GSH-bimane adduct occurs. The presence of 50 microM dithioerythritol prevents reduced recovery at low concentrations of GSH, and the standard curve for GSH is linear over a wide concentration range and is super-imposed upon that obtained with GSSG. Selective determination of oxidized glutathione exploits the fact that N-ethylmaleimide (NEM) blocks free sulfhydryl groups and excess NEM is inactivated by the subsequent addition of NaBH4. To measure total glutathione including the protein-bound forms, the protein is solubilized with dimethyl sulfoxide, which is compatible with the other reagents and slightly increases the yield of the fluorescent GSH derivative. The assay is characterized by a sensitivity (less than 2 pmol) sufficiently high to detect the various forms of glutathione in plasma, by an analytical recovery of GSH and GSSG close to 100%, and by a within-day precision corresponding to a coefficient of variation of 7%. The assay was used to determine the dynamic relationships among various glutathione species in human plasma.  相似文献   

2.
S-(N-methylcarbamoyl)glutathione, a chemically-reactive glutathione conjugate, has been isolated from the bile of rats administered methyl isocyanate and characterized, as its N-benzyloxycarbonyl dimethylester derivative, by tandem mass spectrometry. The ability of this glutathione adduct to donate an N-methylcarbamoyl moiety to the free -SH group of cysteine was evaluated in vitro with the aid of a highly specific thermospray LC/MS assay procedure. The glutathione adduct reacted readily with cysteine in buffered aqueous media (pH 7.4, 37 degrees C) and after 2 hr, 42.5% of the substrate existed in the form of S-(N-methylcarbamoyl)cysteine. The reverse reaction, i.e. between the cysteine adduct and free glutathione, also took place readily under these conditions. It is concluded that conjugation of methyl isocyanate with glutathione in vivo affords a reactive S-linked product which displays the potential to carbamoylate nucleophilic amino acids. The various systemic toxicities associated with exposure of animals or humans to methyl isocyanate could therefore be due to release of the isocyanate from its glutathione conjugate, which thus may serve as a vehicle for the transport of methyl isocyanate in vivo.  相似文献   

3.
The reaction of 1,2-dibromoethane and glutathione with DNA in the presence of glutathione S-transferase results in the formation of a single major DNA adduct, which can be released by thermal hydrolysis at neutral pH and separated by octadecylsilyl and propylamino high-performance liquid chromatography. The same DNA adduct is the only major one formed in livers of rats treated with 1,2-dibromo[1,2-14C]ethane. The DNA adduct was identified as S-[2-(N7-guanyl)ethyl]glutathione: (1) The chromatographic behavior was altered by treatment with gamma-glutamyl transpeptidase or Streptomyces griseus protease. (2) The molecular ions observed in positive and negative mode fast atom bombardment mass spectrometry were those expected for the structure when either glycerol or a mixture of dithiothreitol and dithioerythritol was used as the bombardment matrix. (3) The two-dimensional 1H NMR correlated spectroscopy spectrum of the DNA adduct was compared to the spectra of glutathione, oxidized glutathione, and N7-methylguanine and found to be consistent with the assigned structure. No evidence for in vitro or in vivo opening of the guanyl imidazole ring was observed under these conditions. The structure of the adduct supports a pathway involving enzyme-catalyzed conjugation of 1,2-dibromoethane with glutathione, non-enzymatic dehydrohalogenation of the resulting half-mustard to form a cyclic episulfonium ion, and attack of the N7 nitrogen of DNA guanine on the episulfonium ion to generate this major DNA adduct, which may be related to the carcinogenicity of this chemical.  相似文献   

4.
The 1,N2-propanodeoxyguanosine adducts of trans-4-hydroxy-2-nonenal (HNE-dGp-adducts) were quantitated in tissues of rats treated with trans-4-hydroxy-2-nonenal (HNE) or carbon tetrachloride, respectively, using a 32P-postlabeling method. The method development was based on chemically synthesized HNE-1,N2-propanodeoxyguanosine adduct standard, which was characterized by NMR and mass spectra. The adducts were enriched by Nuclease P1. They were subsequently reacted with gamma-32P-ATP to give the respective 3'-5'-bisphosphates, which were two-directionally separated on PEI-cellulose-TLC and quantitated by autoradiography. The labeling efficiency for the adduct standard was 27%, and the recovery of spiked amounts of adduct standard in the enzymatical procedure was about 80%. Internal standard was used to eliminate methodological variations. The determination of the limit of quantitation in DNA from rat tissues by spiking of HNE-dGp-adduct standard revealed a sensitivity of about 20 HNE-dGp-adducts/10(9) normal nucleotides. Background levels of HNE-dGp-adducts in tissues of rats including liver, kidney, lung, colon and forestomach were found in the range of 18-158 adducts/10(9) nucleotides with relatively high adduct levels in the liver and low adduct levels in kidney, lung and colon. These background levels were statistically significantly increased by the factor of 2 in liver, lung, colon and forestomach after induction of lipid peroxidation by carbon tetrachloride. The finding that background HNE-dGp-adduct levels may be in context with different metabolic activities of the tissues and the increase of HNE-dGp-adduct levels after application of carbon tetrachloride indicate that HNE-dGp-adducts are an endogenous lesion and that they are probably formed from radical initiated lipid peroxidation.  相似文献   

5.
5-(Pentafluorobenzoylamino)fluorescein (PFB-F), a new thiol-reactive molecule was synthesized to improve the detection limits and specificity of the assays for glutathione S-transferase (GST) activity and glutathione (GSH). A rapid assay method to measure GSH concentration or GST activity and the simultaneous analysis of multiple samples is possible because the glutathione adduct, GS-TFB-F, is separated from PFB-F by thin-layer chromatography (TLC) and can be quantitated by a fluorescence scanner. The detection limits for GSH and for GST activity using TLC were found to be as low as 10 pmol/microl and 1 ng/microl using equine liver GST, respectively. Determination of GSH concentration or GST activity in bovine pulmonary artery endothelial (BPAE) cell lysates gave a linear response for samples corresponding to 500-2500 cells. PFB-F could also measure GST activities of GST fusion proteins and prove to be a suitable substrate for determining the activities of human GST isozymes and other sources of mammalian GST. The selectivity of PFB-F with GSH was proven by comparing trace amount of the adducts that formed with cysteine and beta-galactosidase to that formed with GSH. The HPLC profile of a reaction mixture where cell lysate was used in place of purified GST, also shows only two main peaks, corresponding to GS-TFB-F and unreacted PFB-F. The selectivity of PFB-F for GSH was further confirmed by exposing BPAE cells to dl-buthionine-[S,R]-sulfoximine (BSO). Our results of GS-TFB-F determination indicate that 12-, 24-, or 36-h incubations with BSO caused 2-, 6-, or 7.6-fold reductions in GSH levels, respectively.  相似文献   

6.
Glycation (nonenzymatic glycosylation of proteins) is known to be increased as a result of hyperglycaemia in diabetes. Moreover, cell glutathione concentration has been found to be lower in diabetics and such depletion may impair the cell defence against toxic radical species. Ribose being a potent reducing sugar expected to be increased in cells of diabetics where the pentose phosphate pathway is enhanced, its putative condensation with glutathione was investigated. Reduced glutathione (GSH) was incubated with ribose and the structure of the resultant product was assessed by mass spectrometry, as well as the measurement of its remaining thiol group. A covalent reaction clearly occurred between the reducing sugar and GSH, to give an adduct named N-ribosyl-1-glutathione. This adduct appears to be the Amadori product resulting from the condensation of the primary amine group of GSH with the aldehyde group of ribose. Interestingly, the adduct could not be used as a proper substrate by glutathione peroxidase although it keeps its thiol group. We conclude that the coupling of GSH with a monosaccharide such as ribose might contribute to the decreased cell GSH and glutathione peroxidase activity observed in diabetics.  相似文献   

7.
The ability of glutathione to scavenge the superoxide radical is a matter of serious contention in the literature: reported values for the second-order rate constant range from 10(2) to greater than 10(5) M(-1) s(-1). The physiological implications of this discrepancy will determine, for example, whether or not glutathione can compete with Mn-superoxide dismutase for reaction with the radical in the mitochondrial matrix, leading to formation of the potentially harmful glutathionyl radical. Several authors have investigated the kinetics of glutathione oxidation by superoxide using spectrophotometric assays, based on competition between either ferricytochrome c or epinephrine for reaction with the radical. However, these approaches have received criticism because the contributions of various secondary reactions to the overall kinetics have been largely overlooked (e.g., the reduction of ferricytochrome c by glutathione). In the present investigation, we have used electron paramagnetic resonance spectroscopy to monitor competition between GSH and the spin trap 5,5-dimethyl-1-pyrroline N-oxide for reaction with superoxide. This method has been used previously and a rate constant of 1.8 x 10(5) M(-1) s(-1) obtained (Dikalov, S.; Khramtsov, V.; Zimmer, G. Arch. Biochem. Biophys. 326:207-218; 1996). However, we demonstrate that this value is a gross overestimation because the spectrum of the hydroxyl radical adduct of the spin trap was incorrectly assigned to the glutathionyl radical adduct. The relatively high yield of the DMPO hydroxyl radical adduct is shown to be due to the two-electron reduction of the corresponding superoxide radical adduct by glutathione. Taking these factors into consideration, we estimate the second order rate constant for the oxidation of glutathione by superoxide to be approximately 200 M(-1) s(-1).  相似文献   

8.
The interaction of reduced glutathione (GSH) with active oxygen species generated during xanthine-oxidase-catalyzed metabolism of xanthine was investigated. The only GSH-derived product detected in this system was oxidized glutathione (GSSG). Catalase inhibited the oxidation of GSH to GSSG by more than 80%, whereas superoxide dismutase exerted a smaller but significant inhibition of GSSG formation. Hydroxyl radical (OH) scavengers or desferrioxamine (1 mM) had no effect on GSSG formation. Using EPR spectroscopy and the spin trap 5,5-dimethylpyrroline-N-oxide (DMPO), the production of superoxide was observed by the detection of a DMPO-OOH radical adduct. This spectrum was altered by the inclusion of GSH (5 - 20 mM) in the reaction mixture, indicating the generation of a different radical species consistent with DMPO-glutathionyl radical adduct generation.  相似文献   

9.
Evaluation of the kinetic parameters of the various reactions involved in the determination of glutathione provided the rationale for a modification of the frequently used assay (F. Tietze, 1969, Anal. Biochem. 27, 502-522) whereby the enzymatic reaction is no longer rate limiting. At pH 6.0, the nonenzymatic thiol interchange reaction of reduced glutathione (GSH) with Ellman's reagent becomes rate limiting, and inhibition of glutathione reductase up to 50% has no influence on the accuracy of the determination. The lower level of sensitivity is 10(-10) mol glutathione with a linear response up to 5 X 10(-9) mol. For determination of glutathione disulfide, GSH is alkylated by N-ethylmaleimide (NEM), and excess NEM is removed by extraction with ethyl acetate. Since the glutathione adduct is not stable, extracted samples are kept deep-frozen prior to analysis. Using this precaution, less than 0.05% of GSSG was determined in GSH-containing samples which had been previously freed from GSSG.  相似文献   

10.
In vivo 13C NMR has been used to detect the transient formation of S-(hydroxymethyl)glutathione (GSCH2OH) from glutathione and [13C]formaldehyde in Escherichia coli. Two-dimensional 1H-13C shift correlation was used to locate the chemical shift of the formaldehyde-derived protons of the adduct. The adduct GSCH2OH is formed by chemical reaction in the first few minutes after cells are challenged with formaldehyde and remains within the cell until consumed by metabolism.  相似文献   

11.
12.
Finnish Landrace sheep with a genetic lesion which results in restricted cysteine transport across the red cell membrane have total glutathione concentrations in their red blood cells that are approximately 40% of those in normal sheep of the same breed. However, dimethyldisulphide-challenged red blood cells from both phenotypes produce an ESR-spin adduct at similar rates. The resistance of the low glutathione phenotype red cells to oxidant challenge is reflected by increases in the activities of antioxidant enzymes. Sheep with a genotypic disorder in cysteine transport may be a suitable model for studying the genetic expression of antioxidant enzymes in response to oxidant loads.  相似文献   

13.
The electrophile N-ethylmaleimide (NEM) elicits rapid K(+) efflux from Escherichia coli cells consequent upon reaction with cytoplasmic glutathione to form an adduct, N-ethylsuccinimido-S-glutathione (ESG) that is a strong activator of the KefB and KefC glutathione-gated K(+) efflux systems. The fate of the ESG has not previously been investigated. In this report we demonstrate that NEM and N-phenylmaleimide (NPM) are rapidly detoxified by E. coli. The detoxification occurs through the formation of the glutathione adduct of NEM or NPM, followed by the hydrolysis of the imide bond after which N-substituted maleamic acids are released. N-ethylmaleamic acid is not toxic to E. coli cells even at high concentrations. The glutathione adducts are not released from cells, and this allows glutathione to be recycled in the cytoplasm. The detoxification is independent of new protein synthesis and NAD(+)-dependent dehydrogenase activity and entirely dependent upon glutathione. The time course of the detoxification of low concentrations of NEM parallels the transient activation of the KefB and KefC glutathione-gated K(+) efflux systems.  相似文献   

14.
Alterations in the redox status of proteins have been implicated in the pathology of several neurodegenerative diseases. We report that peroxynitrite-induced disulfides in porcine brain tubulin are repaired by the glutaredoxin reductase system composed of glutathione reductase, human or Escherichia coli glutaredoxin, reduced glutathione, and NADPH. Reduction of disulfide bonds between the alpha- and beta-tubulin subunits by the glutathione reductase system was assessed by Western blot. Tubulin cysteine oxidation and reduction was quantitated by monitoring the incorporation of 5-iodoacetamido-fluorescein, a thiol-specific labeling reagent. Tubulin disulfide bond reduction by the glutaredoxin reductase system restored tubulin polymerization activity that was lost following peroxynitrite addition. In support of redox modulations of tubulin by glutathione, thiol-disulfide exchange between tubulin and oxidized glutathione was detected and quantitated by HPLC. In addition, glutathionylation of tubulin was detected by dot blot using an anti-GSH antibody.  相似文献   

15.
The tridentate complex CuGHK does not form ESR detectable adducts upon addition to either glutathione or Ehrlich ascites cells under our conditions. The absence of adducts is consistent with the poor uptake of CuGHK by cells. ESR spectra are used to characterize adduct formation between CuGHK and histidine. The CuGHK-histidine adduct is not stable in the presence of Ehrlich ascites tumor cells. It is argued that a Cu(His)2 complex is formed as a consequence of the interaction of GHK with cells.  相似文献   

16.
The interaction of the antitumor active metallocene dihalides Cp(2)MCl(2) (M=Ti, Nb, Mo) and 1 equiv. of glutathione was studied by (1)H NMR spectroscopy at pD 2-7 in 4 mM NaCl solutions. No interaction between glutathione and titanocene dichloride was detected at pD 2, while at pD 5-7 competitive hydrolysis of the cyclopentadienyl ligands occurred. With niobocene dichloride formation of approximately 20% of an adduct was observed at pD 2 and 5, but hydrolysis of the Cp ligands in the adduct occurred over 24 h. Molybdocene dichloride formed two stable adducts at pD 6 which were tentatively assigned as a Cp(2)Mo-glutathione chelate involving coordination of the cysteine thiol and glycine carboxylate to the metal centre, and a thiol centred 1:2 Cp(2)Mo-glutathione complex. The implications for the mechanism of antitumor action of the metallocene dihalides is discussed.  相似文献   

17.
Formaldehyde, a major industrial chemical, is classified as a carcinogen because of its high reactivity with DNA. It is inactivated by oxidative metabolism to formate in humans by glutathione-dependent formaldehyde dehydrogenase. This NAD(+)-dependent enzyme belongs to the family of zinc-dependent alcohol dehydrogenases with 40 kDa subunits and is also called ADH3 or chi-ADH. The first step in the reaction involves the nonenzymatic formation of the S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione. When formaldehyde concentrations exceed that of glutathione, nonoxidizable adducts can be formed in vitro. The S-(hydroxymethyl)glutathione adduct will be predominant in vivo, since circulating glutathione concentrations are reported to be 50 times that of formaldehyde in humans. Initial velocity, product inhibition, dead-end inhibition, and equilibrium binding studies indicate that the catalytic mechanism for oxidation of S-(hydroxymethyl)glutathione and 12-hydroxydodecanoic acid (12-HDDA) with NAD(+) is random bi-bi. Formation of an E.NADH.12-HDDA abortive complex was evident from equilibrium binding studies, but no substrate inhibition was seen with 12-HDDA. 12-Oxododecanoic acid (12-ODDA) exhibited substrate inhibition, which is consistent with a preferred pathway for substrate addition in the reductive reaction and formation of an abortive E.NAD(+).12-ODDA complex. The random mechanism is consistent with the published three-dimensional structure of the formaldehyde dehydrogenase.NAD(+) complex, which exhibits a unique semi-open coenzyme-catalytic domain conformation where substrates can bind or dissociate in any order.  相似文献   

18.
The enzymatic activities of purified horseradish peroxidase, selenium-dependent glutathione peroxidase, thyroid peroxidase and myeloperoxidase, but not that of lactoperoxidase, were markedly enhanced when added into a reaction mixture containing 5 mum native seminal vesicle protein 4, a major protein secreted from rat seminal vesicle epithelium. A further increase of horseradish peroxidase activity was obtained using Ser58-phosphorylated or acetylated seminal vesicle protein 4. The activating effect of native seminal vesicle protein 4 was highest (about 60-fold) on horseradish peroxidase when 4-chloro-1-naphtol was used as the electron donor substrate. The main kinetics parameters of the stimulatory effect on horseradish peroxidase were evaluated and the enzyme-electron donor substrate interaction was investigated by HPLC and electrospray-MS. A native seminal vesicle protein 4/4-chloro-1-naphtol noncovalent adduct was detected when the protein and 4-chloro-1-naphtol were present in the appropriate molar ratio in the horseradish peroxidase-catalyzed reaction. By contrast, no adducts were formed between native seminal vesicle protein 4 and horseradish peroxidase. This native seminal vesicle protein 4/4-chloro-1-naphtol interaction might underlie the native seminal vesicle protein 4-induced horseradish peroxidase stimulation. Furthermore, native seminal vesicle protein 4 was shown by spectrophotometric and electrospray-MS analysis to interact with NADPH, an electron donor substrate of the selenium-dependent glutathione peroxidase/glutathione reductase redox system, with formation of an adduct between them. Although further investigation is required to elucidate the mechanism of adduct formation, this interaction, probably by promoting the release of the NADPH electrons required for glutathione disulphide reduction, could explain the stimulatory effect of seminal vesicle protein 4 on mammalian peroxidases possibly involved in its physiological function on the selenium-dependent glutathione peroxidase/glutathione reductase system. The biological significance of these properties of native seminal vesicle protein 4 might be related to its ability to downregulate reactive oxygen species and oxidative stress-induced apoptosis.  相似文献   

19.
2-(Allylthio)pyrazine (2-AP), a synthetic pyrazine derivative with an allylsulfur moiety, has hepatoprotective effects against toxicants. Effect of 2-AP on hepatic tumorigenesis in association with glutathione S-transferase (GST) induction was examined in rats exposed to aflatoxin B1 (AFB1). Both AFB1-DNA adduct formation in the liver and urinary elimination of 8,9-dihydro-8-(N7-guanyl)-9-hydroxy-aflatoxin B1 (AFB1-N7-guanine) adduct were also determined. Male Sprague Dawley rats were treated with 2-AP at the daily oral doses of 10, 25 and 50 mg/kg for 16 consecutive days, during which four repeated doses of AFB1 (1.0 mg/kg) were given to the animals. Rats were then subjected to two-thirds of hepatectomy, followed by administration of phenobarbital (PB). Focal areas of hepatocellular alteration were identified after 44 days and preneoplastic foci expressing the placental form of glutathione S-transferase P (GST-P) were quantified by immunostaining of liver sections. 2-AP reduced the volume of liver occupied by GST-P foci by 65-96%. Under these experimental conditions, 2-AP treatment resulted in significant elevations in GST activity in the liver. Levels of radiolabeled AFB1 covalently bound to hepatic DNA, RNA and proteins were significantly reduced in rats treated with 2-AP for 5 days. 2-AP pretreatment also caused a 45% reduction in the urinary elimination of AFB1-N7-guanine adduct over the 24-h postdosing period. The present findings demonstrated that 2-AP exhibited protective effects against AFB1-induced hepatocarcinogenesis in rats with a marked decrease in the level of AFB1-DNA adduct. Reduction of hepatic DNA adducts might result from elevations of activity of GST, which catalyzes detoxification of the carcinogen.  相似文献   

20.
Lens cells contain high concentrations of thiol-rich proteins, gamma-crystallins and reduced glutathione. Solutions of bovine gamma-crystallin react avidly with either reduced or oxidized glutathione to form protein-glutathione mixed disulphides. A method of purification of a gamma-II crystallin-glutathione adduct containing two mixed disulphide groups is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号